На правах рукописи

0.0000

Андриенко Олег Семенович

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ РАЗДЕЛЕНИЯ ИЗОТОПОВ ЛИТИЯ В УСЛОВИЯХ ФОРМИРОВАНИЯ ГРАНИЦЫ РАЗДЕЛА ФАЗ

Специальность 05.17.02 – технология редких, рассеянных и радиоактивных элементов

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Томск – 2009

Работа выполнена в Институте оптики атмосферы им. В.Е. Зуева СО РАН и ОСП «Сибирский физико-технический институт им. академика В.Д. Кузнецова Томского государственного университета»

Научный руководитель:	доктор физико-математических наук, профессор Казарян Мишик Айразатович
Официальные оппоненты:	доктор физико-математических наук, профессор Вергун Анатолий Павлович
	доктор химических наук Полубояров Владимир Александрович
Ведущая организация:	ГОУ ВПО «Российский химико-техно- логический университет имени Д.И. Менделеева», г. Москва

Защита состоится 12 марта 2009 г. в 14 ч 30 мин на заседании диссертационного совета по защите докторских и кандидатских диссертаций Д 212.025.03 при ГОУ ВПО «Томский политехнический университет», 10-й уч. к., ауд. 332 по адресу: 634050, г. Томск, пр-т Ленина, 2.

С диссертацией можно ознакомиться в библиотеке Томского политехнического университета.

Автореферат разослан «____» ____ 2009 г.

Ученый секретарь Совета по защите докторских и кандидатских диссертаций Д 212.025.03, доктор химических наук,

профессор

100

Жерин И.И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

С момента открытия изотопии, осознания свойств и возможностей изотопов потребность в применении изотопной продукции для нужд ядерной энергетики (топливо, конструкционные материалы, автономные источники энергии), медицины (диагностика, лечение), экологии (контроль за состоянием окружающей среды), а также для контроля инженерных и строительных сооружений возрастала с каждым годом. По оценкам зарубежных специалистов рынок стабильных изотопов, применяемых в биомедицинских исследованиях, ежегодно увеличивается на 10–15%. Биомедицинские потребности, например, только в ¹³С к 2000–2001 гг. составили сотни килограммов в год. Кроме того, по оценкам специалистов в ближайший период следует ожидать значительного повышения спроса на изотопную продукцию в микроэлектронике, лазерных технологиях и т.д. В соответствии с существующими программами развития атомной энергетики ведущих стран следует ожидать как минимум повышения потребностей в разделительных мощностях для энергетики в 2–3 раза.

По ряду причин существующие на сегодняшний день методы разделения изотопов не позволяют обеспечить потребность в изотопической продукции по значительному списку изотопов. Как правило, это изотопы элементов, не имеющих летучих соединений. Для производства таких изотопов нужны принципиально новые технологии.

Одной из важнейших характеристик методов и технологий разделения изотопов является удельное энергопотребление. В методе газовой диффузии удельное потребление электроэнергии составляет от 2400 до 3000 кВт · ч/кг ЕРР. Энергозатраты при использовании газодинамических методов разделения оценивается на уровне 3500 кВт · ч/кг ЕРР. Более экономичными в данном отношении являются методы химического и ионного изотопного обмена; энергозатраты при использовании данных технологий оцениваются специалистами на уровне 600 кВт · ч/кг ЕРР. При использовании метода газового центрифугирования эта величина составляет $\approx 100 \div 150$ кВт · ч/кг ЕРР. Одними из перспективных в данном отношении оказываются оптические методы разделения изотопов. По самым грубым оценкам эффективности существующих лабораторных установок и проектов промышленных установок энергозатраты методов разделения могут составить менее 100 кВт · ч/кг ЕРР. Наиболее перспективно в данном отношении выглядит лазерное разделение в ИК-области.

Очевидно, что рост цен на энергоносители и увеличение спроса на электроэнергию в большинстве стран мира остро ставят проблему уменьшения энергозатрат, для чего необходимы создание новых способов разде-

ления и очистки изотопических систем и модернизация уже внедренных в промышленности.

Предмет исследования

Данная работа посвящена изучению процессов разделения изотопов лития в условиях формирования границы раздела фаз.

Работа проводилась в соответствии с планом научных исследований Института оптики атмосферы им. В.Е. Зуева СО РАН и ОСП «Сибирский физико-технический институт Томского государственного университета», хоздоговорами между Томским политехническим университетом и ОАО «ТВЭЛ», а также поддержана грантом РФФИ № 06-08-01227-а.

Цель работы – изучение физико-химических основ и разработка технологии разделения изотопов лития в условиях формирования границы раздела фаз.

Для достижения этой цели были поставлены следующие задачи:

 исследовать влияние природы растворителя на термодинамические особенности селекции изотопических молекул в условиях формирования границы раздела фаз;

2) предложить физико-химическую модель процесса;

3) разработать физико-химические основы новой технологии разделения и очистки изотопов лития в условиях формирования границы раздела фаз;

4) изучить распределение изотопов лития в условиях многократной равновесной перекристаллизации его солей.

Научная новизна работы состоит в том, что:

 впервые установлено влияние природы растворителя на термодинамику процессов селекции изотопически отличных молекул в условиях формирования границы раздела фаз;

проведена термодинамическая оценка процесса нуклеации при равновесной перекристаллизации хлорида лития, позволяющая оценить влияние структуры формирующейся кристаллической фазы на перераспределение изотопов;

 впервые исследовано перераспределение изотопов в условиях равновесной перекристаллизации;

 предложены новый способ разделения и очистки изотопов и устройство для его осуществления.

