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Abstract: The urgent task of modern energy is to ensure reliable and efficient power supply to
consumers, even those located in remote, far end places. A hybrid energy system with renewable
energy sources is a promising way to ensure such a process. A characteristic feature of the modes of
such systems, especially with high penetration levels of renewable energy sources, is the presence of
ripples in the charge–discharge currents of the batteries used as energy storage devices. Batteries
operation with such current fluctuations leads to rapid degradation of its characteristics as well as a
reduction in its lifetime. Furthermore, it leads to a decrease in the reliability of the power supply
system and an increase in the cost of generated electricity. A significant drawback of hybrid systems
built according to well-known standard schemes is the inefficient use of the primary renewable
energy, which is especially critical for energy systems located geographically in areas with severe
climatic conditions. This article proposes a new construction method and an algorithm for controlling
the modes of hybrid energy systems based on a dual-circuit energy storage device, which increases
their reliability and energy efficiency. The prominent outcomes of operating modes of a hybrid power
plant with a high penetration of renewable sources are presented, which proves that the proposed
method of construction and the proposed control algorithm provide reliable and efficient control of
the power balance of the hybrid power system in all possible operating conditions. In addition, the
overall efficiency of the proposed renewable energy system is increased from 28% to 60% compared
to standard hybrid power plants.

Keywords: hybrid power system; renewable energy; energy storage; super capacitor; battery

1. Introduction

One of the critical tasks of modern energy is the reliable supply of electricity to consumers in
remote areas that include some critical loads (such as hospitals, radiation and nuclear installations,
and heavy industry with environmental concerns) located very far from the central electric network.
Currently, the main source of electricity for those remote areas is autonomous diesel generator sets
(DGS), which have several disadvantages: Low operational life of diesel engines, the high operating
cost of DGS due to the maintenance of generator, high consumption of fuel and lubricants, and
environmental pollution. Besides, in combination with poorly developed transport infrastructure and
severe changes in world climate, these drawbacks cause a high cost of electricity and low reliability
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of power supply to consumers. It is clear that the use of hybrid renewable energy systems (HRES)
can significantly improve the reliability and economic and environmental efficiency of power supply
systems for decentralized consumers [1]. In general, a wide variety of energy sources can be used
in HRES, but the alternative sources of energy like photovoltaic (PV) and wind energy (WT) are
considered the most widely used for the off-grid area. Moreover, they have gained more attention
because the energies of the Sun and wind are universally available. Besides, power plants based on
them can be located as close as possible to the place of final energy consumption, which is especially
important for autonomous energy.

The most complex modes from the point of view of power management, and at the same time the
most efficient in terms of consumption of fuels and lubricants, operating costs, and environmental
cleanliness are energy systems with a high penetration levels of renewable energy sources [2].
A mandatory element of such energy systems is an energy storage device, which can, significantly, be
implemented to increase the efficiency of a power plant by absorbing excess energy and delivering it
to consumers during the lack of energy in the DC bus. Battery energy storage systems (BESS) should
meet the requirements of HRES in terms of volume and time of energy storage, and these requirements
are the most widely used for these systems [3,4]. It can be noted that a characteristic feature of the
operating modes of HRES, especially with a high penetration of renewable sources, is the change in a
wide range of values of generated and consumed power at different time intervals, which causes the
presence of ripples in the charge–discharge currents of BESS. Moreover, it can lead to an increase in
their temperature, boiling of the electrolyte, and corrosion of the electrodes [5,6]. In [7], the results
of experimental studies are presented to determine the service life of a lead-acid gel-type battery in
charge–discharge modes with smoothed and pulsed currents are presented. Based on the result of the
experiments, it was found that when the battery is operated in a pulsed mode, its guaranteed service
life is reduced by almost two times. Similar results were obtained in [8] for batteries manufactured
under the Tesla trademark. In [9], the results of studies demonstrated that one of the main causes
of failure of lead-acid, nickel-cadmium, and lithium-ion batteries operating as part of HRES was
charge–discharge modes by pulsed currents.

