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Abstract. In this study, the distributions of dislocation density with hydrogen concentration in 

titanium VT1-0 were obtained. The samples with different hydrogen concentrations was 

carried out by using the Sieverts method. The dislocation densities were obtained by using the 

full width at height medium calculations from the XRD results of Gaussian approximation 

fitting. For accurate calculation of the dislocation density in titanium alloys, the double-line 

separation phenomenon of the XRD results and the variation of the Burgers vector in different 

lattice directions were considered. The phenomenon of the double-line separation is more 

evident when the diffraction angle 2θ is larger than 40°. The mean value of dislocation density 

for the different hydrogen concentrations is about 1013 ~ 1014 m-2. Moreover, as the increases of 

hydrogen content in the titanium alloy, the dislocation density also increases. 

1. Introduction 

Due to their high strength, modulus of elasticity and toughness, titanium and titanium alloys are used 

in a wide variety of aerospace, energy, and biomedical [1]. Recent advances in titanium alloy lead to 

understanding that studies of hydrogen-titanium system are important. Moreover, titanium alloys are 

considered for a variety of applications. In many cases, hydrogen changes the plasticity of most metals 

and alloys [3]. These properties are highly dependent on material texture, dislocation density, 

dislocation sliding, etc. Therefore, in order to predict the characteristics of materials and design 

materials with certain properties, the understanding of the deformation process from the 

microstructure parameters is crucial. The most well-known methods for measuring the presence of 

hydrogen and other gases in metals are the methods for measuring micro-hardness, x-ray diffraction 

(XRD), and photometric analysis [4]. These methods are laboratory methods, their use is difficult for 

production control and is ineffective for detecting local gas-saturated areas. Plastic deformation is the 

direct cause of dislocation motion, used the methods of statistical mechanics consistently with three-

dimensional systems of curved dislocation lines also developed the mathematical foundations for 

calculating of the dislocation density [5]. In recent years, the XRD method has been used to calculate 

the dislocation density in materials [6], and in the method, the Burger vector influences the 

calculation. There are some studies on the Burger vector of materials different types [7]. The structure 

of titanium alloys is heterogeneous; the grain of the titanium is 10–15 µm or 50–100 µm in size. In 

this case, the dislocation density reaches 109 m-2. In particular, this refers to the study of the 

accumulation of energy in materials by creating boundaries. Information on the change in the structure 



1st International Conference on Metals and Alloys

IOP Conf. Series: Materials Science and Engineering 668 (2019) 012006

IOP Publishing

doi:10.1088/1757-899X/668/1/012006

2

of the grain boundaries leads to a change in the fraction of the resonance scattering of electrons on 

linear defects forming the boundary [8]. In the previous work, we have already discussed the electrical 

resistivity ρd was calculated versus the density of defects Nd using the model that includes the 

dilatation of the lattice and the existence of the quasi-stationary resonance electron states near the 

Fermi energy [9]. In this paper, we studied the dislocation density in the condition of different 

radiation for different hydrogen content.  

2. Methods and materials 

Titanium VT1-0 was studied in the following wt% composition: 0.18 Fe; 0.1 Si; 0.07 C; 0.12 O; 0.01 

H; 0.04 N. For this research, we prepared samples with dimensions of 20 × 20 × 1 mm. The samples 

were cut from a sheet of titanium alloy VT1-0 by the method of electrical discharge machining 

(EDM). The surface of the specimens was mechanically polished to remove the oxide film. To remove 

defects and surface stresses, the samples were annealed in vacuum at 750°C for 60 minutes. To obtain 

different hydrogen concentration in titanium VT1-0, hydrogen permeation in the gaseous medium was 

carried out at different temperature (about 600°C) and hydrogen pressure in the chamber (about 1-2 

atm) on the automated complex Gas Reaction Controller LPB [10]. After saturation, the hydrogen 

concentration was measured with the hydrogen analyzer RHEN602 (LECOTM). The phase composition 

and structural parameters of the samples after saturation were determined by an XRD-7000 

diffractometer using Cu-Kα radiation. The analysis of the phase composition was carried out using the 

PCPDFWIN and PDF-4 + databases and the full-profile analysis program (POWDER CELL 2.5). The 

concentration of hydrogen was changed in depth using a spectrum magnetic analyzer (SMA II, 

Germany) [11],[12]. Used the Philips SEM 515 scanning electron microscope to research the 

influences of hydrogenation for the surface state of titanium VT1-0; for the survey, the voltage is 20 

keV and magnified 500 times. 

3. Experimental results and discussion 

In recent years, polycrystalline materials with ultrafine structure (grain size respectively less than 1 

and 0.1 μm) and increased length of interfaces, have been intensively developed and investigated [13]. 

Among the methods for producing ultrafine-grained (UFG) metals and alloys, the most promising are 

the methods of intense plastic deformation (SPD) from the practical point, which make it possible to 

obtain the UFG structure in bulk metal blanks. The formation of such a structure using the SPD 

method leads to an increase in the energy of the interfaces, as a result of interaction with lattice 

defects. This changes the physical and mechanical properties of metals and alloys. And it is known 

that grains and phases largely determine the mechanical properties, the nature of the deformation 

behavior and the destruction of metallic materials. 

 

 

Figure 1. The distributions of grain size a – initial alloy VT1-0, b – CH =0.052 mass%, 

c – CH = 0.087 mass%. 
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By figure 1, we can see the distributions of grain size in titanium VT1-0 with the hydrogen content. 

It can be clearly seen that after hydrogenation, the larger grain size (50-120 μm) in titanium is 

significantly increased.  

