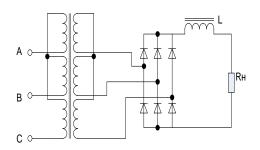
Исследование многоступенчатого трансформаторного корректора коэффициента мощности

Едгулов М.М.


Научный руководитель: Букреев В.Г., д.т.н., проф. кафедры ЭПЭО ЭНИН ТПУ Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30 E-mail: edgmar@mail.ru; edgmar@sibmail.com

Вторичные источники питания, применяемые в наземном и космическом приборостроении, питаемые от сети переменного тока обладают рядом показателей качества.

Их основными показателями, с точки зрения качества потребляемой электроэнергии, являются коэффициент мощности, коэффициент гармоник и коэффициент пульсаций. Эти показатели определены в [1]. Рассмотрим коэффициент гармоник. Для источника питания, включаемого в сеть трёхфазного синусоидального переменного тока, коэффициент гармоник потребляемого тока будет определяться несинусоидальностью потребляемого тока:

$$k_{\text{r}i} = \sqrt{\frac{\sum_{n \neq 1} l_n^2}{l_1^2}} \cdot 100 \qquad [k_{\text{r}i}] = [\%]$$
 (1)

 I_n – амплитуда n-й гармоники, I_1 – амплитуда первой гармоники тока потребления. На рисунке 1 изображена базовая схема выпрямления трёхфазной сети переменного тока:

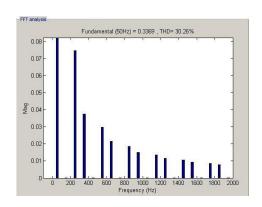


Рисунок 1 - Базовая схема выпрямления

Рисунок 2 – Ток, потребляемый из сети базовой схемой, представленный магнитудами 1-й и высшими гармониками тока

Перенесем базовую схему в среду MathLab, исключив из нее сглаживающий дроссель и произведем быстрое Фурье-преобразование, для получения численного значения коэффициента k_{ri} и амплитуд гармоник тока, потребляемых из сети.

Как видно из полученных данных, коэффициент гармоник схемы THD =30.26%, что превышает допустимое значение по ГОСТ Р 54149-2010. Существует широко известная схема, позволяющая снизить коэффициент гармоник, за счет сдвига фазы питающего напряжения [3]:

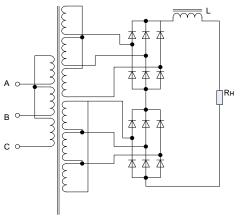


Рисунок 3 - Схема с 30-градусным сдвигом фаз питающего напряжения

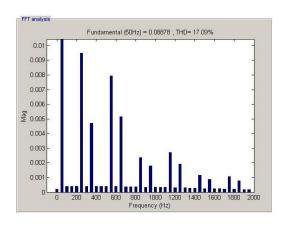


Рисунок 4 - Ток, потребляемый схемой с 30градусным сдвигом фаз питающего напряжения, представленный магнитудами 1й и высшими гармониками тока

Сетевое напряжение подается на первичную обмотку трансформатора, а нагрузка подключается к двум трёхфазным выходным обмоткам, соединённым по схеме «Δ-Y» (треугольник-звезда). Выходные напряжения выпрямляются мостами Ларионова и далее последовательно соединяются между собой и нагрузкой (Рисунок 3). Такая схема снижает коэффициент гармоник до 17.09% (Рисунок 4).

Согласно ГОСТ Р 54149-2010, процент высших гармоник не должны превышать: 6%— для 5-ой гармоники, 5% — для 7-ой гармоники и т.д. Существует достаточно много способов улучшения показателей качества потребляемой электроэнергии: включение в систему активных и пассивных корректоров коэффициента мощности — сглаживающих дросселей и реакторов, частотных фильтров, понижающих и повышающих преобразователей постоянного тока (трансформаторов постоянного тока) [1,2].

Предлагается способ коррекции коэффициента мощности с помощью многократных фазовых сдвигов вектора напряжения первичной цепи трансформатора (рисунок 5).

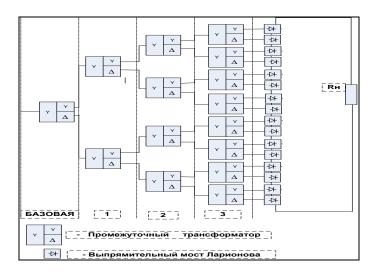


Рисунок 5 - Схема преобразования напряжения с тремя ступенями преобразования

Нагрузка может быть подключена к любой из ступеней преобразовательных трансформаторов, с помощью выпрямительных мостов.

Проанализируем, как влияет количество промежуточных трансформаторов:

Таблица 1 - Коэффициент несинусоидальности (THD) и амплитуды высших гармоник для разного количества промежуточных сдвигающих трансформаторов

Схема	THD, %	Амплитуды гармоник, %				
включения		1-ая	5-ая	7-ая	11-ая	13-ая
Базовая	30,26	100	22,24	11,16	8,88	6,39
1	17,09	100	10,7	5,32	8,94	5,8
2	12,06	100	5,34	3,05	7,85	4,58
3	20,77	100	16,21	7,97	6,72	4,46
4	6,31	100	1,06	0,72	4,14	2,46
5	4,38	100	0,61	0,77	1,17	0,57

Таблица 2 - Коэффициент несинусоидальности (THD) для схем с разным количеством промежуточных сдвигающих трансформаторов в зависимости от сопротивления нагрузки

Схема включения	ТНО при различных сопротивлениях нагрузки, %				
	1000 Ом	500 Ом	100 Ом		
1	17,09	16,28	13,22		
2	12,06	10,9	11,27		
3	20,77	20,77	22,10		
4	6,31	6,37	6,49		
5	4,38	6,44	12,0		

Выволы:

- 1) Независимо от количества промежуточных трансформаторов, коэффициент гармоник независим от величины входного трёхфазного напряжения.
- 2) При определенном значении RH=const, наиболее эффективной является схема преобразования, содержащая 5 ступеней промежуточных трансформаторов, с $k_{ri} = 4.38\%$.
- 3) При изменении Rн, в сторону увеличения тока потребления, наиболее эффективна схема с 4-мя ступенями преобразования. Схема с 5-ю ступенями становится неэффективной.

Для получения наименьшего значения несинусоидальности потребляемого тока, следует выбрать ту ступень преобразования, которая даст наименьший $k_{\rm ri}$, наиболее эффективную ступень выбрать либо экспериментально, либо построением векторных диаграмм токов и напряжений. В перспективе, возможна электронная коммутация ступеней преобразования, на основе цифровой обработке тока потребления.

Список литературы:

- 1. В.И. Мелешин. Транзисторная преобразовательная техника, Москва: Техносфера, 2006.- 632 с.
- 2. Едгулов М.М., Писниченко А.О. Исследование повышающего конвертора с индуктивным накоплением энергии», Томск, 2008. Электронные и электромеханические системы и устройства: тез. докл. XVIII науч.-техн. конф. молодых специалистов.
- 3. Гоголин В.А., Кочергин В.И., Поляков С.А., Макарычева Т.В. Улучшение гармонического состава тока потребления из сети при питании нагрузки от выпрямителя, Томск, 2011. Электронные и электромеханические системы и устройства. Сборник научных трудов.