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Abstract: Reduction of flammability and improvement of thermal stability of polymers during heating
can be achieved by the introduction of fillers. Epoxy composites filled with different loadings of
multi-walled carbon nanotubes (MWCNTs) and expanded graphite (EG) were prepared. The thermal
oxidation stability of the prepared samples was investigated under heating in an oxidizing atmosphere
using thermal analysis. The hardness was measured using the Shore D hardness test. The flammability
of the prepared composites was evaluated by the ignition temperature and time-to-ignition. It was
found that there was a rise in temperature corresponding to a 5% weight loss during heating for both
epoxy/MWCNT and epoxy/EG composites compared to neat epoxy resin. The Shore D hardness
of epoxy/MWCNT composites increased with content growth up to 0.1 wt.% and decreased with
further concentration rise. The addition of MWCNTs and EG leads to an increase in the ignition
temperature. It has been shown that MWCNTs improve the thermal behavior of epoxy resin in a low
temperature region (below ~300 ◦C) whereas EG shows almost the same thermal behavior above
300 ◦C. The improvement of thermal properties can be achieved using MWCNTs and EG as fillers.

Keywords: epoxy composites; thermal oxidative degradation; flammability; multi-walled carbon
nanotubes; expanded graphite; exfoliated graphite

1. Introduction

Polymers are widely used in industry, science, and our daily life, due to a wide range of properties,
including light weight and easy processing, chemical resistance, high strength, electrical insulating
properties, etc. [1,2]. Among various types of polymers, epoxy resins are one of the most popular
thermosetting polymers. Epoxy resins have excellent chemical and corrosion resistance, high adhesion,
good mechanical properties, and low shrinkage [3,4]. The main disadvantage of polymer materials,
including epoxy resins, is their high flammability, making them a fire hazard [5,6]. The growth in
consumption of polymers has led to an increase in the number of fires and, as a result, damage to
property and threat to life. Therefore, the problem of reducing the flammability of polymers and giving
them heat-resistant properties is of great importance.
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One of the most common and effective ways to achieve enhancement in the properties of polymers,
including flame retardant properties and thermal stability, is the incorporation of fillers of an inorganic
and organic nature into epoxy resin [7–12]. In recent years, special attention was paid to the use
of nanodispersed materials as fillers. In contrast to conventional coarse flame-retardant additives,
the effectiveness of the flame-retarding properties of which is achieved at high loading (50 wt.% or
more), nanodispersed fillers can contribute to solving the problem of reducing the flammability of
polymers at relatively low loading (<5%) [7,13–15]. Generally, the nanodispersed fillers act as barriers
against oxygen and combustion gas and produce, during combustion, strong, dense, and crack-free
nanocoating surface layers.

Owing to their unique physical properties, carbon nanomaterials, such as carbon nanotubes [16]
and nanofibers [17], graphene [18–20], graphene nanoplatelets [21], reduced graphene oxide [22],
graphene oxide [23,24], and expanded graphite [25], have attracted great attention in recent years,
particularly for the improvement of flame retardancy of epoxy composites [26–34].

A comparison of thermal degradation of epoxy composites and multi-wall carbon nanotubes
(MWNTs) was studied in [33]. It was found that the preparation technique has an important role
in the formation of thermal behavior characteristics. Jen et al. [35] found the synergetic effect of
the ratio of MWCNT and graphene nanoplatelets (9:1 ratio MWCNT:graphene nanoplatelets) on the
thermomechanical properties of epoxy composites. Kuan et al. [36] reported the enhancement of flame
retardancy of epoxy resin based on functionalized multi-walled carbon nanotubes obtained by the
sol-gel technique. It was found that the activation energy of the degradation reaction increased when
increasing carbon nanotubes content, and after reaching 7 wt.%, it began to decrease.

Gantayat et al. [37] used the solution-mixing method for preparation of epoxy/expanded graphite
composites. They reported an increase in thermal degradation temperature due to the enhanced
dispersion of expanded graphite in the epoxy matrix. Asante et al. [38] studied the thermal degradation
of epoxy/expandable graphite composites. The weight percentage of EG in the studied epoxy
composites was 1, 3 and 5 wt.%. It was found that the time-to-ignition, the critical heat flux, the ignition
temperature, the thermal inertia, the smoke yield, and the peak heat release rate decreased with the
increasing EG content in the epoxy composites. Despite the presence of a lot of publications devoted to
epoxy resin based on multi-walled carbon nanotubes and expanded graphite, there are not enough
data on filler concentration effect at a low filler content on thermal behavior and flammability.

