ЗАКОНОМЕРНОСТИ РАЗВИТИЯ НЕУПРУГОЙ И ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ПРИ ИЗГИБЕ И КРУЧЕНИИ ОБРАЗЦОВ СПЛАВА Ті_{49,3}Ni_{50,7}(AT.%)

¹ Д.Ю.ЖАПОВА, ^{1,2} <u>А.А.ГУСАРЕНКО</u>, ¹ В.Н.ГРИШКОВ ¹Институт физики прочности и материаловедения СО РАН, Томск ²Национальный исследовательский Томский политехнический университет, Томск angel.ru09@mail.ru

Сплавы на основе никелида титана являются яркими представителями группы функциональных материалов, обладающих термомеханической памятью (эффект памяти формы (ЭПФ) и эффектом сверхэластичности (СЭ)). Эти эффекты обусловлены термоупругими МП из высокотемпературной кубической В2 фазы в мартенситные R и В19' фазы с ромбоэдрической и моноклинной структурами, соответственно. Как при реализации эффекта сверхэластичности, так и при реализации ЭПФ материалы испытывают деформационные воздействия. При реализации эффекта сверхэластичности проводится изотермическое нагружение до некоторой заданной деформации, є (при растяжении, сжатии или изгибе) или γ_1 (при кручении) с последующей разгрузкой при этой же температуре (обычно выше температуры завершения обратного МП мартенсита В19' в В2 фазу). Наиболее распространённая схема реализации ЭПФ включает охлаждение образцов без приложенной нагрузки до температуры $T_{d} < M_{K}$ (температуры завершения МП в мартенсит B19'). Затем при температуре T_d приводится изотермическое нагружение до ε_t (или γ_t). Разгрузка при этой же температуре с последующим нагревом разгруженных образцов, в процессе которого реализуется однократный ЭПФ. Таким образом температура изотермических циклов «нагружение – разгрузка» (T_d) и величина заданной при этом деформации (ε_t или γ_t) являются важными параметрами, которые могут влиять на проявление эффектов сверхэластичности и ЭПФ в сплавах с термоупругими МП.

В данной работе представлены результаты исследования влияния температуры деформирования на ресурс обратимой неупругой деформации в пластически деформированных кручением и изгибом двойного сплава на основе никелида титана. Объектом исследования являлись образцы сплава $Ti_{49.3}Ni_{50.7}$ (ат.%). При охлаждении и нагреве исследуемых образцов наблюдали только мартенситное превращение (МП) $B2 \leftrightarrow B19'$ (где B2 — высокотемпературная фаза, а B19' — моноклинная мартенситная фаза). Температуры начала и конца МП в фазу B19' составляли M_H =252К и M_K =223К, а температуры начала и конца обратного МП в B2 фазу — A_H =258К и A_K =273К.

Температура изотермических циклов «нагружение-разгрузка» образцов при кручении и изгибе составляла 298±2К. Образцы сплава при данной температуре имели структуру В2-фазы. Заданная в процессе нагружения образца деформация (γ_t или ϵ_t), включает неупругую ($\gamma_{HД}$ или $\epsilon_{HД}$) и пластическую (γ_{rp} или ϵ_{rp}) деформации. Суммарная неупругая деформация ($\gamma_{CHД}$ или $\epsilon_{CHД}$) является суммой величин эффектов сверхэластичности (γ_{cB} или ϵ_{cB}) и памяти формы ($\gamma_{3\Pi\Phi}$ или $\epsilon_{3\Pi\Phi}$): $\gamma_{CHД} = \gamma_{cB} + \gamma_{3\Pi\Phi}$ и $\epsilon_{CHД} = \epsilon_{cB} + \epsilon_{3\Pi\Phi}$. Накопленную при данной γ_t (или ϵ_t) пластическую деформацию (γ_{rp} или ϵ_{rp}) определяли как остаточную деформацию при завершении формовосстановления в процессе нагрева разгруженных образцов. В каждом последующем цикле γ_t (или ϵ_t) увеличивали.

В результате исследования было обнаружено, что зависимости суммарной неупругой деформации, полученные при изгибе и при перерасчёте деформации кручения в эквивалентные ей деформации растяжения (по Мизесу), практически совпадают, рисунок 1. При этом возврат неупругой деформации в режиме проявления ЭПФ в образцах, деформированных изгибом, на 1–2% превышает ЭПФ образцов, деформированных при кручении. Однако значение сверхэластичности при изгибе ($\epsilon_{\rm t}$ от 8% до 24%), $\epsilon_{\rm cs.}$ на 1 – 2% меньше величины эффекта сверхэластичности при кручении этих же образцов. Это связано с тем, что развитие пластической деформации при изгибе приводит к более эффективной стабилизации мартенситной фазы В19' в изотермических циклах «нагружение – разгрузка» при 298 К.

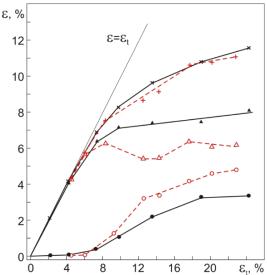


Рисунок 1 - Зависимости $ε_{cв.}(\Delta, \blacktriangle,)$, $ε_{ЭΠΦ}(\circ, \bullet)$, $ε_{CHД}(+, \times)$ от заданной деформации $ε_t$ при изгибе (пунктирная линия) и при кручении (сплошная линия). Деформации кручения $γ_t$, $γ_{cв.}$, $γ_{ЭΠΦ}$ и $γ_{CHД}$ перерасчитаны в соответствующие эквивалентные деформации при растяжении $ε_t$, $ε_{cв.}$, $ε_{ЭΠΦ}$ и $ε_{CHД}$ (по Мизесу). Крупнозернистые образцы сплава $Ti_{49.3}Ni_{50.7}(at.\%)$, $T_d = (298\pm 2)~\mathrm{K}$

Пластические деформации при изгибе образцов исследуемого крупнозернистого сплава и пластические деформации, полученные при перерасчёте деформации кручения в эквивалентные ей деформации растяжения при заданных деформациях ϵ_t до ~24% (эквивалентная деформация кручения γ_t ~ 36%) также близки.

Проведён анализ собственных результатов и литературных данных по влиянию различных способов задания деформации образцам, в том числе пластической деформации, на особенности накопления и последующего возврата неупругой деформации в виде эффектов сверхэластичности и памяти формы в сплавах с термоупругими мартенситными превращениями. Показано, что ресурс суммарной обратимой неупругой деформации во всём интервале заданных деформаций практически не зависит от схемы деформирования (изгиб или кручение) и достигает $\sim 11\%$ при $\epsilon_t = 24\%$, что хорошо соответствует максимальной теоретической величине мартенситной деформации, полученной для мартенситного превращения $B2 \leftrightarrow B19$ ° в сплаве $Ti_{49.3}Ni_{50.7}(at.\%)$ в [1].

Работа выполнена в рамках гранта Президента Российской Федерации № МК-1057.2020.8, гранта РФФИ №18-48-70040 р_а и государственного задания ИФПМ СО РАН, проект III.23.2.2.

Список литературы

1. Прокошин С.Д., Коротицкий А.В., Браиловский В., Инаекян К.Э., Дубанский С.М. Кристаллическая решётка мартенсита и ресурс обратимой деформации термически и термомеханически обработанных сплавов Ті-Ni с памятью формы. // ФММ. – 2011. – Т.112. – №2. – С.180-198.