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Annotation 

 The publication deals with two major hydrodynamic model, which is used in the simulation of mass transfer 

processes. This model of an ideal mixing and model of ideal displacement. Job pokkazyvaet their application in 

industry, namely the use of the device-combined typeWork shows their application in industry, in part the use of 

the device-combined type. 

1. Mathematical reactor model of ideal mixing 

Mathematical description of the ideal mixing reactor (Figure 1.1) characterizes the change in 

concentration in the reaction medium in a time that is due to traffic flow (hydrodynamic factor) and chemical 

conversion (kinetic factor). Therefore, the model of ideal mixing reactor can be built on the basis of a standard 

model of ideal mixing considering the chemical reaction rate. 

Ideal mixing model is idealized flow and provides the theoretical model. According to this model it is 

assumed that the flow entering the unit immediately distributed throughout the volume due to complete (ideal) 

mixing the particles of the medium. The concentration of the substance distributed at all points in the flow 

system and the output thereof is the same: 

ɋin ɋ= ɋout. 

Differential equation model of ideal mixing will have the form: 

 ɋinC
Vdt

dc



,     (1.1) 

Where 


 V
  - the contact time, which characterizes the average residence time of the particles in 

the reactor, s;  

V - volume of the reactor, m3;  

  - Volumetric flow material m3 / h.               
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Fig. 1.1. Scheme of the reactor of ideal mixing 

Equation (1.1) describes the change in concentration of a substance in an area ideal mixing due to flow.  

Then, taking into account the kinetic factor, the dynamic model of an isothermal reactor with ideal mixing 

continuous action will have the form 

  ioutin
i wɋC

dt

dɋ



1

    (1.2) 

 This equation is written for each of the components involved in the reaction. Then:  

 

Ci - concentration of the i-th substance, kmol/m3;  

wi - the reaction rate of i-th substance kmol/m3.  

The system of the above equations is a mathematical model of ideal mixing reactor taking into account changing 

concentrations over time (dynamic model).  

 For example, reaction Ⱥ k
ȼ  in equation (3.2) can be written: 

Cin =  ɋȺ0 ;   Cout =  CȺ   ; wȺ =  - kCȺ   ;  

  AAA
Ⱥ wCC

dt

dC
 0

0

1


.                                            (1.3) 

In the steady (stationary) operation of the reactor 0
dt

dCi  , then the equation (3.3) can be written as : 

  AȺȺɈ wɋɋ1



, 

A

ȺȺɈ
w

ɋɋ 
 ,                                                                          (1.4) 

0A

A0A
A C

CC
x


 .   
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Using expressions (1.3), (1.4), we can find the main parameters characterizing the operation of the apparatus:  

1)  - residence time in the reactor of the starting material, the magnitude of which depends on the volume of the 

apparatus (the lower , the smaller V);  

2) changing the concentration of the reactants, as a function f(), and hence to calculate the degree of conversion 

and selectivity.  

Similarly, the material balance equation of ideal mixing reactor (3.2) The equation of heat balance. Thus, we 

obtain for the adiabatic reactor 

   



N

j
jjin

mix
pmix

ɪ WHɌɌ
ɋ

dt

dTɋ
1

,                           (1.5) 

where : 

 jW - the speed of the j-th chemical reaction, 1 / s;  

 jH - The thermal effect of the j-th of the chemical reaction, Joule / mol;  

   mix
pɋ -  

  inɌ - Temperature at the reactor inlet, K;  

   T - The current temperature, K.  

 Heat capacity i - substance as a function of temperature is described by the following equation: 

1887.4)TdTcTba(ɋ 3
i

2
iiiPi

 .                           (1.6) 

Heat of the mixture is calculated by the additivity rule: 





N

1i
ii

ɫɦ
P CCpC ,                                                   (1.7) 

where Ci - the concentration of i-th substance mixture mole share.  