Научная и практическая значимость работы

Результаты проведенных исследований вносят существенный вклад в понимание механизмов процессов, протекающих в условиях формирования границы раздела фаз, и могут быть полезны при решении ряда задач физической и коллоидной химии, а также в технологии редких рассеянных и радиоактивных элементов. В ходе исследований:

 разработан комплексный физико-химический подход к описанию процессов селекции молекул в условиях формирования границы раздела фаз;

 установлена взаимосвязь между условиями проведения процесса (природа растворителя, электромагнитное воздействие и др.) и термодинамикой процесса селекции;

 получены патент Российской Федерации на способ разделения и очистки изотопов и устройство для его осуществления.

Научные положения, выносимые на защиту:

1. Влияние пересольватации ионов лития на коэффициент разделения его изотопов в условиях формирования границы раздела фаз.

2. Эффективность разделения изотопов лития в условиях равновесного формирования новой фазы определяется соотношениями значений работы зародышеобразования, энтальпии и энтропии фазового перехода.

3. Работа нуклеации в условиях перекристаллизации хлорида лития из водных растворов для ⁶Li и ⁷Li существенно влияет на перераспределения его изотопов.

Личный вклад автора в работы, выполненные в соавторстве и включенные в диссертацию, состоял в общей постановке задач, активном участии в проведении экспериментальных исследований, анализе и интерпретации полученных данных, написании статей.

Апробация работы

Основные результаты работы докладывались на II Научно-практической конференции «Научно-инновационное сотрудничество» (Москва, 2003); VIII Всероссийской (Международной) научной конференции «Физико-химические процессы при селекции атомов и молекул» (Звенигород, 2003); XI-th International Scientific conference «Physical and Chemical Processes on Selection of Atoms and Molecules and in laser, plasma and nanotechnologies» (Zvenigorod, 2006); Международной научной конференции, посвященной 90-летию Нобелевского лауреата академика А.М. Прохорова (Москва, 2006); Международном научном симпозиуме «Лазеры на парах металлов» (Лоо, 2008).

Публикации

По материалам диссертации опубликованы 43 работы, в том числе 5 статей в реферируемых журналах, рекомендованных ВАК.

Структура и объем работы

Диссертация состоит из введения, четырех глав, заключения, списка цитируемой литературы. Материал работы изложен на 110 страницах,

включая 14 таблиц и 22 рисунка. Список литературы содержит 137 наименований.

Во введении дается обоснование актуальности работы, мотивируется выбор объектов исследования, приводятся цель работы, задачи исследований, указываются научная новизна и практическая значимость полученных результатов, формулируются основные положения, выносимые на защиту.

В первой главе приведен обзор литературы, в котором рассмотрены имеющиеся сведения по способам разделения изотопов и свойствам изотопических молекул, а также сформулированы задачи исследований.

Во второй главе содержится описание методов проведения экспериментов и использованных методик определения состава и свойств веществ.

Третья глава посвящена теоретическому анализу молекулярнокинетических процессов в системе изотопических молекул в процессах фазовых переходов.

В четвертой главе изложены полученные экспериментальные данные, на основании которых проведен анализ определяющих термодинамических факторов процесса перераспределения изотопов в условиях формирования границы раздела фаз.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Состояние проблемы и задачи исследования

Реакция изотопного обмена, лежащая в основе промышленного получения изотопов лития, протекает в системе «жидкость – жидкость» и описывается уравнением

$${}^{6}\text{Li}^{+}+{}^{7}\text{Li}(\text{Hg}) \leftrightarrow {}^{7}\text{Li}^{+}+{}^{6}\text{Li}(\text{Hg}).$$

В соответствии с этой реакцией ион легкого изотопа, находящегося в растворе, концентрируется в амальгаме Li(Hg). Коэффициент разделения для этой реакции зависит от растворителя, температуры и природы растворенной соли. Например, для хлорида лития, растворенного в диметилсульфоксиде (ДМСО), a = 1.049, а для иодида в том же растворителе и при той же температуре (T = 303 K) a = 1.056. При обмене водного гидроксида лития зависимость *a* от температуры описывается уравнением

$$a - 1 = \frac{7455}{T^2} - \frac{0.803}{T},$$

из которого следует, что при T = 299.5 a = 1.050. Использование водных растворов весьма удобно для практического использования. Верхнее обращение потоков проводят в электролизере с ртутным катодом, на котором протекает реакция

$$Li^+ + e \Longrightarrow Li(Hg).$$

Образовавшаяся в электролизере амальгама поступает в колонну изотопного обмена, где она движется противотоком к раствору гидроксида. В нижнем участке обменного аппарата идет реакция разложения амальгамы:

$$\text{Li}(\text{Hg}) \xrightarrow{\text{H}_2\text{O}} \text{LiOH} + \frac{1}{2}\text{H}_2$$

Для быстрого и удобного протекания вышеуказанной реакции применяют катализаторы (графит, соли тяжелых металлов). Процесс разделения характеризуется большими затратами энергии и пара. Другим существенным недостатком является токсичность ртути.