The aim of this work is to study the effects of carbon nanofillers, multi-walled carbon nanotubes
and expanded graphite (EG), taken in different concentrations, on the thermal oxidative degradation,
hardness, and flammability of the epoxy composites.

2. Materials and Methods

2.1. Materials and Sample Preparation

The epoxy resin DER-331 based on Bisphenol A (Dow Chemical, Germany) was used as a polymer
matrix. The epoxy resin DER-331 contains 22.4–23.6% epoxy groups; the average molecular weight of
the resin is 340 g/mol. Polyethylenepolyamine (PEPA) was used as a curing agent (ZAO Uralkhimplast,
Nizhny Tagil, Russia).

The multi-walled carbon nanotubes used in this work were supplied by Shenzen Nano-Tech Port
Co. (MWCNT-4060 grade).

Thermally-expanded graphite was produced from commercial intercalated graphite (EG-350-50
brand, “Khimicheskie systemy” Co., Russia) using the method of programmable heating [39]. According
to this method, expanded graphite was obtained from intercalated graphite by heating it at a rate of
20 ◦C/min to a temperature of 500 ◦C.

The epoxy resin was heated to 55 ◦C from room temperature (heating rate was 10 ◦C/min), and
then the required amount of fillers was added into the epoxy resin using mechanical stirring for 10 min;
afterwards, PEPA was added into mixture. The ratio of epoxy resin and PEPA was 6:1 by weight.
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The curing of the samples was conducted at room temperature (25 ± 2 ◦C) for 24 h. The formulations
of the studied epoxy composites are given in Table 1. The loading of MWCNTs ranged from 0.01 to
0.5 wt.%, whereas the loading of EG was in the range from 0.5 to 2.5 wt.%, and the upper limit of
filler concentration was taken according to its bulk density. It was not possible to obtain high-quality
samples of epoxy/MWCNTs with the loading of the latter above 0.5 wt.%.

Table 1. Formulations of epoxy composites (wt.%).

Sample Code Epoxy Resin MWCNTs EG

E0 100 0 0
E/0.01MWCNT 100 0.01 0
E/0.05MWCNT 100 0.05 0
E/0.1MWCNT 100 0.1 0
E/0.5MWCNT 100 0.5 0

E/0.5EG 10 0 0.5
E/1.0EG 100 0 1.0
E/1.5EG 100 0 1.5
E/2.0EG 100 0 2.0
E/2.5EG 100 0 2.5

2.2. Characterization

Transmission electron microscopy (TEM) of carbon nanotubes was carried out using JEM-2010
(JEOL) microscope.

The defectiveness of carbon materials was studied using a T64000 Horiba Jobin Yvon Raman
spectrometer (λ = 514 nm). Each time, before recording the spectra from the samples, a test spectrum
from monocrystalline silicon was recorded. This made it possible to calibrate the device both in the
position of the frequencies (the frequency of the long-wavelength optical phonon in silicon is well
known and equal to 520.6 reciprocal centimeters) and in the intensity of signals. The spectrometer
T64000 and argon laser are highly stable and reproducible. The monochromator used standard gratings
for the visible range—1200 lines per millimeter. All Raman spectra were excited with a 514.5 nm
Ar+ laser line in the back-scattering geometry. A triple spectrometer T64000 Horiba Jobin Yvon with
micro-Raman setup and CCD multi-channel detector cooled by liquid nitrogen was used. To avoid
local overheating of the samples, the laser beam was slightly unfocused (diameter of spot was about
10 micrometers, the laser power reaching the sample was about 1 mW). All spectra were measured at
room temperature. The spectral resolution was not worse than 1.5 cm−1. Integration time was 10 s,
6 signal accumulations were made at each point.

Morphology of the surface of the samples obtained was investigated with a S-3400N (Hitachi)
scanning electron microscope (SEM) without sputtering. Textural characteristics were evaluated using
a Nova 1200e analyzer (Quantachrome). The weight distribution of particles was carried out with a
Microsizer 201 (VA Instruments) laser analyzer of particles. Investigation of chemical composition
of surface of the samples was performed using X-ray photoelectron spectrometer (SPECS Surface
Nano Analysis GmbH, Germany). Spectrometer was equipped with the PHOIBOS-150 hemispherical
analyzer and the source of X-ray radiation XR-50M with Al/Ag anode. Al Kα (hv = 1486.74 eV)
monochromized radiation was used.

