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Abstract. Analytical solutions are constructed for the nonlocal space fractional Fisher–Kolmogorov–Petrovskii–

Piskunov equation with abnormaldiffusion. Such solutions allow us to describe quasi-steady state patterns. 

Special attention is given to the role of fractional derivative. Fractional diffusion equations are useful for 

applications in which a cloud of particles spreads faster than predicted by the classical equation. The resulting 

solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fractional 

derivative used. Results of numerical simulations and properties of analytical solutions are presented. Influence 

of the fractional derivative on patterns ordered in space and time is discussed. 
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Kolmogorov–Petrovskii–Piskunov equation, semiclassical approximation. 

INTRODUCTION 

Reaction–diffusion equations are useful in many areas of science and engineering [1]. In applications to 

population biology, the reaction term models growth, and the diffusion term accounts for migration .The 

classical diffusion term originates from a model in physics. Recent research indicates that the classical diffusion 

equation is inadequate to model many real situations, where a particle plume spreads faster than that predicted by 

the classical model, and may exhibit significant asymmetry. These situations are called anomalous diffusion [2] . 

One popular model for anomalous diffusion is the fractional diffusion equation, where the usual second 

derivative in space is replaced by a fractional derivative of order 0 <Į < 2. Solutions to the fractional diffusion 

equation spread at a faster rate than the classical diffusion equation, and may exhibit asymmetry. However, the 

fundamental solutions of these equations still exhibit useful scaling properties that make them attractive for 

applications. 

Nonlocal reaction-diffusion (RD) models are generally used to describe structures ordered in space and time. 

Structures of this type, formed by self-organization mechanisms, are involved in many important phenomena in 

biology, medicine, epidemiology, and ecology, such as the pattern formation in population dynamics, cancer 

treatment, evolution of infectious diseases, etc. (see, e.g., the review papers [3, 4], and references therein). The 

evolution of one-species microbial populations with long-range interactions between individuals is modeled by a 

nonlocal generalization of the classical Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equation [3, 4] for  

population density u(x,t): 

 2( , ) = ( , ) ( , ) ( , ).tu x t D u x t au x t bu x t    (1) 

Equation (1) contains terms that describe a diffusion process with coefficient D, population growth with rate 

a, and the local competition between individuals with rate b.  

Nonlocal effects arise in competitive interactions of microbial populations due to the diffusion of nutrients, 
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the release of toxic substances, chemo taxis, and molecular interactions between individuals. 

In generalized FKPP equation local quadratic losses 2( , )bu x t  are replaced by an integral expression 

( , ) ( , ) ( , ) ,u x t b x y u y t dy  which takes into account nonlocal interactions in the population through the influence 

function ( , )b x y . Parameter   describes the effective area of interaction between individuals in population. So, 

when 0   ТЭ’s ПКТr ( , ) ( )b x y b x y    , and nonlocal losses go to local 2( , )bu x t  FKPP equation considering 

nonlocal quadratic losses in the interval [ , ]l l  will be 

 ( , ) = ( , ) ( , ) ( , ) ( , ) ( , ) .
l

t xx

l

u x t Du x t au x t u x t b x y u y t dy


    (2) 

Spatio- time structures ( patterns ) are not formed in the course of evolution , described by the classical FKPP  

equation (1). Nonlocal FKPP equation allows to describe the formation of structures that arise due to the loss of 

competitive and non-local diffusion with an appropriate choice of parameters of the equation. 

Note that the main method of examination of structure formation in above works is numerical simulation . The 

paper is focused on the analytical method. One-dimensional model is chosen for mathematical simplicity . 

DEFINATION OF FRACTIONAL DERIVATIVES 

There are several different approaches to the definition of fractional order derivative, reflecting the peculiarities 

of fractional calculus. The most widely and frequently used definition is made by Riemann-Liouville,  

 based on the generalization of the Abel equation [5]

  

Here the standard notation is used for the differentiation operator and Ƚ-functions.  

Simplification of this definition is the definition made by Caputo, which is applicable for sufficiently smooth 

functions where the operation of differentiation may be included under the integral sign: 

 

A.Gryunvald and independently Letnikov  introduced the concept of fractional derivative as the limit of 

difference relations: 

 

If  is continuous and  is integrable in the interval , then the derivatives of the Riemann-

Liouville and Caputo and Grunvald-Letnikov exist and coincide. 

ONE-DIMENSIONAL NONLOCAL FKPP EQUATION 

δОЭ’s МШЧsТНОr ЭСО ОqЮКЭТШЧ (β) аТЭС К НТППОrОЧМО ФОrЧОl ( , ) ( )b x y b x y   , ( )b x  is assumed to be even: 

 ( , ) = ( , ) ( , ) ( , ) ( ) ( , ) ,
l

t

l

u x t Du x t au x t u x t b x y u y t dy 


    (3) 

where   – is an order of fractional derivative. The functions ( )b x  and ( , )u x t  are expanded in a Fourier series: 
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=

1
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2
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m l
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l


    


 
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 / /

=

1
( , ) = ( ) , ( ) = ( , ) .