Разделение изотопов при ионном обмене основано на том, что заметные изотопные эффекты наблюдаются, как правило, при равновесии водных растворов солей, щелочей или кислот с твердым катионитом (или анионитом) R. Обычно процесс протекает при комнатной температуре и атмосферном давлении. Ниже приводятся наиболее изученные реакции изотопного обмена и величины наблюдаемых в них коэффициентов разделения:

$$R^{7}Li+{}^{6}LiCl = R^{6}Li+{}^{7}LiCl, a = 1.004 - 1.007,$$

где R – катионит КУ-2. Ионообменные процессы протекают с высокой скоростью. Однако и в этих системах наблюдается линейная зависимость ВЕП от нагрузки, что свидетельствует об определяющем влиянии внутренней массоотдачи в гранулах ионообменника.

На основе вышеуказанных реакций были созданы крупномасштабные установки для разделения изотопов лития.

Идеология использования селективных фотохимических реакций разделения изотопов восходит, по крайней мере, к временам Манхэттенского проекта. Ранним направлением было исследование возможностей проведения селективных реакций в растворах различных соединений при облучении их селективно отфильтрованным солнечным светом. Успех этих исследований был невелик, и они были приостановлены в пользу других методов. Принципиальные концепции фотохимического разделения изотопов были сформулированы в 50-х гг. при проведении многочисленных работ по фотохимическому получению изотопа ²⁰⁴Hg – отличного хладагента для ядерных реакторов. Изобретение лазеров в 1960 г. создало предпосылки для обращения к фотохимии как основе промышленных процессов. Высокая интенсивность, монохроматичность излучения и приемлемая эффек-

тивность лазеров явились основой для успешных лабораторных демонстраций химических реакций, инициированных лазерным излучением. Однако существующие на сегодня оптические методы, по большей части, заключаются либо в селективной фотоионизации молекул (атомов) с последующим разделением в электромагнитном поле, либо в селективном фотоионическом превращении молекул с последующим разделением продуктов реакции. Такие методы требуют огромных энергетических затрат на стадии непосредственного выделения конечного обогащенного продукта из исходной смеси изотопов.

Поскольку концентрации выделяемых изотопов в естественной смеси зачастую не превышают 1–10%, то это вызывает определенные трудности при выделении конечного продукта как в случае фотоионизационных процессов разделения, так и в случае селективного фотохимического превращения.

Таким образом, на сегодняшний день существует большое количество технологий разделения изотопов лития, однако большинство из них требует наличия для элемента устойчивого летучего химического соединения или сопряжено с большими энергозатратами, делающими невыгодным ту или иную технологию разделения изотопов применительно к отдельным элементам, и в частности к литию.

В этой связи перспективным является разработка альтернативного способа разделения изотопов лития, основанного на гетерогенных физикохимических процессах, не требующего синтеза специальных веществ и характеризуемого относительно невысоким уровнем энергопотребеления.

МЕТОДЫ ПОЛУЧЕНИЯ И ИССЛЕДОВАНИЯ ВЕЩЕСТВ

Во второй главе диссертации приводится описание характеристик исходных веществ и способов получения продуктов, комплекса физикохимических методов, применяемых для идентификации, установления физико-химических характеристик получаемых веществ.

Рентгенофазовый анализ (РФА) осуществляли методом порошка на дифрактометре ДРОН-3М с использованием CuK_{α} - и FeK_{α}-излучения. Определение размеров кристаллитов проводили по формуле Шерера по уширению дифракционной линии, в качестве эталона для оценки приборного уширения был выбран образец монокристалла кремния. Инфракрасные (ИК) спектры поглощения регистрировались на спектрофотометре ИКС-29 в области волновых чисел от 400 до 4000 см⁻¹. Количественный изотопный анализ состава определялся масс-спектрометрически на приборе МИ1201-Т.

ТЕОРЕТИЧЕСКИЕ ОЦЕНКИ РАЗДЕЛЕНИЯ ИЗОТОПОВ В УСЛОВИЯХ ФОРМИРОВАНИЯ ГРАНИЦЫ РАЗДЕЛА ФАЗ

Представив равновесие в системе насыщенный раствор хлорида лития и кристаллический хлорид лития в виде

$${}^{6}\mathrm{LiCl}_{(\mathrm{p-p})} + {}^{7}\mathrm{LiCl} \cdot \mathrm{H}_{2}\mathrm{O}_{(\mathrm{TB})} \leftrightarrow {}^{7}\mathrm{LiCl}_{(\mathrm{p-p})} + {}^{6}\mathrm{LiCl} \cdot \mathrm{H}_{2}\mathrm{O}_{(\mathrm{TB})},$$

выражение для константы равновесия данной системы согласно закону Рауля можно записать $K_{\Gamma} = \frac{a_{7_{\text{LiCl}}} \cdot a_{6_{\text{LiCl}} \cdot H_2\text{O}}}{a_{6_{\text{LiCl}}} \cdot a_{7_{\text{LiCl}} \cdot H_2\text{O}}}$. При $\frac{P_{6_{\text{LiCl}}}^0}{P_{7_{\text{LiCl}}}^0} \approx 1$ и $\frac{P_{7_{\text{LiCl}} \cdot H_2\text{O}}^0}{P_{6_{\text{LiCl}} \cdot H_2\text{O}}^0} \approx 1$

