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Abstract. We propose an approach to a self-testing (m, n)-code checker design, based on 

subdividing the set of all code words into special subsets called segments. The checker circuit 

is constructed by using one- and two-output configurable logic blocks (CLB). Previously, in 

each output of a CLB, a function representing exactly one segment was implemented. In the 

proposed approach, at each CLBs output, it is possible to implement functions that represent 

several segments and to provide the self-testing property. It allows reducing the number of 

CLBs and simplifying the circuit of the checker. 

1.  Introduction 

In self-checking circuits, code checkers are used to provide the self-testing property. As a rule, the 

checker is designed on the same element base as the circuit. In the checker, the weight of an input 

codeword is usually calculated. For this purpose, threshold elements or parallel counters are used 

 [1–6]. This paper proposes a design method of the checker based on configurable logic blocks 

(CLBs). In papers [7, 8], the authors propose a method for design a self-checking finite-state machine. 

In the case of correct operation of the circuit, the code words of some unordered code are implemented 

at the output of the circuit. Usually, the (m,n)-code is used, where n is the length of a code word, m is 

the number of unity components (the weight). The papers also develop a method for self-testing (m,n)-

code checker design based on the repeated use of a special decomposition formula for a set of the 

(m,n)-code words and implementing the obtained formula by CLBs. In the method of self-testing 

checker design proposed in [8], the presence of two-output CLBs is not necessary. This means that the 

method allows building self-testing checkers using any modern CLBs (Field Programmable Gate 

Arrays (FPGA), manufacturers Xilinx, Altera, Achronix, Actel, Atmel, Lattice semiconductor, etc.). 

There is a special requirement for the implementation of the formula: the checker of the (m,n)-

codes must be self-testing for a given set of faults, say V. The set V includes all multiple stuck-at 

faults occurred at CLBs inputs and outputs. In this case, only one CLB in the checker can be defective. 

It is assumed that in a system consisting of a self-testing circuit and a (m,n)-code checker, either the 

circuit or the checker can be faulty, but not both. 

The self-testing checker should satisfy the following requirements: 

1) when a non-code word appears at the circuit output (or at the checker input), the checker should 

issue a corresponding signal; 

2) in the checker itself, a fault from the considered set of faults V may occur, which must be 

detectable in the working area of the detector, i.e. on the set of all its code words. This means that 

there must be an (m,n)-code word for which this fault appears at the outputs of the checker. 
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The self-testing checker has two outputs with the following combinations of signal values: 

a) (01) or (10) mean that the input word is a word of the (m,n)-code and the checker is faultless; 

b) (00) or (11) mean that either the input word is non-code or the checker is faulty. 

The checker is designed according to a formula representing the set of all (m,n)-code words, being 

the implementation of this formula. 

2.  The decomposition method for the set of (m,n)-code words 

The number of all (m,n)-code words is equal to m
nC , i.e., the number of combinations of n elements 

taken m at a time. The code words can be represented by a disjunction of conjunctions of the rank n. 

We denote this disjunctive normal form (DNF) as )(XDm
n , where X = {x1, x2, …, xn} is the set of 

variables. If, for example, n = 10, m = 5, then )(5
10 XD  includes 252)!5!5(/!105

10 ==C  conjunctions 

of the rank 10 and 2520 symbols. The DNF can not be reduced: )(XDm
n  is both the perfect DNF and 

the sum of prime implicants, since any two conjunctions of )(XDm
n  are orthogonal by at least two 

variables. 

To represent all (m, n)-code words, a special decomposition formula was proposed in [9]. We 

divide the set of variables X into two subsets X1, X2, where X1 = {x1, ..., xg}, X2 = {xg + 1, ..., xn}. The 

whole set of the (m,n)-code words of can be represented by the formula 
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−
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where the  between )( 1XDi
g  and )( 2XD im

gn
−
− is omitted. 

Here )( 1XDi
g , )( 2XD im

gn
−
−  are the decomposition functions; we call the cardinality of variable 

subsets after the last use of formula (1) as the decomposition base and denote it as k. 

In paper [8], we propose to choose g as the least integer number which is greater than or equal to 

2n , i.e.,  2ng = . If g > k and/or n – g > k, then formula (1) is used again for any decomposition 

function  )( 1XDi
g , )( 2XD im

gn
−
− , mi ,0=   etc. Upon doing that, we obtain the formula for all (m,n)-

code words, where p ≤ k for all )( rq
p XD . Multiple decomposition is applied both for the first and to 

the second multipliers in formula (1). 