It can be observed that the high relevance of this problem is determined by the fact that BESS is
the “weakest” link of HRES in terms of operational life. The guaranteed service life of most of the main
HRES power equipment (WT, PV, DGS, power converters) claimed by their manufacturers is usually
15–20 years. The service life of BESS, as a rule, does not exceed five to 10 years, and only under the
condition of their optimal operation. At the same time, financial costs for BESS make up a significant
share of the total cost of the energy system. For instance, in [10], it can be noted that the cost of BESS is
52% of the total reduced cost of a small PV station for one household in Indonesia. In the work [11],
results of researches on optimization of the structure of the equipment HRES including WT and PV,
intended for power supply of objects with average power consumption, resulted in 5.6 kWh/day.
Based on the results of the research, it can be noted that the cost of BESS is 38.58% of the total cost of
the power plant. It is clear that one of the promising ways to improve the efficiency of HRES, widely
discussed in recent years [12,13], is the use of hybrid energy storage systems (HESS) based on batteries
and super capacitors. In order to achieve maximum efficiency of HRES and battery life, various HRES
topologies are proposed [14,15], and new methods for monitoring and managing power consumption
are developed [16,17], often using complex, intelligent algorithms [18,19]. It should be noted that the
application of HESS eliminates high-frequency ripples in the charge–discharge currents of batteries,
which positively affects their service life, but does not eliminate low-frequency power fluctuations,
which is initiated in HRES with a high penetration levels of stochastic renewable energy sources can
have a significant amplitude. Therefore, this leads to the fact that even when using HESS, batteries
operate in constantly alternating modes of incomplete charge/discharge, which negatively affects their
service life.
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The selection of the optimal topology of HRES and the control system for the created energy
system has been considered an important task, taking into account the specific field of its practical
application. From the point of view of the basic architecture, two main approaches are considered
for the construction of HRES: With the conjugation of generating sources on direct and alternating
current [20–22]. An unequivocal answer to the question of which architecture is better does not exist,
however, each of the systems has its advantages and disadvantages, and, accordingly, a primary
field of application. On the other hand, the monitoring and control system is crucial for achieving
high levels of reliability and energy efficiency of HRES [23,24]. It can be observed that there are two
main options for the structural organization of HRES control systems: Centralized and decentralized
(distributed) [21,23,25]. The high reliability of distributed control HRES has been considered one of its
significant advantages since single-point faults are not critical. At the same time, the versatility of the
system is significantly increased, which makes it relatively easy to make changes to its configuration
and replace faulty equipment. From the analysis of well-known HRES topologies and control systems,
it can be noted that power systems with a high level of substitution HRES with architecture based
on direct current, the distributed control system, and battery-powered energy storage systems of
energy storage are mainly applied [23,24]. In order to distribute the load between the generating
sources, an adaptive droop control strategy can be used [24,26]. The merits of this technical solution
are a sufficiently high reliability of the energy system, high speed, and a good level of unification.
On the other hand, this solution has several drawbacks, the most significant of which are the need for
converters with agreed technical characteristics, the high complexity and cost of converting equipment,
and the inefficient use of the potential of primary renewable energy. It should be noted that the latter
drawback is especially critical for energy systems geographically located in areas with severe climatic
conditions. This drawback is due to the fact that in the standard HRES construction scheme, the
power balance in the system is controlled by limiting the output electric power of Renewable Energy
Sources (RES) installations, and in systems with a high penetration of renewable sources, irretrievable
energy losses will be very significant. Generally, the experience of operating HRES in areas with severe
climatic conditions indicates that most of the generated energy is spent on the life support system of
the power plant: Heating of the container, process equipment, etc. [27].

The main contribution of this paper is to propose technical solutions to increase the reliability and
efficiency of HRES with high penetration levels of renewable stochastic sources. Based on the obtained
results in this work, it can be noted that a new, original method of construction and an algorithm for
controlling HRES modes are proposed, which increases its reliability and energy efficiency. Moreover,
it can be observed that in the proposed HRES construction scheme, excess energy generated by RES
installations is dissipated at ballast resistances, which makes it useful to use it for various household
needs: Heating water, heating, etc.

The rest of this paper is organized in the following manner. Section 2 elaborates a description
of the proposed topology and method of control modes of HRES. Section 3 describes the object and
methods of research. The obtained resulted of modeling the HRES operating modes are discussed in
Section 4. In the Conclusion, the research findings are recapitulated.