Thermal behavior at the heating of the prepared epoxy composites from 20 ◦C to 700 ◦C was
studied using the thermal analyzer STA 449C Jupiter (Netzsch, Germany). The thermogravimetric (TG)
analysis and differential scanning calorimetry (DSC) were carried out at the heating rate of 10 ◦C/min in
air (25 sccm). Samples of approximately 5 mg were placed in an Al2O3 crucible with a lid. The samples
used for thermal analysis were slightly ground to powder in mortar for all the experiments, to obtain a
homogeneous powder and provide uniform heating of the sample in a crucible.

The hardness was measured using the Shore D hardness test. The sample was placed under the
indenter, and then the pressure was applied, such that the indenter comes into contact with the sample.
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The test was conducted according to ASTM D2240 at 25 ◦C. Ten samples of each filler and its loading
were taken for testing.

The flammability of the prepared epoxy composites was studied according to the standard
method of experimental determination of the ignition temperature of solid substances and materials
was used in accordance with the national standard of Russian Federation GOST 12.1.044-89 (ISO
4589-84) “Occupational safety standards system. Fire and explosion hazard of substances and materials.
Nomenclature of indices and methods of their determination”. Samples of a cylindrical shape
with a diameter of 31.4 mm and a weight of 6 ± 0.1 g were placed inside a furnace chamber and
gradually heated from ambient temperature to the ignition temperature. The ignition temperature was
determined at a point when a flame ignited on application of a pilot flame. Six tests were conducted
for each sample.

3. Results and Discussion

3.1. Characterization of Fillers

MWCNTs have a diameter of 15–40 nm and a length of 3–5 µm (Figure 1a–c). From the images, it
can be seen that the MWCNT sample is represented by long nanotubes with a large number of walls
and a hollow channel inside. The diameter of the channel was below 10 nm. Additionally, there was
some amount of carbon nanofibers with the cup-stacked structure in the sample. According to TEM,
the sample also contained catalytic nanoparticles. The particle size distribution of the MWCNT sample
is shown in Figure 1d. The data show that the sample consisted of aggregates of carbon nanotubes,
with the predominant particle size ranging from 5 to 280 µm. Since it was not possible to determine
the particle size of EG using sedimentation analysis, the grain size was determined using sieves. There
were the following fractions of the sample of EG (wt.%): above 500 µm—47.4%, 250–500 µm—45.3%,
200–250 µm—4.3%, 100–200 µm—2.5%, below 100 µm—0.5%.

According to data of TG obtained in the oxidative atmosphere, the ash content in the material
was 8.37% (Figure 1e). At the same time, the ash content of the EG sample was only 5.14% which
corresponds to a relatively lower amount of impurities and a high fraction of carbon in the material.

SEM images of the EG sample are shown in Figure 2b–d. Figure 2a shows the worm-like particles
obtained as a result of the rapid heating of intercalated graphite. The structure of graphite was porous.
The pores were formed during the release of the gas phase under heating of intercalated graphite and
therefore the sample is represented by the strongly-entangled graphite platelets.

Figure 3 shows the Raman spectra of MWCNTs and EG. There are two main peaks in the Raman
spectra. The D peak corresponds to defect structure in carbon materials. The G peak corresponds
to the ordered graphite structure in the material [40,41]. The positions of the D and G peaks for the
MWCNTs were 1345 cm−1 (full width at half maximum (FWHM) 50 cm−1) and 1572 cm−1 (FWHM
42 cm−1), respectively. Expanded graphite showed the shift of positions towards higher angles, D
(1356 cm−1, FWHM 84 cm−1) and G (1584 cm−1, FWHM 20 cm−1), confirming the well-ordered structure
of the material, which is closer to graphite. The ratio of intensities I(D)/I(G) makes it possible to
estimate the disorder degree of the MWCNTs and EG, and it was 0.84 and 0.1, respectively. The Raman
spectrum of MWCNTs shows their relatively high defectiveness closer to the level of defects of carbon
nanofibers [42], whereas the expanded graphite has a low intensity of D peak that confirms the high
graphitization degree of the material.

