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Abstract. Analytical solutions are constructed for the nonlocal space fractiortadrFi®Imogorov-P etrovskii-
Piskunov equation with abnormaldiffusion. Such solutions allovioudescribe quasi-steady state patterns.
Special attention is given to the role of fractional derivative. Fractionalsidiffuequations are useful for
applications in which a cloud of particles spreads faster than predictad blassical equation. The resulting
solutions spread faster than the classical solutions and may exhiminasy, depending on the fractional
derivative usedResults of numerical simulations and properties of analytical solutionsresented. Influence
of the fractional derivative on patterns ordered in space and time is édcuss
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INTRODUCTION
Reactiondiffusion equations are useful in many areas of science and m In applications to
population biology, the reaction term models growth, and the diffusion &&counts for migration .The
classical diffusion term originates from a model in physics. Recent resedicdtés that the classical diffusion
equation is inadequate to model many real situations, where a particle plea@ssiaster than that predicted by
the classical model, and may exhibit significant asymmetry. These situaiocallard anomalous diffusi2]
One popular model for anomalous diffusion is the fractional ddfusquation, where the usual second
derivative in space is replaced by a fractional derivative of @ger<?2. Solutions to the fractional diffusion
equation spread at a faster rate than the classical diffusion equation, andhibé@yasymmetry. However, the
fundamental solutions of these equations still exhibit useful scalimgegies that make them attractive for
applications.
Nonlocal reaction-diffusion (RD) models are generally used to descriligustrsi ordered in space and time.
Structures of this type, formed by self-organization mechaniarasnvolved in many important phenomena in
biology, medicine, epidemiology, and ecology, such as the pattemation in population dynamics, cancer
treatment, evolution of infectious diseases, etc. (see, e.g., the review [Bp4r and references therein). The
evolution of one-species microbial populations with long-range interadiietageen individuals is modeled by a
nonlocal generalization of the classical Fistalmogorov-Petrovskii-Piskunov (FKPP) equation [3, 4] for
population density u(x,t):
U (xt) = DAU(x )+ au % - bd ( x?. 1)

Equation (1) contains terms that describe a diffusion process withobeetf D, population growth with rate

a, and the local competition between individuals with rate b

Nonlocal effects arise in competitive interactions of microbial populations dire Wiffusion of nutrients,
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the release of toxic substances, chemo taxis, and molecular interactions\batineduals.

In generalized FKPP equation local quadratic losbe$(xt) are replaced by an integral expression
u(x,t)J'by(x, yu(y, t)dy, which takes into account nonlocal interactions in the population thritvegimfluence
function b, (x, y) . Parametery describes the effective area of interaction between individuals in populatipn.

wheny — 0 it’s fair b, (X y) — b3(x- ), and nonlocal losses go to lodalr’ (x t) FKPP equation considering

nonlocal quadratic losses in the interyal,|] will be

U (% 1) = Du,, (x )+ au x §—x U x 9f b(Ox Y u ¥ ) dy (2)

Spatio- time structures ( patterns ) are not formed in the courselafien , described by the classical FKPP
equation (1). Nonlocal FKPP equation allows to describe the formation of sttt arise due to the loss of
competitive and non-local diffusion with an appropriate choice of paramétirs equation.

Note that the main method of examination of structure formation in aliorkes is numerical simulation . The

paper is focused on the analytical method. One-dimensional modekisrcfor mathematical simplicity .
DEFINATION OF FRACTIONAL DERIVATIVES

There are several different approaches to the definition of fractional order derivetigcting the peculiarities

of fractional calculus. The most widely and frequently used definsiomade by Riemann-Liouville,

based on the generalization of the Abel equation [5]

, 1 d” f(t)dt

DY f(r) = —— ——— (n—-1<R <n,neN
~f@) T(n— a)dz™ f (x —t)atl-—mn’ (n <Refa) <n,n€N)

Here the standard notation is used for the differentiation operatar-aumdttions.

Simplification of this definition is the definition made by Caputo, whichpplicable for sufficiently smooth

functions where the operation of differentiation may be included undertdwgansign:

Tty tion

xTr n
D® f(z) = 1‘(nl—a) S ( fwdi (n—1<Re(a)<n,neN)
—00

A.Gryunvald and independently Letnikov introduced the conceptastiébnal derivative as the limit of
difference relations:
| &
k=0
If f(x)is continuous andyf{x)/dx is integrable in the intervda, x|, then the derivatives of the Riemann-
Liouville and Caputo and Grunvald-Letnikov exist and coincide.
ONE-DIMENSIONAL NONLOCAL FKPP EQUATION

Let’s consider the equation (2) with a difference kernel b, (X y)=Db, (Xx-Y), b,(X) is assumed to be even:

U (%) = Du, (x )+ aux §—x U x [ b(x YU y) dy @)

where o —is an order of fractional derivative. The functidngx) andu(xt) are expanded in a Fourier series:
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by(x_ y) = i qnémn(xfy)ll, b, __'[ k) gm o

m=—o0
|

Ux)= SROE =5 [uzhe™ d @

k=—0 I —

Then (4)u, (x t), according to [5], will be defined as

k=—o0

U, (x0) = Z("‘I“] B (D™, =&,

The derivative of the exponente®® with order() < « < 1 by defination of fractional derivative of Caputo

o0
DT — 1 f e dt Y PR 0T feiwdt B
S el v Tl ikt Bl Vi)
oo 5
o
;: - fit 1 / e~ tpl—a)=1 gy _ jo 0z