2. Description of the Proposed Architecture of Construction and Method of Control Modes of
Hybrid Energy Systems

This work introduces a new technical solution that can provide the most efficient use of the RES
potential and the optimization of the charge/discharge modes of BESS. The idea of the proposed solution
is to use a passive voltage stabilization system on the DC bus bar by connecting a super capacitor
(SC) to it and controlling the energy balance in the system using a dual-circuit energy storage system
(DESS). The DESS comprises of two identical rechargeable battery bank (BB), alternately operating in
charge/discharge mode, an adjustable ballast load (BL), and SC [28]. The proposed generalized HRES
construction scheme is presented in Figure 1.
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Figure 1. Block diagram of a hybrid power plant with dual-circuit energy storage.

One of the main components of HRES with this construction method is a DC bus, which has the
function of collecting and distributing electrical energy in a closed energy system.

The power balance equation for a DC bus is demonstrated by the following equation:

PDC = Vdc ·C
VDC

dt
= (PDGS + PWT + PPV + Pdch) − (PL + PBL + Pch) (1)

Generally, the power balance on the bus is determined by the current ratio of generated and
consumed power. From Figure 1, it can be visualized that the possible generation sources and
load power that can be used in the HESS are: Diesel generator sets (PDGS), wind power (PWT) and
photovoltaic installations (PPV), as well as discharge power BB (Pdch). Power consumers are: Consumer
payload (PL), ballast load (PBL), and charging power BB (Pch).

Considering Equation (1), one may notice that, the uncontrolled variable is the amount of power
consumed by the payload PL.

In order to achieve an optimal power transfer, from the generator to load, it is imperative to
maintain both the PV and wind generators and the load at their respective optimum operating
conditions (i.e., maximum power point tracking (MPPT) operations) [29,30]. Therefore, it should be
observed that for ensuring the energy balance in the system, the amount of power generated PWT

and PPV are considered unmanaged variables. To control the power balance and stabilize the DC bus
voltage, the proposed control strategy involves the use of two main controlled power sources: PDGS

and a battery operating in the PDGS discharge mode. Taking into account the fact that in HRES with
a high penetration of renewable energy sources, modes are possible in which the amount of power
generated by RES installations can significantly exceed the power consumption, the ballast load PBL is
used as an additional controlled power consumer in the system. In addition, the second BB connected
to the bus in the charging power take-off mode that can be considered as a partially controlled Pch

power consumer. From Figure 2, it can be observed that simplified equivalent HRES substitution
schemes are presented for the two main stabilization modes MODE1 and MODE2. In the stabilization
mode MODE1 (Figure 2a), it clear that power balance control in the system is provided by the discharge
BB. In addition, in the stabilization mode MODE2 (Figure 2b), the power balance is indicated by DGS.
Since controlled power sources must provide stabilization of the DC bus voltage, they must operate
in the mode of controlled voltage sources; all other power plants are controllable and uncontrolled
current sources.
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Figure 2. Simplified equivalent circuits of substitution of the hybrid power system. (a) Stabilization
mode MODE1; (b) Stabilization mode MODE2.

The total residual capacity value of the two BB
∑

SOC is used as a criterion for changing the HRES
operating modes. The transition diagram between the operating modes of HRES is schematically
illustrated in Figure 3.

Energies 2019, 12, x FOR PEER REVIEW 5 of 16 

 

 

Figure 2. Simplified equivalent circuits of substitution of the hybrid power system. (a) Stabilization 

mode MODE1; (b) Stabilization mode MODE2. 

The total residual capacity value of the two BB ∑SOC is used as a criterion for changing the 

HRES operating modes. The transition diagram between the operating modes of HRES is 

schematically illustrated in Figure 3. 

 

Figure 3. Transition between modes of stabilization. 

The present values of ∑SOCmin and ∑SOCmax are determined at the stage of the system 

configuration and depend on the type of BESS uses, the ratio of the main generating sources 

capacities, the operating conditions of the power plant, the characteristics of the consumer's electrical 

load, and in general should be optimized. 