Investigation of textural characteristics showed that the MWCNT sample is fully mesoporous
with the surface area 128 m2/g. The average pore diameter and total pore volume were 10.8 nm and
0.346 cm3/g. The EG sample had a higher porosity compared to the MWCNTs. Its surface area was
593 m2/g with the domination of mesopores (448 m2/g) and a lower fraction of micropores (145 m2/g).
The average pore diameter was lower compared to the MWCNTs (4.3 nm) and the total pore volume
was also lower (0.198 cm3/g).
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The role of surface oxygen-containing functional groups is important for the formation of an
interface between epoxy resin and fillers; therefore, it is necessary to determine the concentrations of
these groups using X-ray photoelectron spectroscopy (XPS). An XPS spectrum of the MWCNT sample
was mentioned in [43] (original sample name was iMWCNT). The XPS spectrum of the EG sample is in
the Supplementary Materials (Figure S1). Both samples contain C-O, C=O, and O-C=O functional
groups. The O/C ratio was 0.1 (EG) and 0.04 (MWCNTs), showing the higher concentration of oxygen
on the surface of the expanded graphite sample. However, it can be noted that the concentration of
functional groups was relatively low.
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Figure 1. (a–c) Transmission electron microscopy (TEM) images of multi-walled carbon nanotubes
(MWCNTs); (d) particle size weight distribution of MWCNTs; (e) thermogravimetric (TG) curves of
MWCNTs and expanded graphite (EG).



Appl. Sci. 2020, 10, 6928 6 of 13

Figure 2. (a) Appearance of EG; (b–d) SEM images of EG.

Figure 3. Raman spectra of MWCNTs (a) and EG (b).

3.2. Thermal Oxidation Behavior

Figure 4 shows typical TG and DSC curves of the epoxy composites studied.
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Figure 4. Thermal degradation curves of epoxy composite samples E0, E/0.5MWCNT, E/0.5EG: (a) TG,
(b) differential scanning calorimetry (DSC), and (c) derivative thermogravimetry DTG curves.

The thermal degradation process of epoxy resin and epoxy composites when they are heated
in an oxidizing environment can be divided into a few steps [44]. The first step is up to ~300 ◦C.
The endothermic peak was observed on DSC curves around 85–120 ◦C and this process is accompanied
by slight weight loss. The second step (~300–500 ◦C) is caused by the thermal degradation of epoxy
resin and the formation of gaseous products as a result of interaction of epoxy resin macromolecules
with oxygen. Increasing the temperature above 500 ◦C leads to the oxidation of the filler and increases
its contribution to the degradation process.

The TG results of the neat epoxy polymer E0 and all of the epoxy composites are summarized in
Table 2.

The incorporation of MWCNTs into the epoxy matrix led to an improvement in thermal stability.
For the epoxy/MWCNTs composites, a sharp rise in temperature of 5% mass loss T5% was observed
from 300 ◦C for the pure epoxy resin E0 to 319 ◦C for the epoxy composite filled with 0.1 wt.% of
MWCNTs. With a further increase in the content of MWCNTs to 0.5 wt.%, there was a slow increase in
T5% to 326 ◦C. The values of T5% were high enough compared to epoxy composites based on expanded
graphite and graphene nanoplatelets [45,46], taking into account relatively low concentrations of EG
(E/1.0EG) and the increased T5% (338 ◦C).
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Table 2. Temperatures corresponding to the certain weight loss of epoxy composites during heating.

Sample T5% T20% T50% T80%

E0 300 352 385 568
E/0.01MWCNT 301 352 389 574
E/0.05MWCNT 312 354 389 582
E/0.1MWCNT 319 352 390 563
E/0.5MWCNT 326 353 396 598

E/0.5EG 316 352 392 548
E/1.0EG 338 356 392 552
E/1.5EG 310 352 395 580
E/2.0EG 315 352 400 682
E/2.5EG 305 350 388 656

MWCNTs 563 600 625 644
EG 595 687 741 785

Notation: T5%, T20%, T50%, T80%—temperatures (in ◦C), corresponding to 5%, 20%, 50%, and 80% mass loss of the
sample, respectively. The values for fillers were given for comparison.

The values of temperature T20% for the epoxy/MWCNTs composites were slightly higher or close
to that for the pure epoxy resin E0. The temperature of 50% mass loss T50% slightly increased with
increasing the concentration of MWCNTs in the epoxy matrix. The highest temperature T80% of 598 ◦C
was achieved on the sample E/0.5MWCNT, although for the sample E/0.05MWCNT, a local maximum
with T80% of 582 ◦C was also observed. This effect can be linked with a high concentration of filler and
its ability to absorb the products of oxidative degradation of sample.