In this paper, we use only one decomposition step. For example, for 7
14D  and k = 7, where k is the 

number of CLBs inputs, we have two subsets of variables 

},,,,,,{ 7654321
1 xxxxxxxX = ,   },,,,,,{ 141312111098

2 xxxxxxxX = . 

Formula (1) has the form (2): 

 
.)()()()()()()()(

)()()()()()()()(

20
7

17
7

21
7

16
7

22
7

15
7

23
7

14
7

24
7

13
7

25
7

12
7

26
7

11
7

27
7

10
7

7
14

XDXDXDXDXDXDXDXD

XDXDXDXDXDXDXDXDD



=
 (2) 

To ensure the self-testing property of the checker, special requirements will be used for the 

functions implemented by the CLBs. Without loss of generality, we will consider single-output CLBs 

with not more than 7 inputs and two-output CLBs with not more than 6 inputs. 

To provide the self-testing property in the considered class of faults, we use special functions. 

Let us denote the set of Boolean vectors where the function f(x1, …, xn) is equal to 1 as S1(f). Let us 

represent the Boolean function by the table where the columns correspond to Boolean variables, and 

the rows present Boolean vectors from the set S1(f). 

Definition 1. We call a function f as function of type 2, if in the table representation, every column 

contains exactly one unity component, and the number of unity components in all rows is the same.  

Table 1 demonstrates an example of a type 2 function. 
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Theorem 1. For a CLBs output, implementing a type 2 function, and for any input multiple-stuck-at 

fault, either a test from S1(f) exists, or the multiple fault manifests itself as an output stuck-at-1 fault at 

the CLB. 

Theorem 2. If a type 2 function is implemented on one of the outputs of a two-output CLB, then 

whatever the second function associated with the CLB, an input multiple-stuck-at fault of the CLB is 

either detected on the corresponding output type 2 function when the CLB receives a vector from S1(f) 

in the input, or the fault manifests itself as a stuck-at-1 fault. 

Theorems 1 and 2 are proven in [9] 

Table 1. Example of a type 2 function. 

x1 x2 x3 x4 x5 x6 

1 1 0 0 0 0 

0 0 1 1 0 0 

0 0 0 0 1 1 

3.  Identifying the properties of configurable logic blocks implementing the (m,n)-code words 

Definition 2. We call as a segment ),...,( 1 k
q

k xxF  the set of all (q,k)-code words, i.e., all Boolean 

vectors where the function 1),...,( 1 =k
q
k xxD . 

We denote as FrSet(x1, …, xk) the set of all segments ),...,( 1 k
q

k xxF , i.e., the set FrSet(x1, …, xk) 

includes all Boolean vectors of the length k and the weight q, where 0 ≤ q ≤ k. 

We denote as FrSubset(x1, …, xk) a subset of the set FrSet(x1, …, xk) satisfying the following 

conditions: 

1) It contains at least two segments; 

2) if we arrange the weights of the segments in ascending order then in the sequence of weights 

there will be two neighboring elements with the difference at least two. 

Examples. A union of segments with the weights 2, 4, 5 is a FrSubset(x1, …, xk), a union of 

segments with the weights 2, 3, 4 is not a FrSubset(x1, …, xk). 

Definition 3. Let us call a function whose domain of unity values coincides with a subset 

FrSubset(x1, …, xk), as Fsubset(x1, …, xk). 

Table 2 demonstrates an example of such a function. 

 

Table 2. Example of a function Fsubset(x1,x2,x3). 

x1 x2 x3 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

The subset FrSubset(x1,x2,x3) for the function from table°2 consists of two segments: 

),,( 321
0

3 xxxF , ),,( 321
2

3 xxxF . 

Subsets FrSubset(x1, …, xp) can be of different cardinality. 

Let a CLB implement a function Fsubset(x1, …, xk). Here k is the number of CLBs inputs. 

Further we represent an input multiple stuck-at fault by a ternary vector with the components from 

the set {0, 1, – }. Components equal to 0 or 1 are called as outer components, they correspond to 

inputs with stuck-at-0 or stuck-at-1 faults. Components equal to – are called inner components, they 

correspond to faultless inputs. 

Example. Let a CLB have 6 inputs. If it has stuck-at-0 fault at the inputs {x1,x4} and  stuck-at-1 

fault at the input {x3} then this multiple fault is described by the vector −−−100 . 
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Theorem 3. If a CLB implements a function Fsubset(x1, ..., xk), where k is the number of the CLBs 

inputs, then for a multiple input stuck-at fault, either there is a test from the set FrSubset(x1, ..., xk), or 

a multiple fault manifests itself as a stuck-at-1 fault at the CLBs output. 