In the consideration of HRES, the following values of the total residual capacity of both BBs are 

taken: ∑SOCmin = 125% and ∑SOCmax = 185% from their rated capacity. The choice of these values is 

due to the fact that the considered project uses lead-acid BESS, which necessitates limiting their 

maximum depth of discharge (DOD) value being 60–70% of the nominal capacity. 

In the basic embodiment, there are three working zones of DC-bus voltage as illustrated in 

Figure 4: Buffer zone (ZB), high voltage zone (ZHV), and low voltage zone (ZLV). In the ZHV zone, 

the total power generation of the RES installations exceeds the total consumption power, and an 

adjustable ballast load is used as a stabilizing source in this zone in the MODE1 and MODE2 modes. 

Structurally, the ballast load is a set of resistors that are connected to the DC-bus through a DC-DC 

converter. The current value (respectively power) of the converter is regulated according to the 

following equation: 

DC BL_min

BL_ref BL _ max

BL_max BL_min

V V
I I

V V

−
=     

−
 (2) 

Figure 3. Transition between modes of stabilization.

The present values of
∑

SOCmin and
∑

SOCmax are determined at the stage of the system
configuration and depend on the type of BESS uses, the ratio of the main generating sources capacities,
the operating conditions of the power plant, the characteristics of the consumer’s electrical load, and
in general should be optimized.

In the consideration of HRES, the following values of the total residual capacity of both BBs are
taken:

∑
SOCmin = 125% and

∑
SOCmax = 185% from their rated capacity. The choice of these values

is due to the fact that the considered project uses lead-acid BESS, which necessitates limiting their
maximum depth of discharge (DOD) value being 60–70% of the nominal capacity.

In the basic embodiment, there are three working zones of DC-bus voltage as illustrated in Figure 4:
Buffer zone (ZB), high voltage zone (ZHV), and low voltage zone (ZLV). In the ZHV zone, the total
power generation of the RES installations exceeds the total consumption power, and an adjustable
ballast load is used as a stabilizing source in this zone in the MODE1 and MODE2 modes. Structurally,
the ballast load is a set of resistors that are connected to the DC-bus through a DC-DC converter.
The current value (respectively power) of the converter is regulated according to the following equation:

IBL_ref =
VDC −VBL_min

VBL_max −VBL_min
· IBL_max (2)
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Figure 4. Basic case of voltage zones distribution: (a) battery stabilization mode and (b) stabilization
mode from diesel generator sets.

Equation (2) determines the linear change in power consumption of the ballast load from zero
to the nominal value of PBL_max in the voltage range from VBL_min to VBL_max. For the practical
implementation of the control system by Equation (2), it is necessary to measure two electrical
parameters of the mode: The voltage of the DC-bus VDC and input current of the converter IBL.

The red lines in Figure 4 indicates the area of accident-free functioning of the power plant. When
the DC-bus voltage goes beyond the specified voltage Vcr_min and Vcr_max the operating mode of the
energy system is initiated as an accident (crash), which is eliminated by means of emergency automation.

In the ZLV zone, the power consumption exceeds the total power generation of the RES installations
and the stabilizing source in MODE1 mode is BB, which is operating in the discharge mode to the
DC-bus as shown in Figure 4a. The current magnitude (respectively power) discharge converter BB in
MODE1 is regulated according to the following formula:

Idch_ref =
Vdch_max −VDC

Vdch_max −Vdch_min
· Idch_max (3)

Equation (3) determines the linear change in the generated power of the discharge BB from zero
to the nominal value Pdch_max in the voltage range from Vdch_max to Vdch_min. This equation has been
used as control input signal for the DC-bus voltage value VDC and the value of the output current of
the converter Idch.

The ZB buffer zone is used to reliably separate the operating modes of control sources in the
system, moreover, its use allows minimizing (ideally eliminating) the number of transitions from
the ZHV zone to the ZLV zone, which can lead to an unstable or oscillatory operation mode of the
control system.

In MODE2 mode as illustrated in Figure 4b, the main regulatory source of the power system is
DGS. In order to preserve its operational life, it is necessary to minimize the number of connections
and disconnections. In addition, in the DGS operating mode, it is necessary to ensure its loading at a
level that is not less than 25% of its rated power. In the base case of the distribution of the working
voltage zones for the MODE2 mode, the choice of the guaranteed charge of one BB is acceptable
for consideration, and the second BB is transferred to the charge mode only after the first battery is
fully charged.