выражение для К_Р можно записать в следующем виде:

$$K_P = \frac{a_{7_{\text{LiCl}}} \cdot a_{6_{\text{LiCl} \cdot \text{H}_2\text{O}}}}{a_{6_{\text{LiCl}}} \cdot a_{7_{\text{LiCl} \cdot \text{H}_2\text{O}}}}$$

Термодинамический расчет равновесия в исследуемой системе представлен ниже. Из статистической термодинамики для числа N_i молекул, находящихся в энергетическом состоянии E_i , можно записать следующее выражение: $N_i = \frac{N}{Z} q_i e^{-\frac{E_i}{kT}}$, где $Z = \sum_{i} q_i e^{-\frac{E_i}{kT}}$ – статистическая сумма по со-

стояниям, которая может быть представлена как

$$Z = Z_{\text{пост}} Z_{\text{вр}} Z_{\text{кол}} Z_{\text{эл}} Z_{\text{яд}} e^{-\frac{E_0}{kT}}$$

Тогда свободная энергия системы при постоянном давлении $\Phi^0 = -RT \ln Z$ или $\Delta G = -RT \ln K_P$.

Если рассматривать процесс равновесной перекристаллизации, например, хлорида лития из его водного раствора, то схему такого процесса можно представить в следующем виде:

$${}^{6}\text{LiCl}_{(p-p)} + {}^{7}\text{LiCl} \cdot \text{H}_{2}\text{O}_{(\text{TB})} \leftrightarrow {}^{7}\text{LiCl}_{(p-p)} + {}^{6}\text{LiCl} \cdot \text{H}_{2}\text{O}_{(\text{TB})}$$

где в момент формирования границы раздела фаз (зарождения кристаллической фазы) система находится в состоянии, близком к состоянию истинного термодинамического равновесия.

Для такой системы из определения константы равновесия можно запи-

сать следующее выражение: $K_{\Gamma} = \frac{a_{7_{\text{LiCl}}} \cdot a_{6_{\text{LiCl} \cdot \text{H}_2 \text{O}}}}{a_{6_{\text{LiCl}}} \cdot a_{\text{LiCl} \cdot \text{H}_2 \text{O}}}$. Тогда согласно закону

Рауля и, допуская, что $\frac{P_{6_{\text{LiCl}}}^0}{P_{7_{\text{LiCl}}}^0} \approx 1$ è $\frac{P_{7_{\text{LiCl}}\text{H}_2\text{O}}^0}{P_{6_{\text{LiCl}}\text{H}_2\text{O}}^0} \approx 1$, можно полагать, что

 $K_{\Gamma} = K_{P}$.

Применение статистической термодинамики позволяет в данном случае оценить величину константы равновесия в данной системе следующим образом:

$$K_{P} = \frac{Z_{7_{\text{LiCl}}} Z_{6_{\text{LiCl}+120}}}{Z_{6_{\text{LiCl}}} Z_{7_{\text{LiCl}+120}}} \exp\left[-\frac{Z_{7_{\text{LiCl}}} + Z_{6_{\text{LiCl}+120}} - Z_{6_{\text{LiCl}}} - Z_{7_{\text{LiCl}+120}}}{2kT}\right] F(V) = 1.014;$$

 $\Delta G = -34.45$ Дж/моль.

Данные, использованные при расчете, приведены ниже:

Параметр	⁶ LiCl	⁶ LiCl	⁶ LiCl·H ₂ O	⁷ LiCl·H ₂ O
М, г/моль	41.5	42.5	59.5	60.5
ω_0, cm^{-1}	705	641	2296.03	2264
Ζ	1013.79	921.76	3301.69	3255.63
S	1	1	1	1

Таким образом, процесс должен протекать самопроизвольно в сторону накопления ⁶Li в кристаллизуемой твердой фазе. Исследованы растворимости хлорида лития природного изотопного состава в H_2O и D_2O , показано образование монокристаллодейтерата (LiCl $\cdot D_2O$) в интервале температур от 92 до 20 °C. Изучения растворимости LiCl в D_2O проводились на термостатируемой лабораторной установке, предел насыщения раствора регистрировался оптическим методом по скачкообразному изменению коэффициента преломления раствора. Результаты экспериментов представлены в табл. 1.

Таблица 1

Растворимость хлори	а лития в H ₂ O и D ₂ O
---------------------	---

	Растворимост	ь LiCl, % мас.
<i>I</i> , C	в H ₂ O	в D ₂ O
20 ± 1	45 ± 1	39 ± 1
50 ± 1	48 ± 1	42 ± 1
92 ± 1	55 ± 1	49 ± 1

Результаты свидетельствуют о более низкой растворимости хлорида лития в тяжелой воде по сравнению с легкой (протиевой). Данный факт может быть объяснен меньшей сольватирующей способностью тяжелой

10

воды по сравнению с легкой. Для идентификации кристаллической структуры твердой фазы, полученной в процессе кристаллизации, в работе использован рентгенофазовый анализ, который проводился на установке АПР-1 в излучении FeK_α. Полученный спектр хорошо согласуется со стандартным спектром LiCl·H₂O, однако характеризуется сдвигом в сторону больших θ . Форма спектра, а именно: наличие дуплетного расщепления пика, свидетельствует о тетрагональной структуре решеток LiCl·H₂O и LiCl·D₂O. По положению пиков рассчитаны основные параметры кристаллической решетки и степень ее терагональности. Основные кристаллографические данные монокристаллодейтерата хлорида лития представлены в табл. 2. Рентгенофазовый анализ подтвердил тетрагональную структуру