The dependence of the rate constant on a chemical reaction temperature is expressed by the Arrhenius 

equation 

TRiE
e0,ikik

 ,                                              (1.8) 

Where: 

ki  - the rate constant i-th chemical reactions ( for a first order reaction, 1/s); 

ki,0- pre-exponential factor , s-1 ; 

Ei - activation energy of the i-th reaction, Joule / mole ; 

R- universal gas constant , R = 8,314 J / mole * K. 

In order to investigate the dynamic behavior of the reactor ideal mixing , i.e. tracking changes in 

concentrations of reactants and temperature over time at the exit of the reactor , it is necessary to solve the 

system of differential equations for each material balance of the components and the heat balance equation . 
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2. Mathematical reactor model of ideal displacement 

Mathematical models of chemical reactors are based on the principle of using a block model of 

hydrodynamic models that take into account the motion of matter flows.  

In accordance with a model of ideal displacement piston taken along flow without stirring for a uniform 

flow distribution of the concentration of a substance in a direction perpendicular to the movement (Fig. 3-2). 

 

Fig. 3.2.  Scheme of ideal displacement 

Differential equation model of ideal displacement has the following form: 

l

ɋ
u

t

ɋ ii







,                                                          (1.9) 

Where: 

 C - concentration substance mole/l; 

t- time , seconds; 

u- linear flow velocity, m / s; 

l- coordinate ( length unit) , m 

Mathematical model of ideal displacement is a differential equation in partial derivatives, since the 

concentration varies in time and space. Such a model is called a model with distributed parameters. 

Model of ideal displacement corresponds to a first approximation process in tubular devices for which the 

ratio of length to diameter of the pipe is ЦШrО ЭСКЧ β0 Шr НТППЮsТШЧ PОМlОЭ ЧЮЦЛОr Тs sОЭ ЭШ ≈ 100 . 

If we substitute the linear flow velocity u for the value Su / , in the equation (1.9), we obtain : 

dl

dC

dt

dC
S ii  ,                                                 (1.10) 

Where: 

S - the cross section area of ideal displacement, m2;  

     - Volumetric flow rate (flow) of the substance, m3 / s.  

If the mathematical model of ideal displacement is considered as changing the concentration of power at 

the expense of chemical reaction, the material balance of a plug flow reactor can be written as 

iW
l
iC

u
t
iC










,                                             (1.11) 

Where: 

iC  - the concentration of the corresponding i-th material;  

    iW  - Reaction rate of i-th substance.  
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Heat balance equation adiabatic flow reactor 









 









N

j
j

W
j

H
l

Tmix
ɪCmixU

t

Tmix
ɪɋ

mix

1
 .                     (1.12) 

Hence, the mathematical description of a plug flow reactor is characterized by changing the concentration 

and temperature of the reaction medium in time and space due to movement of the flow (hydrodynamic factor) 

and chemical conversion (kinetic factor).  

Equation (3.11) is written for each of the components involved in the reaction. For example, for the 

reaction in an isothermal plug flow reactor, mathematical model (dynamic mode) will have the form 

ACk
l
AC

u
t
AC









,                                       (1.13) 

ACk
l
BC

u
t
BC









. 

In the steady (stationary) operation of the reactor 

0
t

C A 



;     0

t

ɋB 



,          (1.14) 

When 

A
A Ck

dl

dC
u  ,                                                  (1.15) 

A
ɟ Ck

dl

dC
u  . 

 

since the 
u
l

, equations (1.15) take the form 

A
A Ck

d

dC



,                                                     (1.16) 

A
B Ck

d

dC



, 

Where   - the residence time of reactants in the reactor core (contact time), sec.  

In order to investigate the variation of the concentrations of reactants and temperature of the chemical 

reactor, it is necessary to solve the system of differential equations of (1.11, 1.12). 

 At this moment my work on modeling of processes occurring in the DCT, represents basic equations 

describing the behavior of the system under different assumptions, which are accounted for in the modeling of 

the system by various methods, namely a model of ideal mixing and plug flow model. Further work will go 

towards the unification of the models described above into one. It will be able to show the work of the unit in an 
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environment closest to the real, and can use it in the future to the real production process. 
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