In accordance with applying the algorithm of the current value (respectively power) of the DGS
converter is regulated as follows:

IDGS_ref =
Vdch_max −VDC

Vdch_max −Vdch_min
· [IDGS_max − IDGS_min] + IDGS_min (4)
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The practical implementation of Equation (4) and the guaranteed charge of one BB during the
connection of DGS provides an acceptable load factor of the diesel engine. This is achieved by limiting
and retention of the DGS current that is not lower than some preset value IDGS_min, corresponding to the
minimum permissible diesel load, for example 25% of the rated power. Technically, this requirement is
realized by narrowing the control range of the output DGS converter by limiting the duty cycle value.

It should be noted that in order to implement the proposed control algorithms, it is necessary to
fulfill a number of important relationships for ensuring the operation of the energy system within safe
working areas as follows:

1. The value of the maximum permissible discharge power of one control BB PBB_dch must be
higher than the maximum electrical load PL_max:

PBB_dch ≥ PL_max (5)

2. The nominal (maximum) value of the ballast load must satisfy the following equation:

PBL_max ≥ PWT + PPV − PL_min (6)

A special case of this equation is the condition that the power of the minimum electric load is
equal to zero PL_min = 0.

3. The rated power of the DGS must provide coverage for the maximum electrical load and the
required charging power BB:

PDGS_nom ≥ PL_max + Pch (7)

The idea of the proposed HRES mode control logic is to switch the BB from the charge mode
to the discharge mode and vice versa according to the set threshold values of its residual capacity.
Accordingly, for the practical implementation of this control logic, constant control of the residual
capacity of each BB in real time mode is necessary. In addition, it is necessary to ensure control of
the total residual capacity of BB

∑
SOC, which is the value of the criterion for changing the operating

modes of the energy system as shown in Figure 3.
The logic of the proposed method for controlling HRES modes is explained in Figure 5, which

shows the block diagram of the mode control algorithm as in Figure 5a and power circuits for connecting
BESS and DGS to the DC-bus as in Figure 5b.

One of the possible options for the circuit design of the DESS controller is to separate the functions
of local and strategic control of converters. The DGS converter control system can be built in a similar
pattern. When applying this approach, the signals of direct control of the converter keys (Ich_re f , Idch_re f ,
IDGS_re f ) are formed according to the local current loop depending on the current values of the DC bus
voltage and the output (input) current of the corresponding converter and control signals, providing
switching of operating modes (Gate_BB1, Gate_BB2, DGS_on/off), are formed by the logic block of the
controller depending on the current values of the residual capacity BB.

In the stabilizing sources power circuit illustrated in Figure 5b, for greater clarity, the control
signals generated by the controller logic block provide direct on/off BB and DGS converters due to the
use of additional keys. In real schemes of constructing converters, the use of additional keys is not
necessary, since the processes of switching on/off converters can be easily ensured by controlling the
magnitude of the fill factor of transistors.

3. Methods and Object of Research

The MATLAB/Simulink software package (2018b, MathWorks, Natick, MA, USA) was used for
this research work as the main research tool, in the environment of which, in accordance with the
HRES block diagram as illustrated in Figure 1, mathematical models of all the main components of
the technical system under consideration were developed and implemented. Five types of models
can be distinguished as part of the comprehensive HRES model: Primary energy carrier models
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(wind flow and solar radiation model), power plant models (DGS, WT, and PV), storage device
models (SC and BESS), energy consumer models (L (Critical Loads) and BL), and models of power
semiconductor converters.

In this work, the dynamic component models that are built on the basis of equations describing
the physical processes of energy conversion have been used. A detailed description of the models
of HRES components that were used in the research is given by [31–35]. The models of components
are made in the form of separating functional blocks, which makes it possible to construct and study
HRES operating modes of arbitrary configuration [35].