It is worth noting that the bulk density of the EG and MWCNTs was 0.018 g/cm3 and 0.065 g/cm3,
respectively. This fact indicates that expanded graphite has a significantly higher volume fraction in
the composite at the same weight of filler. Of course, the increase in concentration of carbon nanotubes
could neutralize this effect; however, taking into account the wetting of the filler and the results of
preliminary experiments, it has been shown that the upper limit of concentration of the MWCNTs was
0.5 wt.%.

When adding EG, the value of T5% increased compared to that of the pure epoxy resin E0, reaching
a maximum at a concentration of 0.5 wt.% EG, and decreased with a further increase in concentration.
It is interesting that T20% values of the epoxy/MWCNTs and epoxy/EG composites are almost the
same and equal to that of the E0 sample, whereas T50% is higher in the entire concentration range of
MWCNTs and EG compared to the neat epoxy resin. The thermal behavior of epoxy composites within
a temperature range of T80% is determined mainly by the filler. The temperatures T80% are higher
for the samples filled with EG that MWCNTs which is caused by the higher graphitization degree of
expanded graphite. The higher disorder degree of MWCNTs compared to EG can be confirmed by the
I(D)/I(G) ratio of the Raman spectrum (Figure 3). In [47], it was reported that the expanded graphite
did not improve the thermal oxidative behavior of the epoxy/EG composite. On the other hand, our
data on T5%showed that this temperature shifts towards higher temperatures when adding up to
2.5 wt.% EG, whereas in [47], authors used an extremely wide range of concentrations (5–50 wt.%).
It is worth noting that the expanded graphite that we used in our study begins to oxidize at 623 ◦C
(Figure S2 in Supplementary Materials), therefore the contribution of filler oxidation in the oxidation of
the entire composite can be related to its interaction with the epoxy matrix. Taking into account that
the oxygen content is higher for the EG sample, it will form a stronger interaction at the interface.

3.3. Hardness

The results of the hardness (Shore D test) are presented in Table 3.
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Table 3. Shore D hardness results of epoxy/MWCNTs and epoxy/EG composites.

Sample Hardness

E0 78 ± 2
E/0.01MWCNT 79 ± 3.2
E/0.05MWCNT 79 ± 1.7
E/0.1MWCNT 81 ± 1.1
E/0.5MWCNT 75 ± 2.3

E/0.5EG 80 ± 1.1
E/1.0EG 76 ± 2.5
E/1.5EG 73 ± 2.2
E/2.0EG 77 ± 1.4
E/2.5EG 78 ± 2.1

The hardness of the neat resin was 78. The addition of MWCNTs slightly increased the hardness.
There was no significant increase in the hardness below 0.05 wt.% loading because of relatively low
filler concentration. The increase in MWCNT loading above 0.1 wt.% led to a decrease in hardness and
it became lower than that of neat resin. This is probably due to the growth of the concentration of air
bubbles coming from porous filler added to the resin (Figure 5). The data obtained for epoxy/MWCNT
composites were close to the Shore D hardness of epoxy composite based on multi-wall carbon
nanotubes which were subjected to thermoelectret treatment [48]. For example, epoxy composites
based on heat-treated MWCNTs showed a hardness ranging from 74–77 (Shore D). Thermoelectret
treatment induced expansion of the range of hardness to 76–82.

Figure 5. Optical micrographs of E/0.5MWCNT (a) and E/0.5EG (b) samples (the unit scale is 200 µm).

3.4. Flammability Test

The evaluation of the flammability of the polymer materials was carried out using indicators
such as the ignition temperature and the time-to-ignition. The ignition temperature is the lowest
temperature at which a combustible substance, when heated, catches fire in the air and continues
to burn. The time-to-ignition is defined as the minimum exposure time required for the sample to
ignite and sustain a flaming combustion. The results of the experimental determination of the ignition
temperature and the average time-to-ignition for the studied epoxy composites are shown in Table 4.

According to the obtained results, for the samples of epoxy composites filled with MWCNTs, a
sharp growth of ignition temperature was observed from 308 ◦C for the pure epoxy resin E0 to 328 ◦C
for the epoxy composite filled with 0.05 wt.% MWCNTs. With a further increase in the content of
MWCNTs to 0.5 wt.%, there was a rapid decrease in the value of ignition temperature to 316 ◦C at
0.1 wt.%, followed by a slow decrease in the ignition temperature to 315 ◦C and stabilization at the
content of MWCNT at 0.5 wt.%.
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Table 4. Ignition temperature and time-to-ignition.