In order to study the dislocation density in materials by XRD, we need to think about the separation 

of double lines for the Kα1 and Kα2 x-rays. The separation of double lines is described by the function 

∆θ (deg)= tanθ∙(∆λ⁄λ)∙(180/π). The Gaussian distribution was applied to the peak. In figure 2 can be 

observed that the peak splitting occurs, which is associated with strong deformations of the crystal. 

When the separation was observed at the peak, multiple peaks were attached to the specified curve, 

and the full width at height medium (FWHM) was determined for each fitting. Furthermore, the 

averaged values for all these FWHMs were used for the subsequent analysis of the dislocation density. 

 

Figure 2. Phase transitions in samples of titanium alloy after saturation with hydrogen. And 

example of double line separation and full width at height medium for titanium with a hydrogen 

concentration of 0.038 wt%. a – for plane (002), b – for plane (103). 

 

Dislocations increase the width of the XRD amplitude (FWHM) curve for three reasons: a) 

introduces the rotation of the lattice site; b) increases the deformation of the lattice; and c) in the 

strong damaged crystal, can form a walls-like between small crystals, which leads to a decrease in the 

size of the crystal. X-ray broadening analysis can be used as a method for calculating the dislocation 

density. In this work, the calculation of the dislocations density Nd was carried out according to the 

formula [14]: 
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where β is the broadening of X-ray lines caused by the lattice deformation, θ(hkl) is the diffraction angle 

corresponding to the maximum of X-ray lines, b(hkl) is the Burgers vector. 

By considering the Burger vector from different angles, discussed the result of dislocation density. 

The Burger vector is obtained in different directions by the model of pure titanium at a normal 

temperature. At room temperature (T = 300K), the titanium alloys have the hexagonal close-packed 

structure, and the distance between the crystal surfaces can be obtained from the following forms: 
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Taking into account the phenomenon of diffraction peak separation formed by the Kα1 and Kα2 x-

rays in XRD results (figure 2(b)). Theoretically, the diffraction peak formed by irradiation of x-ray is 

only related to the atomic arrangement inside the crystal. If the double-line separation phenomenon is 

not considered, the full width at height medium of the diffraction peak will be larger, especially at a 

high diffraction angle (cf. figures 2(a) and 2(b)). For the same material, the dislocation density 

obtained from the diffraction peak formed by x-ray irradiation should be consistent. Therefore, in 

order to obtain an accurate dislocation density, we have averaged the dislocation density calculated 

from the diffraction peaks formed by the Kα1 and Kα2. The result of the dislocation density is shown 

in figure 3. 

 

 

Figure 3. The change in the density of dislocations with 

hydrogen content for different orientations. 

 

In the process of hydrogen sorption in titanium alloys, hydrides are formed. On the other hand, 
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hydrogen in the form of atoms or molecules diffuses and migrates into titanium alloys. This will 

change the phase composition and the lattice structure of the titanium alloys. From the X-ray 

diffraction results, a change in the internal structure of the material is reflected as a change in the 

FWHM parameter. Theoretically, we know that grain size decreasing will broaden the diffraction 

peak. In addition, dislocations and crystal curvature also create conditions for the expansion of the 

diffraction peak [16]. Thus, under well-known conditions that affect the expansion of the diffraction 

peak, we obtain the dislocation densities by using equation (1). From the statistical theory, dislocations 

appear with a greater probability on the plane, where the slip will occur in the crystal. The titanium 

alloys have the hexagonal close-packed structure, this closest packing structure causes the dislocation 

lines to randomly appear on any crystal plane. Therefore, the effect on the broadening of the XRD 

diffraction peak is also random. Considered this random phenomenon, we used the Gaussian fitting 

when calculating the dislocation density. Therefore, from any crystal plane, we get the statistical 

results of the dislocation density in the crystal, which should be the same in theory. From figure 3, we 

can see that, on the planes (110) (102) (101) obtained the roughly consistent results. For the plane 

(103), due to the formation of the hydride at high concentrations, a peak of hydride formed on the 

plane, and broadened the diffraction peak. It leads to the anomalously large of the dislocation density. 

For the plane (112), due to appearing of the diffraction peaks in other orientations (200, 201) at this 

angle, it also leads to the calculated dislocation density being too large. For the orientations (100) and 

(002), because the two-line separation phenomenon is not obvious, the results are small by Gaussian 

fitting. So we chose the average of the dislocation density from the planes (110) (102) and (101). 

Table 1 shows us the results. 

 

Table 1. The dislocation density for different hydrogen concentration. 

Hydrogen concentration, wt% Dislocation density×1014, m-2 

0.019 0.8537 

0.030 1.0048 

0.038 1.1783 

0.063 1.4940 

0.068 1.4795 

0.093 1.5127 

0.176 1.6855 

0.562 1.9001 

0.955 3.5647 

4. Conclusion 

When the X-rays diffraction peaks separation is considered for different orientations, the dislocation 

density value is approximately 1014 m-2. The distribution of dislocations in the titanium alloy is not 

related to the lattice orientation. Theoretically, the number of dislocations in the material is not related 

to the orientation of the diffraction peak. All the factors in the material where the expansion of the 

diffraction peaks are involved, the dislocation is included. Therefore, whatever diffraction peak is 

selected, the result of the dislocation density should be similar. From the experimental results, when 

the diffraction angle exceeds 2=40°, the results are more consistent. However, for minor diffraction 

angles do not correspond to the theoretical result, given that the separation of two lines at small angles 

is not clear, and the approximation of the peaks at small angles, considering the two lines separation, is 

inaccurate. Consequently, taking into account the two-line separation, a diffraction peak with 2 > 40° 

is selected, and the dislocation density can be better approximated. Thus, can be concluded that when 

the hydrogen content exceeds 0.5 wt%, the dislocation density changes from (0.1–3)×1014 m–2 to 

5×1014 m–2, due to the formation of hydrides in the material with increasing hydrogen content. 
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