LiCl · D₂O: решетка соответствует пространственному типу P4₂/nmc. Для кристаллических решеток LiCl · H₂O и LiCl · D₂O рассчитаны межплоскостные расстояния и параметры кристаллических решеток. Результаты расчетов пред-

Таблица	2
Параметры кристаллических решеток	
LiCl · H ₂ O и LiCl · D ₂ O	

Вещество	a, Å	b, Å	<i>c</i> , Å	<i>с/а</i> , отн. ед.
$LiCl \cdot H_2O$	6.0419	6.0419	9.1963	1.5221
$LiCl \cdot D_2O$	7.6489	7.6489	7.7179	1.0090

ставлены в табл. 3. Все полученные данные свидетельствуют об увеличенных по сравнению с кристаллической решеткой LiCl · H₂O параметрах

Таблица 3 Основные кристаллографические параметры LiCl · D₂O

<i>d</i> , Å	h	k	l	I, %
3.821	0	0	2	15
3.819	2	0	0	15
3.423	1	0	2	15
2.973	2	1	1	6
2.692	2	0	2	100
2.710	2	2	0	100
2.540	2	1	2	10
1.566	2	2	4	10
1.559	4	2	2	15

кристаллической решетки $LiCl \cdot D_2O$, однако из табл. 3 видно, что кристаллическая решетка $LiCl \cdot H_2O$ имеет большую степень тетрагональности. По-видимому, увеличение параметров кристаллической решетки $LiCl \cdot D_2O$ может быть объяснено бо́льшим молекулярным объемом молекулы D_2O .

Применением методов термодинамической оценки процессов нуклеации к данным были получены следующие термодинамические характеристики процесса, представленные в табл. 4.

Расчетные значения получены с привлечением статистической термодинамики.

Очевидно, что на процессы селекции изотопов в таких системах существенное влияние будут оказывать процессы сольватации перераспределяемых ионов, природа аниона соли и другие условия среды.

Таблица 4

Тип процесса ТК		ΔG , кДж/м	ЮЛЬ	K _P	
тип процесса	<i>1</i> , K	Эксперимент	Расчет	Эксперимент	Расчет
Крист. из H ₂ O	293	-154.68	-169.820	1.065	1.0722
Крист. из D ₂ O	293	-157.98	-174.656	1.0665	1.0743
$H_2O:D_2O = 1:1$	293	-141.946	_	1.0595	-

Основные термодинамические характеристики процессов

СЕЛЕКЦИЯ ИЗОТОПОВ ЛИТИЯ В УСЛОВИЯХ ФОРМИРОВАНИЯ ГРАНИЦЫ РАЗДЕЛА ФАЗ

Для изучения процессов селекции изотопов при перекристаллизации водного раствора хлорида лития можно использовать простейшую лабораторную установку (рис. 1). Эксперимент осуществляют следующим образом: на установке (см. рис. 1) проводят кристаллизацию насыщенного при 90 °C раствора хлорида лития, например, природного изотопного состава.

Рисунок 1. Схема экспериментальной установки по перекристаллизации хлорида лития

Для проведения процесса в ячейку загружают равновесное при 90 °С определенное по политерме растворимости (рис. 2) хлористого количество лития и воды. После этого ячейка герметизируется тефлоновым уплотнением с целью предотвращения изменения состава смеси и подвергается нагреву на водяной бане до 95 °С при постоянном

перемешивании со скоростью 100 мин⁻¹ в течение 1 ч. Температурный избыток в 5° берется для достижения наибольшей гомогенности в системе.

После образования гомогенного раствора ячейка охлаждается до 20 °C со скоростью 2 °C/мин. Образовавшуюся смесь подвергают длительному (4 ч) перемешиванию с целью достижения параметров, наиболее близких к равновесным. По окончании процесса гетерогенная смесь разделяется на стеклянном фильтре и отмывается от сорбированной воды пентаном. По мере накопления кристаллической фазы отбираются пробы для анализа, основная часть кристаллов собирается, высушивается в течение 2 ч при температуре 230–245 °C с целью удаления кристаллизационной воды и подвергается повторной перекристаллизации согласно схеме.

Рентгенофазовый анализ кристаллической фазы хлорида лития подтверждает образование в системе при 20 °С преимущественно только одной кристаллической фазы LiCl · H₂O (> 90%). Установлено, что ведение процесса в описанных условиях приводит к концентрированию изотопа ⁶Li в кристаллической фазе и его обеднению в маточном растворе. Результаты анализов представлены в табл. 5.

Запишем дифференциальное уравнение изменения концентрации ⁷Li в кристаллической фазе в зависимости от числа проведенных ступеней кристаллизации в направлении очистки смеси изотопов лития от изотопа ⁶Li:

$$\frac{dC_{7_{\mathrm{Li}}}^{(S)}}{dn} = C_{7_{\mathrm{Li}}}^{(S)} \varepsilon n,$$

где є – коэффициент обогащения твердой фазы изотопом ⁷Li; n – число проведенных ступеней кристаллизации в каскаде; $C_{^{7}Li}^{(S)}$ – равновесная концентрация ⁷Li в кристаллической фазе.