2

l
i kx l i kz l

k k
k l

u x t t e t u z t e dz
l


  

 

    (4) 

Then (4) ( , )u x t , according to [5], will be defined as 

 / /2

=

( , ) = ( ) , = .i kx l i
k

k

ik
u x t t e i e

l


  




   
 

  

The derivative of the exponent is  with order  by defination  of fractional derivative of Caputo 

 

And by defination  of  Gryunvald-Letnikov 

 

  

The differentiation with respect to time ratio (4), expressing the function ( , )tu x t  presented in (3), shows: 

 

=

= ,  = , .k k k j k j j
j

ik
D a b k

l

 

 


              
 (5) 

We will seek the coefficients j  in the form 0 0( ) = ( ) .j jt t    

2
0 0 0 0( ) = ( ) ( ) .t t a t b   (6) 

Equation (6), with the initial conditions =0 00 0| = ,j t j   is 

00
0

0 00

( ) = .
1 ( 1)

at

at

e
t

b
e

a




 
 

(7) 
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σШа lОЭ’s lШШФ ПШr sШlЮЭТШЧs ШП ЭСО ОqЮКЭТШЧ (η) j  in the form 

(0) (1)1
( , , ) = ( , ) ( , ) , ( ) ,j j jT T

T
                (8) 

where  (0)
j  is defined by (7). Expansion (8) with (4) induces expansion 

(0) (1)1
( , ) = ( , ) ( , ),u x t u x t u x t

T
 (9) 

Taking into the account the rules of differentiation of composite functions we get 

1
= = .

d

dt t t T

     
  

     
 

As a result, the system (5) takes the form 

 (0) (1) (0) (1) (0) (1) (0) (1)

=

1 1 1 1 1
= ,j j j j j p j p j p p p

p

a b
T T T T T



  


                                         
  

where  = .j

ij
a D a

l

        
 

Equating terms of the same power 1/T , we obtain 

(0) (0) (0) (0) (1) (1) (1) (0) (0) (1) (0)

= =

= , ɢ = ( ) , .j j j p j p p j j j p j p p j p p j
p p

a b a b
 

    
 

  
               

    (10) 

δОЭ’s ( ) = .a   Then from (10) it follows that 

 (1) (1) (0) (1)0
0 0 0 0

2
= ,

b

a


    


(1) (1) (0) (1) (1)

0 0= ( ).j
j j j j j

a
b b

a a

 
      


(11) 

Solving the system (10) and (11), considering that (0) = 0j





, we will find the coefficients (0)

j  and (1)
j . For the 

case of symmetric initial distribution up to 2(1/ )O T  we obtain 

 
/

00 1
( )/0 00 00 = 0 00

1
( , ) = .

1 ( 1) 1 ( 1)

a tat ij x lj
l

b b bjat j at

e e e
u x t

b Te ea a






 


         

  

 

You may notice that  (1)Im ( , ) = 0u x t . Let's choose  2 2
0= exp ( ) / .b b x y     

σШа lОЭ’s МШЧsТНОr СШа ЭСО pШpЮlКЭТШЧ НОЧsТЭв НОpОЧНs ШЧ ЭСО НОРrОО ШП НТППЮsТШЧ. 
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Fig. 1. Graph of function ( , )u x t  for = 50t  and =1.5  (a), 2 (b), = 0.5a , 0 = 1,b   = 0.2 , = 0.01D , = 5l

, =10T  

 

The first and second moments ( , )u x t  for =1.5 , respectively calculated by the formulas (fig. 2): 

  2
( ) ( , ) , ( ) ( ) ( , )

l l

l l

M t xu x t dx D t x M t u x t dx
 

    . 

  

Fig. 2. Graph of the first initial moment ( )M t  (a) and second central moment ( )D t (b). 

As can be seen from the graphs (fig. 1), the lower the order of the fractional derivative, the greater the 

displacement of the center and stronger the deviation from the steady state.  

CONCLUSION 

The phenomenon of pattern formation in one-species populations was studied using a number of models 

based on generalized Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equations taking into account nonlocal 

interaction effects.The paper has been focused on a special type of pattern formation with abnormal diffusion. 

The lower the order of the fractional derivative, the greater the displacement of the center and stronger the 

deviation from the steady state. 

This solution is spatially homogeneous and monotonically depending on time. By analogy with previous 

studies, it was assumed that the patterns above can be described as large time perturbations of this exact solution. 

The large time asymptotics are constructed explicitly, to within O(), in the class of functions which tend to 

ЭСО КЛШЯО ОбКМЭ sШlЮЭТШЧ Кs T ĺ ∞. TСОrОЛв, ЭСО ОбКМЭ sШlЮЭТШЧ МКЧ ЛО rОРКrНОН Кs КЧ КЭЭrКМЭШr ШП ЭСО МШЧsЭrЮМЭОН 

class of asymptotic solutions and, hence, of the corresponding concentrated patterns. As the patterns evolve 

monotonically without qualitative changes to some steady-sЭКЭО, ТЭ’s МШЧМlЮНОН КsвЦpЭШЭТМ sШlЮЭТШЧs НОsМrТЛО 

approximately the quasi-steady-state patterns. The contribution of diffusion to the pattern formation has been 

investigated. 

The approach used allows one, on the one hand, to gain information on the most essential characteristics 

of patterns and, on the other hand, to apply the methods developed for 1D problems to multidimensional 

problems.  

The formalism proposed can be generalized to concentration manifolds of more general topological 

structure, such as multiply connected manifolds, and to curved manifolds describing the growth of microbial 

populations on complex structure objects. 

The work is supported by the Russian Foundation of Science. 
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