The autonomous HRES, geographically located in the Tomsk region, consisting of WT, with a
rated power of 10 kW, was accepted as the object of study in this work (Vmin = 3 м/с, Vnom = 9 м/с),
PV based on a solar battery of 18 Sunway’s FSM 340M photovoltaic modules (340M, FSM, Tomsk,
Russia), a Geko 20012 ED-S/DEDA diesel generator sets (340M, FSM, Tomsk, Russia), rated power
16 kW, DESS (340M, FSM, Tomsk, Russia) on the basis of 20 pieces MONBAT 12MVR200 batteries per
circuit, and a super capacitor module of three in series connected supercapacitors MSK-8-112 (340M,
FSM, Tomsk, Russia), with a total capacity of 2.7 F.
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To simulate the HRES electrical load, a characteristic daily schedule of household loads with a
maximum of 10 kW was assumed while the value of the ballast load was assumed to be 16.2 kW.
The PV option has been considered with a rigidly fixed solar panel oriented to the South and installed
at an angle of 56.5◦ to the horizon.

4. Results and Discussions

To verify the operability and approbation of the proposed technical solutions, the results of
computer simulation of HRES operating modes were used. A research plan was developed, in
accordance with a series of computational experiments that was carried out for simulating the static
and dynamic HRES modes possibilities during its operation.

Figure 6 shows the results of modeling the electrical output of RES installations (PPV and PWT) at
the daily time interval (86,400 s). Daily changes in solar radiation (G) correspond to the winter solstice
with average cloud cover. Wind speed (V) is set by a step function with an amplitude of 2 m/s to 8 m/s,
changing at model times of 10,000 and 50,000 s.

The explicit specification of the wind speed, which remains unchanged over long time intervals,
allows us to solve two problems: On the one hand, significantly reduce the requirements for computer
computing resources and thereby reduce simulation time; on the other hand, it makes the possibility
to single out for the subsequent analysis that required operating modes of DESS and the entire
energy system.Energies 2019, 12, x FOR PEER REVIEW 10 of 16 
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Figure 6. Simulation results of the output power of the renewable energy installations on the daily
time interval: (a) wind speed; (b) wind power capacity; (c) solar irradiance; and (d) solar power.

The results of HRES operating modes for the given characteristics of primary energy carriers are
presented in Figure 7. This Figure shows the graphs of the change in discharge current (Idch), charge
current (Ich) and residual capacity (SOC), rechargeable batteries BB1 and BB2, bus bar voltage (VDC),
inflowing and outflowing currents of the DC-bus such as total current from RES installations (IRES),
actual current (IL) and ballast (IBL) loads, and current DGS (IDGS).

An analysis of the obtained graphs in Figure 7 shows that the power generated by the RES
installations is not enough to fully cover the electrical load in the time interval from 0 s to 50,000 s.
This leads to the fact that at a time of about 14,000 s both BBs are discharged below an acceptable
threshold level (

∑
SOC < 125%). The logic block of the controller generates a control signal to start the

DGS and in the time interval from 14,000 s to 35,000 s. The power balance management in the energy
system is provided by DGS. The batteries BB1 and BB2 at this interval time are alternately charged,
which is clearly seen in Figure 7 from the presented graphs of their residual capacity SOC. When the
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total BB charge of the specified threshold level (
∑

SOC > 185%) is reached, the DGS is turned off and
then the power balance is regulated by the discharge BB.

At intervals of model time from 50,000 s to 54,000 s and from 73,000 s to the end of the day under
consideration, the generated total power by RES installations exceeds the power consumed by the
payload and the recharged BB. In accordance with the specified algorithm as in Figure 4, stabilization of
the energy balance in the system at these modes is ensured by controlling the power of the ballast load.Energies 2019, 12, x FOR PEER REVIEW 11 of 16 
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Figure 7. Simulation results of operating modes of a hybrid energy system on the daily time interval:
(a) battery discharge current; (b) battery charging current; (c) residual battery capacity; (d) bus bar
voltage; (e) total current of renewable energy installations and load current; and (f) ballast current and
diesel generator sets current.

An analysis of the simulation results indicates that the proposed algorithm ensures the stable
operation of the energy system in MODE1 and MODE2 modes. In addition, the DC-bus voltage does
not go beyond the specified working areas and all converters operate in normal mode.