Таблица 5

Распределение изотопов лития при перекристаллизации LiCl из водных растворов

Кол-во	Ofnazou	Концентрация изот	гопов, % (ат.)	OTHOMAN 6 L $i/^{7}$ L i	
циклов	Образец	⁶ Li	⁷ Li		
0	LiCl _{кристалл}	6.54 ± 0.01	93.46 ± 0.01	0.0703 ± 0.0001	
1	LiCl _{кристалл}	7.217 ± 0.006	92.792 ± 0.008	0.0778 ± 0.0001	
5	LiCl _{кристалл}	7.803 ± 0.004	92.197 ± 0.004	0.0846 ± 0.0001	
10	LiCl _{кристалл}	9.000 ± 0.007	90.998 ± 0.007	0.0989 ± 0.0001	
20	LiCl _{кристалл}	11.983 ± 0.008	88.017 ± 0.004	0.1361 ± 0.0001	
26	LiCl _{кристалл}	14.226 ± 0.008	85.774 ± 0.004	0.1658 ± 0.0001	

Исходя из полученных экспериментальных данных (см. табл. 5), по упрощенной формуле рассчитаем коэффициент обеднения твердой фазы изотопом ⁷Li:

$$\varepsilon = 2\frac{C^+ - C^-}{C^+ + C^-} = 2\frac{93.456 - 93.256}{93.456 + 93.256} = 0.0022.$$

Разделив переменные и подставив значение є, получим $\frac{dC_{7_{\text{Li}}}^{(S)}}{C_{7_{\text{Li}}}^{(S)}} = 0.0022 dn,$

проинтегрировав уравнение, получим $\ln C_{7_{\text{Li}}}^{(S)} \Big|_{DC_{7_{\text{Li}}}^{0}}^{C_{7_{\text{Li}}}^{(S)}} = 0.0022 \, n \Big|_{0}^{n}$.

Подставив пределы интегрирования и, явно решив уравнение, получаем зависимость равновесной концентрации ⁷Li в кристаллической фазе от числа ступеней кристаллизации, процесса кристаллизации по ⁷Li: $C_{^{7}\text{Li}}^{(S)} = DC_{^{7}\text{Li}}^{0} e^{0.0022n}$; подставив значения *D* и исходной концентрации ⁷Li (в нашем случае – 93.456%), получим окончательный вид уравнения зависимости равновесной концентрации ⁷Li в кристаллической фазе от числа ступеней кристаллизации в направлении получения ⁷Li: $C_{^{7}\text{Li}}^{(S)} = 90.528e^{0.0022n}$.

Зная коэффициент кристаллизации ⁷Li и зависимость изменения концентрации ⁷Li в твердой фазе от числа ступеней кристаллизации, можно получить уравнение зависимости равновесной концентрации ⁷Li в растворе:

$$C_{7_{\text{Li}}}^{(L)} = C_{7_{\text{Li}}}^{(S)} \frac{1}{D} = 93.456 e^{0.0022n}$$

Из проведенных экспериментов и анализа полученных данных видно, что кристаллизацию в направлении получения продукта, обогащенного по изотопу 7 Li, необходимо вести в направлении многократной перекристаллизации по раствору.

Аналогично для изотопа ⁶Li согласно закону сохранения масс можно записать систему уравнений, характеризующих материальный баланс системы для *n*-й ступени кристаллизации:

$$(m_{\text{LiCl}}^{(L)} \cdot C_{\text{LiCl}}^{(L)})_n = (m_{\text{LiCl}}^{(S)} \cdot C_{\text{LiCl}}^{(S)})_{(n-1)} - (m_{\text{LiCl}}^{(S)} \cdot C_{\text{LiCl}}^{(S)})_n$$
$$(m_{\text{LiCl}}^{(S)}) = 0.1(m_{\text{LiCl}}^{(S)})_{(n-1)},$$
$$(m_{\text{LiCl}}^{(S)})_{(n-1)} = (m_{\text{LiCl}}^{(S)} + m_{\text{LiCl}}^{(L)})_n,$$

где m_i^k – масса *i*-го компонента в *k*-й фазе; C_i^k – концентрация *i*-го компонента в *k*-й фазе, выраженная в долях (L – жидкость, S – твердая фаза).

Если решить систему уравнений относительно неизвестной равновесной концентрации лития-6 в маточном растворе кристаллизатора *n*-й ступени, приняв, что масса хлористого лития предыдущей ступени кристаллизации равна 1, а также полученное экспериментально выражение для равновесной концентрации лития-6 в кристаллической фазе кристаллизатора *n*-й ступени, то получим следующее выражение:

$$C_{6_{\text{Li}}}^{(L)} = \frac{6.763}{0.9} \Big[e^{0.0286(n-1)} - 0.1 e^{0.0286n} \Big],$$

откуда $C_{6_{\text{Li}}}^{(L)} = 6.551 \text{e}^{0.0286n}$ и соответственно для концентрации ⁶Li в твердой $\varphi_{a3e:} C_{6_{\text{Li}}}^{(S)} = 6.763 \, \mathrm{e}^{0.0286n} \, .$

Исследования влияния сольватации и пересольватации показали, что введение в систему дополнительных растворителей, имеющих положительную теплоту пересольватации, приводит к значительным изменениям термодинамических параметров процесса. Так, например, добавка в водные растворы хлорида лития ацетонитрила в количестве, эквивалентном содержанию изотопа ⁶Li, понижает значение константы равновесия в системе, а в случае с D₂O даже изменяет его направление; результаты экспериментальных данных представлены в табл. 6. Расчеты показывают, что при прочих равных условиях для двухатомных молекул увеличение массы атома аниона должно приводить к увеличению коэффициента разделения изотопов легких элементов. Установлено также, что метод может быть применен и к изотопам более тяжелых элементов, например Cs, однако в этом случае увеличение массы атома аниона будет приводить к снижению коэффициента разделения, и наоборот: увеличение коэффициента разделения для изотопов тяжелых элементов можно ожидать при уменьшении массы атома аниона.