Sample Ignition Temperature (◦C) Time-to-Ignition (s)

E0 308 437
E/0.01MWCNT 318 346
E/0.05MWCNT 328 356
E/0.1MWCNT 316 381
E/0.5MWCNT 315 446

E/0.5EG 319 371
E/1.0EG 325 334
E/1.5EG 326 367
E/2.0EG 326 348
E/2.5EG 321 346

The data on ignition temperature are in agreement with data on the kinetics of the process.
For example, model-free analysis of TG data by ASTM E698 showed the activation energy of the process
was 91.4 ± 16.76 kJ/mol and pre-exponential factor log(A/s−1) = 4.6. The activation energy slightly
grows for E/0.5MWCNT compared to pure epoxy and it was 97.28 ± 15.5 kJ/mol (log(A/s−1) = 5.11),
whereas the activation energy increases significantly for composite based on EG, and for E/0.5EG, it
was 124.44 ± 7.37 kJ/mol (log(A/s−1) = 7.56). The results on data treatment by model-free analysis are
presented in the Supplementary Materials (Figures S3–S5).

The incorporation of expanded graphite in epoxy resin also led to an increase in the ignition
temperature. In this case, the rise in the ignition temperature from 308 ◦C for the unfilled epoxy resin
E0 to 326 ◦C for the epoxy composite filled with 1.5 wt.% EG was observed. The further increase in the
content of the EG in the epoxy resin to 2.5 wt.% caused the decrease in the ignition temperature to
321 ◦C.

Among the studied fillers, the maximum ignition temperature was observed for the epoxy
composite filled with 0.05 wt.% MWCNTs. For the epoxy/EG composites, an increase in the ignition
temperature was observed at concentrations of EG in the range of 1.0–2.5 wt.%. The char layer formed
by carbon-based fillers on the surface of the epoxy matrix acts as a heat barrier [15,49] and increases the
ignition temperature of the epoxy composites. At the same time, for almost all samples, a decrease in the
time-to-ignition was observed compared to the pure epoxy resin, except for the sample E/0.5MWCNT.
This effect is caused by the high thermal conductivity properties of MWCNTs and EG [46,50], and the
increase of the epoxy composites thermal conductivity as a result of the MWCNT addition. Therefore,
the ignition temperature for the epoxy/MWCNTs and epoxy/EG composites was reached faster than for
the pure epoxy resin. The improvement of thermal conductivity and flammability of polypropylene
composites with expanded graphite was also reported in [51]. The authors mentioned that EG did
not change the mechanism of thermal degradation but retarded the evolution of volatile organic
compounds during degradation. According to the shape of the TG/DSC curves, it can be concluded that
our EG and MWCNT samples also did not change the mechanism of thermal oxidative degradation
but played an active role in the absorption of gaseous substances formed during heating. It can be
assumed that the MWCNTs had the higher volume fraction in the epoxy matrix since their aggregates
are smaller than that EG, and this fact explains the higher time-to-ignition of the E/0.5MWCNT sample.

4. Conclusions

In this research, epoxy composites filled with multi-walled carbon nanotubes and expanded
graphite with different loadings were prepared. The thermal oxidative degradation of the prepared
samples at heating in an oxidizing environment was analyzed using thermogravimetric analysis.
The parameters of the thermal-oxidative degradation of the filled samples were compared to those
of the unfilled sample. The hardness of the samples was measured using the Shore D hardness test.
The ignition temperature and time-to-ignition of the pure epoxy resin, epoxy/MWCNTs and epoxy/EG
composites were determined. It was found that there was a rise in temperature corresponding to a 5%
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weight loss during heating for both epoxy/MWCNT and epoxy/EG composites. The Shore D hardness
of epoxy/MWCNTs composites increased with the content of up to 0.1 wt.% and decreased with further
concentration growth. The addition of MWCNTs and EG led to an increase in the ignition temperature,
but the time-to-ignition decreased, which is probably due to the growth of sample thermal conductivity.
It has been shown that MWCNTs improve the thermal behavior of epoxy resin in a low-temperature
region (below ~300 ◦C), whereas EG shows almost the same thermal behavior above 300 ◦C.
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E/0.5MWCNT sample. Figure S5: Results on ASTM E698 analysis of E/0.5EG sample.
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