Proof. Let the CLB implement the function Fsubset(x1, ..., xk), k be the number of the CLBs inputs. 

Let the fault be described by a ternary vector β and the vector has r outer components, r ≤ k. Consider 

all possible cases. 

1. Let r = k, i.e., all the components of β are outer. So, 

а) if β is a code word from FrSubset(x1, …, xk) then the fault manifests itself as the output 

stuck-at-1 fault; 

б) otherwise, if β is not a code word from FrSubset(x1, …, xk), then the fault is detected by any 

vector from FrSubset(x1, …, xk); the output value is equal to 0 instead of 1. 

2. Let r < k, s be the number of unity components of the vector β. There can be several cases: 

а) if 0 < s ≤ r < k, then any vector α from FrSubset(x1, …, xk) having at least one zero 

component with the same number as a unity component of β, is a test for the fault. Such vector α 

exists, because for any component, there is a vector from FrSubset(x1, …, xk) in which the 

component is equal to zero; 

б) if s = 0, then any vector α from FrSubset(x1, …, xk), having at least one unity component 

with the same number as a zero component of β, is a test for the fault. Such vector α exists, because 

for any component, there is a vector from FrSubset(x1, …, xk) in which the component is equal to 

unity. 

The theorem is proved. 

Theorem 4. If at one of the outputs of two-output CLB a function of the type Fsubset(x1, ..., xk) is 

implemented, whatever the second function associated with the CLB, a multiple input stuck-at fault of 

this CLB is either detected on the corresponding vector α from FrSubset(x1, ..., xk), or it appears on this 

output as a stuck-at-1 fault. 

Proof. At one of the CLBs outputs, a function of the type Fsubset(x1, ..., xk) is implemented. 

According to Theorem 1, for a multiple input stuck-at fault , either there is a test from the set 

FrSubset(x1, ..., xk), or the multiple fault manifests itself as an output stuck-at-1 fault. Both functions 

implemented by the CLB depend on the same sets of variables , and the functions themselves are 

implemented on separate memory blocks (LUT). At the second output of the CLB, the multiple stuck-

at fault may not appear at all. It depends on the type of function implemented by the second output. 

The theorem is proved. 

Consider the subcircuit 1 (Figure 1). The lower level of this subcircuit consists of a one- or two- 

output CLB (CLB1), which implements the function (one of the outputs) Fsubset(x1, ..., xk), and the 

output of this CLB corresponds to the input of several CLBs implementing the function of type 2 

(CLB2 and CLB3). The set of CLBs variables that implement the function of type 2, are different. The 

outputs of the subcircuit are the outputs of the CLB, implementing a function of type 2. 

CLB2 CLB3

CLB1

x1  …  xk  

Figure 1. Subcircuit 1. 

 

Theorem 5. For a multiple input stuck-at fault of one of the CLB of subcircuit 1, either there is a 

test from the set FrSubset(x1, ..., xk), or the fault manifests itself as an output stuck-at-1 fault of 

subcircuit 1. 
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The statement follows from Theorems 1 – 4. 

The detector circuit has a tree structure, on the lower level of which only functions q
pD (x1, …, xp) 

are used, where 0 <q ≤ p, p ≤ k, k – is the number of the CLBs inputs. Earlier, in [7, 8], at every CLBs 

output  exactly one function q
pD (x1, …, xp) was implemented. Theorem 5 allows simplifying the self-

testing-checker circuit and to reduce the number of CLBs in it. For example, Figure 2 demonstrates 

“old” checker 7
14D , as Figure 3 shows  a “new” circuit of the same checker 7

14D . 

x1 x2 x3 x4 x5 x6 x7

CLB1 CLB3 CLB5 CLB7

CLB2 CLB4 CLB6 CLB8

x8 x9 x10 x11 x12 x13 x14

CLB9 CLB11 CLB13 CLB15

CLB10 CLB12 CLB14 CLB16

CLB17

CLB20

CLB18 CLB19

y1 y5 y9 y13

y3 y7 y11 y15

y18

y6

y4 y8

y14y10

y12 y16

y17

y2

 

Figure 2. The checker of the (7, 14)-code. 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

CLB1 CLB2 CLB3 CLB4 CLB5 CLB6

CLB7 CLB8

y3y2y1 y4
y5 y6

 
Figure 3. The new checker of the (7, 14)-code. 

 

Consider the “old” circuit. Let us construct a checker for 7
14D , using subcurcuit 2 if k = 7. At the 

first step of decomposition one can obtain. 
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There are 8 Boolean functions depending on the variables x1, x2, x3, x4, x5, x6, x7. For their 

implementation one needs 8 CLBs. Their characteristics are listed in table 3. 