Таблица 6

Термодинамические характеристики процессов распределения изотопов лития при перекристаллизации из водных растворов с добавкой эквивалентного количества ацетонитрила

Тип процесса	<i>T</i> , K	ΔG , кДж/моль	$K_{ m P}$
Крист. из H_2O , [CH ₃ CN] = [⁶ Li]	293	-82.987	1.0344
Крист. из $D_2O[CH_3CN] = [^6Li]$	293	710.42	0.7485

Последние исследования также показывают, что в условиях фазового перехода влияние селективного электромагнитного возбуждения изотопических молекул позволяет изменять параметры процессов, происходящих в условиях формирования границы раздела фаз, и таким образом влиять на перераспределение изотопов.

Для повышения технологической эффективности процесса в работе предложено использование методов зонной перекристаллизации. На основании кинетической модели зонной кристаллизации, с учетом экспериментально установленных термодинамических констант, рассчитаны профили изотопов лития по длине слитка при зонной перекристаллизации с числом ступеней до 25, которые представлены на рис. 3 и 4. Для расчета теоретических профилей использована модель зонной кристаллизации в следующем виде:

Длина слитка, в величинах l Длина слитка, в величинах l Рисунок 3. Распределение изотопа ⁶Li по длине слитка в зависимости от условий среды при длине слитка q = 150 мм, ширине зоны кристаллизации l = 3 мм, количестве ступеней кристаллизации n = 25 и исходной концентрации ⁶Li C⁰ = 2.564%: a - из раствора в H₂O; $\delta -$ из раствора в D₂O; e - из раствора в H₂O + [CH₃CN] = [⁶Li]; e - из раствора в D₂O + [CH₃CN] = [⁶Li]

¹⁷

Рисунок 4. Распределение изотопа ⁷Li по длине слитка в зависимости от условий среды при длине слитка q = 150 мм, ширине зоны кристаллизации l = 3 мм, количестве ступеней кристаллизации n = 25 и исходной концентрации ⁷Li C⁰ = 2.564%: a -из раствора в H₂O; $\delta -$ из раствора в D₂O; e -из раствора в H₂O + [CH₃CN] = [⁷Li]; 2 -из раствора в D₂O + [CH₃CN] = [⁷Li]

Проведенные экспериментальные исследования хорошо согласуются с теоретически рассчитанными величинами. Анализ полученных профилей показывает, что применение зонной перекристаллизации из раствора D_2O с эквивалентной добавкой ацетонитрила в количестве, равном мольному содержанию изотопа ⁶Li, позволяет за 25 ступеней прохода зоны кристаллизации сконцентрировать бо́льшую часть легкого изотопа лития в концевой части слитка, повысив его содержание более чем в 4 раза (рис. 3, e).

Результаты экспериментальных исследований по зонной перекристаллизации хлорида лития представлены в табл. 7. Анализ изотопного состава

образцов проведен на масс-спектрометре МИ 1201Т. Сопоставление расчетных и экспериментальных данных показывает хорошее согласие эксперимента и теоретических расчетов, что подтверждает адекватность использованной теоретической модели.

Таблица 7

Концентрация изотопов лития в различных зонах слитка при длине слитка q = 150 мм, ширине зоны кристаллизации l = 3 мм и скорости перемещения зоны расплава 5 мм/ч

Состав перекристал.	Число	Зона отбо-	Соотношение	
Среда	Исходное соот- ношение изото-	ступеней кристал-	ра, мм, от начала	изотопов ли- тия, ⁶ Li/ ⁷ Li
LiCl-H ₂ O	0.0263 ± 0.0004	25	0-5	0.006 ± 0.002
LiCl-H ₂ O	0.0263 ± 0.0004	25	115-120	0.0331 ± 0.0005
LiCl-H ₂ O	38.023 ± 0.007	25	0–5	228 ± 1
LiCl-H ₂ O	38.023 ± 0.007	25	145-150	30.461 ± 0.006

Проведенные эксперименты подтверждают возможность эффективной очистки изотопов лития в условиях зонной перекристаллизации. При этом установлено, что наиболее эффективная очистка ⁷Li от изотопа ⁶Li происходит в условиях зонной кристаллизации в системе LiCl–D₂O с эквивалентной добавкой ацетонитрила.

ЗАКЛЮЧЕНИЕ

Установлены закономерности перераспределения изотопов лития в условиях формирования границы раздела фаз:

 происходит преимущественное концентрирование изотопа ⁶Li в кристаллической фазе при перекристаллизации его хлорида как из протиевой, так и из дейтериевой воды;

 изменение коэффициента разделения при замене протиевой воды на дейтериевую обусловлено меньшей сольватирующей способностью последней по отношению к ионам лития;

– введение в систему более сильных сольватирующих растворителей в количестве, равном мольному содержанию изотопа ⁶Li, например ацетонитрила, позволяет изменить направление процесса распределения изотопов в сторону накопления легкого изотопа в жидкой фазе;

– образующиеся кристаллиты хлорида монокристаллодейтерата лития характеризуются большей степенью тетрагональности по сравнению с аналогичными кристаллитами, полученными при кристаллизации из протиевой воды, что обусловлено бо́льшими размерами молекулы тяжелой воды.