As the most complex tests for verifying the operability of the DESS control algorithm, it has
been used the operating mode of the HRES daily modeling results taking into account the turbulent
component of the wind speed [32]. The turbulent component of the wind flow leads to the appearance
of broadband ripple of the output power WT, which can lead to a loss of dynamic stability of the energy
system. However, such operating conditions are typical for HRES and their analysis is mandatory.
Figures 8 and 9 show the results of modeling the daily HRES operating mode taking into account the
turbulent component of the wind speed.

In this computational experiment, the summer solstice is considered with average cloud cover
conditions and the average wind speed during the day varies from 0 m/s to 10 m/s as shown in Figure 8,
which corresponds to the entire working range of the simulated WT. From those presented graphs that
shown in Figure 9, the DESS control system ensures reliable and efficient control of the power balance
in an isolated energy system in all possible operating modes.
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Figure 9. Simulation results of operating modes of a hybrid energy system on the daily time interval:
(a) battery discharge current; (b) battery charging current; (c) residual battery capacity; (d) bus-bar
voltage; (e) total current of renewable energy installations and load current; and (f) ballast current and
diesel generator sets current.

The results of the computational experiments have confirmed the operability of the proposed
architecture and algorithm for managing autonomous HRES modes with the high penetration of
renewable sources.
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The advantages of the considered DESS control algorithm are its relative simplicity and universality.
This algorithm ensures BB charge modes with a stable current and minimizes BB switching modes from
charge to discharge mode and vice versa, which ensures their safety and maximum operational life.

The proposed HRES construction architecture allows the use of power semiconductor converters
with inconsistent characteristics and simple circuitry. From the point of view of operational reliability,
HRES is quite tenacious, since no information communication between the converters of RES
installations is required, the failure of any converter or generating source, except the output inverter,
does not violate the overall operability of the energy system. The simplicity of changing the
system configuration is ensured by adding/excluding generating sets of various types and different
manufacturers to the power plant without the need to change the control system settings.

Analysis of the annual energy balance of the HRES under consideration, geographically located
in the Tomsk region, showed that the use of DESS with the proposed control algorithm provides an
increase in energy production by RES installations and, consequently, an increase in energy efficiency
by 28% compared to standard HRES construction methods. It should be noted that the value of this
indicator largely depends on the energy potential of RES at the location of the power plant, the ratio of
installed capacities and technical characteristics of the main power equipment and load, and can reach
values up to 60% [36].

At present, a DESS experimental model for a rated power of 15 kW has been manufactured on
the basis of battery and super capacitor modules, a set of outline design documentation, a program
and methodology for its research tests have been developed. This year, it is planned to test the DESS
experimental model as a part of the test bench of the local power supply system with renewable energy
sources, which will assess the feasibility and effectiveness of its practical application in real power
systems, verify the adopted layout decisions, and also find technical solutions to improve it designs.

5. Conclusions

This paper proposes a new construction method and an algorithm for controlling the modes of
hybrid energy systems based on a dual-circuit energy storage device, which increases their reliability
and energy efficiency. The paper used an isolated micro-grid in Tomsk Russia as an example to verify the
effectiveness of this method. All simulations in this study have been achieved using Matlab/Simulink
environment. The results of the studies showed that the proposed construction method and the HRES
mode control algorithm provide reliable and efficient control of the power balance in HRES in all
possible operational modes. The advantages of the proposed technical solutions are ensuring the
battery charge modes with a stable current, minimizing the incomplete charge/discharge modes and
efficient use of the potential of primary renewable energy.
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Nomenclature

HRES Hybrid renewable energy systems
DGS Diesel generators sets
PWT Wind power
PV Photovoltaic
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PPV Photovoltaic power
WT Wind energy
Pdch Discharge power
HESS Hybrid energy storage systems
IRES Total current from RES
BESS Battery energy storage systems
SC Supercapacitor
VDC Bus bar voltage
DESS Dual energy storage system
BB Battery bank
BL Ballast load
MPPT Maximum power point tracking
PDGS Diesel generator sets power
ZLV Low voltage zone
ZHV High voltage zone
ZB Buffer zone
PBL Ballast load power
PPL Consumer payload power
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