 

Table 3. Boolean functions depending on the variables x1, x2, x3, x4, x5, x6, x7. 

№ Implemented function Output № Implemented function Output 

1 ),,,,,,( 7654321
0
7 xxxxxxxD  y1 5 ),,,,,,( 7654321

4
7 xxxxxxxD  y9 

2 ),,,,,,( 7654321
1
7 xxxxxxxD  y3 6 ),,,,,,( 7654321

5
7 xxxxxxxD  y11 

3 ),,,,,,( 7654321
2
7 xxxxxxxD  y5 7 ),,,,,,( 7654321

6
7 xxxxxxxD  y13 

4 ),,,,,,( 7654321
3
7 xxxxxxxD  y7 8 ),,,,,,( 7654321

7
7 xxxxxxxD  y15 
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There are 8 Boolean functions depending on the variables x8, x9, x10, x11, x12, x13, x14. For their 

implementation one needs 8 CLBs. Their characteristics are listed in table 4. 

 

Table 4. Boolean functions depending on the variables x8, x9, x10, x11, x12, x13, x14. 

№ Implemented function Output № Implemented function Output 

9 ),,,,,,( 141312111098
7
7 xxxxxxxD  y2 13 ),,,,,,( 141312111098

3
7 xxxxxxxD  y10 

10 ),,,,,,( 141312111098
6
7 xxxxxxxD  y4 14 ),,,,,,( 141312111098

2
7 xxxxxxxD  y12 

11 ),,,,,,( 141312111098
5
7 xxxxxxxD  y6 15 ),,,,,,( 141312111098

1
7 xxxxxxxD  y14 

12 ),,,,,,( 141312111098
4
7 xxxxxxxD  y8 16 ),,,,,,( 141312111098

0
7 xxxxxxxD  y16 

To accomplish formula (2) one needs 4 CLBs. Their characteristics are listed in table 5. 

 

Table 5. Boolean functions for accomplishing formula (2). 

№ Implemented function Output 

17 654321 yyyyyy   y17 

18 121110987 yyyyyy   y18 

19 16151413 yyyy   Outputs of the checker 

20 ),( 1817
1
2 yyD  Outputs of the checker 

The outputs of CLB19 and CLB20 are the outputs of the checker. Hence, 20 CLBs are used to 

implement the checker. The circuit is represented in Figure 2. 

At the “new” circuit, we use the following functions (tables 6 and 7). 

 

Table 6. Boolean functions depending on the variables x1, x2, x3, x4, x5, x6, x7. 

№ Implemented function Output 

1 ),...,,( 721
0
7 xxxD , ),...,,( 721

3
7 xxxD , ),...,,( 721

6
7 xxxD  y1 

2 ),...,,( 721
1
7 xxxD , ),...,,( 721

4
7 xxxD , ),...,,( 721

7
7 xxxD  y3 

3 ),...,,( 721
2
7 xxxD ,  ),...,,( 721

5
7 xxxD  y5 

 

Table 7. Boolean functions depending on the variables x8, x9, x10, x11, x12, x13, x14. 

№ Performing function Output 

4 
),,,,,,( 141312111098

7
7 xxxxxxxD , ),,,,,,( 141312111098

2
7 xxxxxxxD , 

),,,,,,( 141312111098
1
7 xxxxxxxD  

y2 

5 
),,,,,,( 141312111098

6
7 xxxxxxxD , ),,,,,,( 141312111098

4
7 xxxxxxxD  

),,,,,,( 141312111098
0
7 xxxxxxxD  

y4 

6 ),,,,,,( 141312111098
3
7 xxxxxxxD , ),,,,,,( 141312111098

5
7 xxxxxxxD  y6 

To accomplish formula (2) one needs 2 CLBs. Their characteristics are listed in table 8. 

 

Table 8. Boolean functions for accomplishing formula (2). 

№ Performing function Output 

7 654321 yyyyyy   outputs of the checker 

8 256341 yyyyyy   outputs of the checker 
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The outputs of CLB7 and CLB8 are the outputs of the checker. Hence, to perform checker 8 CLBs 

are used. The circuit of the detector is represented in Figure 3. 

4.  Conclusion 

Thus, we propose an approach to design of a self-testing (m,n)-code checker, which allows reducing 

the number of CLBs and simplifying the checker circuit. Previously, at each output of the CLB, 

functions representing exactly one segment. In the proposed approach, at each CLBs output, it is 

possible to implement functions that represent several segments. 
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