Установлены основные термодинамические параметры перераспределения изотопов лития в условиях формирования границы раздела фаз «раствор – кристалл», обусловливающие перераспределение изотопов лития.

Проведена оценка некоторых термодинамических параметров процессов нуклеации и распределения изотопов и предложена вероятная статистико-термодинамическая модель, обусловливающая молекулярно-кинетические процессы, происходящие с изотопами лития в условиях формирования границы раздела фаз.

На основании установленных закономерностей разработаны основы технологии разделения изотопов лития в условиях формирования границы раздела фаз и получен патент РФ.

Основные результаты отражены в следующих публикациях:

- 1. Андриенко О.С., Сачков В.И., Казарян М.А., Жерин И.И. Разделение изотопов в условиях формирования границы раздела фаз // Инженерная физика. 2004. № 3. С. 39–51.
- Андриенко О.С., Егоров Н.Б., Соковиков В.Г., Димаки В.А., Бойко В.И., Жерин И.И., Забелин Ю.В., Мухин В.В., Рожков В.В. Селекция изотопов бора в условиях фазового перехода // Известия вузов. Физика. - 2004. – № 12. – С. 10.
- 3. Сачков В.И., Малиновская Т.Д., Андриенко О.С., Казарян М.А. Фотокаталитическое разделение изотопов // Краткие сообщения по физике. – 2006. – № 11. – С. 37–44.
- Сачков В.И., Андриенко О.С., Казарян М.А., Малиновская Т.Д., Кабаев С.Т., Князев А.С., Мальков В.С. Селекция изотопов в условиях формирования границы раздела фаз // Альтернативная энергетика и экология. – 2007. – № 11 (55). – С. 58–73.
- Андриенко О.С., Егоров Н.Б., Жерин И.И., Индык Д.В., Казарян М.А. Изменение изотопного состава магния в процессе зонной перекристаллизации // Краткие сообщения по физике. – 2007. – № 12. – С. 46–54.
- 6. Андриенко О.С., Егоров Н.Б., Жерин И.И. Селекция изотопов магния при перекристаллизации формулы MgCl₂ · 6H₂O // Известия ТПУ. 2007. Т. 311. № 3. С. 72–76.
- 7. Andrienko O.S., Kabaev S.T., Kazaryan M.A., Lobanov A.N. Photo-catalytic isotopes separation // Proc. SPIE 6727 July 9, 672720 (2007).
- Андриенко О.С., Бойко В.И., Жерин И.И., Забелин Ю.В. и др. Способ разделения и очистки изотопов и устройство для его осуществления: пат. 2192918 Рос. Федерация. Заявлено 06.06.2001; опубл. 20.11.2002. Бюл. № 32. – 5 с.: ил.
- 9. Сачков В.И., Андриенко О.С., Казарян М.А., Малиновская Т.Д., Мальков В.С., Кабаев С.Т., Турубаров С.В. Способ селекции молекул и изотопов, приоритет № 2007145872 от 10.12.2007.

- Андриенко О.С., Бойко В.И., Жерин И.И., Сачков В.И. Селекция изотопов лития в условиях формирования границы раздела фаз // Научноинновационное сотрудничество. II научно-техн. конф.: сб. научн. тр. Часть 2. – М., 2003. – С. 69–70.
- Андриенко О.С., Сачков В.И., Казарян М.А., Жерин И.И. Разделение изотопов в условиях формирования границы раздела фаз // VI Всерос. конф. «Физико-химические процессы при селекции атомов и молекул». – Звенигород, 2003. – С. 152–155.
- Андриенко О.С., Сачков В.И., Казарян М.А. и др. Селекция молекул на границе раздела фаз в условиях селективного лазерного воздействия // Материалы симпозиума «Лазеры на парах металлов». – Лоо, 2006. – С. 71.
- Сачков В.И., Андриенко О.С., Кабаев С.Т., Казарян М.А. Основы технологии фотокаталитического разделения изотопов // IV Междунар. научно-практ. конф. «Физико-технические проблемы атомной энергетики и промышленности». – Томск. – 2007. – С. 72.
- Андриенко О.С., Егоров Н.Б., Индык Д.В., Цепенко Е.А., Дьяченко А.С. Селекция изотопов магния при перекристаллизации MgCl₂ · 6H₂O // IV Междунар. научно-практ. конф. «Физико-технические проблемы атомной энергетики и промышленности». – Томск. – 2007. – С. 93.
- 15. Сачков В.И., Малиновская Т.Д., Князев А.С., Андриенко О.С., Казарян М.А., Кабаев С.Т. Физико-химические основы селекции резонансно возбужденных молекул при фазовых превращениях І рода и гетерогенных химических реакциях // XII Междунар. науч. конф. «Физикохимические процессы при селекции атомов и молекул и в лазерных, плазменных и нанотехнологиях». – Звенигород. – 2008. – С. 94–96.

Печ. л. 1. Тираж 100 экз. Заказ № 4.

Тираж отпечатан в типографии ИОА СО РАН.