0
And by defination of Gryunvald-Letnikov

o0

azy (o) =i i 1 k:ck axt+a(a—k)h _
() = Jim " (-1)tChe
k=0
— earz: lim i i( )Lck ah(a—k) __ Par lim — 1 (eah _ l)a — aaeam
" o0 hY P h—0 he ’

The differentiation with respect to time ratio (4), expressing the funetipxt) presented in (3), shows:

A 1 Cimba ) o0 iz inks
Br(t) = %Jl o=t ug(z,t)dz :%Lfl dz (Duu(z,t) +au(z,t) — xun;m bpe ffn(f)) —imks
1 g I o
1] 17r1h_ t?rz(J k)
=5 Z B;(t) [dz (D (%) +a-—y Z bpe 1 ﬁﬂ(t)) - =
j=—o0 -~ n=—oo

l
fmz{f=k) imz(n—(k—3))
[& dz — = E d bn[ dz| =

n=—oo
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= _z_: 3,(t) l(p (%)a - a) Ojk — X i ,.-3,1(t)bn(5n‘k_j] :

n——oo

*("‘l—“jq+a}xjisk_jq_jsj, k=" 0.(5)

We will seek the coefficient; in the formf3, (t) =B, ()3, ,-

P 1) 62 (1), (6)

Equation (6), with the initial condition; |, =B, o+iS

B eat
Bo() =— b (7)
1+ Xboaﬁoo € -1)
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Now let’s look for solutions of the equation (5) B; in the form

B;(6,7.T) =P @, QA B‘l’(e o)+ - o), (8)

where B'” is defined by (7). Expansion (8) with (4) induces expansion

u(x 1) = u‘°)(xt)+$ € (x1),(9)

Taking into the account the rules of differentiation of composite functions we get
d_o0 0o ar 0 0 N 10

dt otoo otor ae Tor

As a result, the system (5) takes the form

[ 6% i;}(ﬁw _B(l j 3 [Bj(°)+;lﬁj(”+-~j—x§*3 [Bj(% +?1ng)3 +-..](Bp(°)+?lﬁp(l)+..),

where a = ( D[ijl—nja + a}.
Equating terms of the same powielT , we obtain

B(O) =3By Z bB® B, u 0.3 Bj(l) T Z (B BO+B,OB, (13 B, Hl(10)
Let’s ¢(t) = at. Then from (0) it follows that

0 2
2o =20, L0 =L Lpoa o). 1)

Solving the system (10) and (11), considering tﬁ@gm =0, we will find the coefficientsg® and p{. For the
ot

case of symmetric initial distribution up@g1/T*) we obtain

BOOeﬁt 1< B]J € 5

+_

; (b +y)/k
l+%f°0 (eat -1) T= ‘:l+ X*oBoo (eat _1):| !
a

u(xt) =

o (P cos(Fa)ta)t 4 [D |7 |Ct sin (Fasgng) t + }”}

o . (bj+bo)/ba
ot (1 N y:)\nﬁnn(em _ 1)> !
a
You may notice thatm(u®(xt)) = 0. Let's choosey, = b, exp{— (x— y¥ #} .

Now let’s consider how the population density depends on the degree of diffusion.

u

u
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Fig. 1. Graph of functioru(x,t) for t =50 and e =1.5 (a), 2 (b),a=0.5, h, =y=1,4=0.2, D=0.01, | =5
, T=10

The first and second moment$x,t) for o = 1.5, respectively calculated by the formulas (fig. 2):

M (t) = Jl'xu(x,t)dx, D(t) = Ij(x— M (t))° u(x,t)dx.
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Fig. 2. Graph of the first initial momem () (a) and second central momedit) (b).

As can be seen from the graphs (fig. 1), the lower the ordiftrediactional derivative, the greater the

displacement of the center and stronger the deviation from the steady state.
CONCLUSION

The phenomenon of pattern formation in one-species populations wdgsdstising a number of models
based on generalized FishKplmogorov-Petrovskii-Piskunov (FKPP) equations taking into account nonlocal
interaction effects.The paper has been focused on a special type of pattetioh with abnormal diffusion.
The lower the order of the fractional derivative, the greater the displacexném center and stronger the
deviation from the steady state.

This solution is spatially homogeneous and monotonically dependitigne. By analogy with previous
studies, it was assumed that the patterns above can be described as largeéuibaipes of this exact solution.
The large time asymptotics are constructed explicitly, to withil /7%), in the class of functions which tend to
the above exact solution as T — o. Thereby, the exact solution can be regarded as an attractor of the constructed
class of asymptotic solutions and, hence, of the corresponding concentititgdsp As the patterns evolve
monotonically without qualitative changes to some steaaly; it’s concluded asymptotic solutions describe
approximately the quasi-steady-state patterns. The contribution of difficsittre pattern formation has been
investigated.

The approach used allows one, on the one hand, to gain informatibe most essential characteristics
of patterns and, on the other hand, to apply the methods deveimpdd problems to multidimensional
problems.

The formalism proposed can be generalized to concentration manifbla®re general topological
structure, such as multiply connected manifolds, and to curved nasndescribing the growth of microbial
populations on complex structure objects.
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