На правах рукописи

101/

Волков Николай Викторович

РАСЧЕТ СПЕКТРОВ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ КОСМИЧЕСКИХ ЛУЧЕЙ В ГАЛАКТИЧЕСКОЙ СРЕДЕ ФРАКТАЛЬНОГО ТИПА

01.04.16 — физика атомного ядра и элементарных частиц

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Томск - 2010

Работа выполнена на кафедре радиофизики и теоретической физики ГОУ ВПО «Алтайский государственный университет»

Научный руководитель: доктор физико-математических наук, профессор Лагутин Анатолий Алексеевич

Официальные оппоненты:

доктор физико-математических наук Птускин Владимир Соломонович; доктор физико-математических наук. профессор Потылицын Александр Петрович

Ведущая организация: Институт космофизических исследований и аэрономии им. Ю. Г. Шафера Сибирского отделения Российской академии наук (г. Якутск).

Защита состоится 22.06.2010 в 15:00 часов на заседании совета по защите докторских и кандидатских диссертаций Д 212.269.05 при Национальном исследовательском Томском политехническом университете, научно-исследовательский институт ядерной физики («НИИ ЯФ») по адресу: 634050, г. Томск, пр. Ленина, 2а.

С диссертацией можно ознакомиться в библиотеке Национального исследовательского Томского политехнического университета.

Автореферат разослан «19» мая 2010 г.

Ученый секретарь совета по защите докторских и кандидатских диссертаций кандидат физико-математических наук, доцент

Кожевников А. В.

Общая характеристика работы

Актуальность темы. Наблюдения нетеплового радиоизлучения Галактики в 50-е годы стимулировали исследования прохождения электронов высоких энергий через межзвездную среду, разработку моделей источников и механизмов ускорения частиц в них. Новый импульс работам этого направления астрофизики космических лучей дали наблюдения рентгеновского излучения остатков сверхновых, обнаружение в середине 90-х в оболочке SN 1006 электронов ТэВ-ных энергий.

Результаты многолетних наземных, баллонных и спутниковых экспериментов позволили сформулировать сценарий происхождения, ускорения и распространения космических лучей. Его основные положения для электронно-позитронной компоненты заключаются в следующем:

- 1) источниками первичных электронов в Галактике являются сверхновые; ускорение происходит на фронте ударной волны; спектр генерации частиц $S(E) \sim E^{-p}$, где $p \approx 2.4 \div 2.5$;
- 2) распределение источников считается стационарным;
- распространение частиц в межзвездной среде описывается уравнением нормальной диффузии Гинзбурга-Сыроватского

$$\frac{\partial N(\mathbf{r},t,E)}{\partial t} = D(E)\Delta N(\mathbf{r},t,E) + \frac{\partial (B(E)N(\mathbf{r},t,E))}{\partial E} + S(\mathbf{r},t,E);$$

коэффициент диффузии $D(E) = D_0 E^{\delta}, \, \delta \sim 0.3 \div 0.6;$

 позитроны являются продуктами взаимодействий первичных ядер космических лучей со средой; доля позитронов e⁺/(e⁺+e⁻) убывает с ростом энергии.

Однако, экспериментальные результаты, полученные в последнее десятилетие с использованием нового поколения приборов, выявили противоречия между предсказаниями стандатного сценария и наблюдательными данными. Так, например, установлено, что:

- наблюдаемый спектр электронов является более «жестким» в диапазоне 100 ÷ 400 ГэВ и более «мягким» — при E ≥ 1 ТэВ;
- происходит изменение наклона в энергетической зависимости e⁺/(e⁺+e⁻); в области E ~ (10÷100) ГэВ наблюдается монотонный рост доли позитронов;

• имеется «избыток» электронов в области 300 ÷ 800 ГэВ.

В силу выявленных противоречий, сегодня актуальной задачей астрофизики космических лучей является уточнение основных позиций стандартного сценария, включение в него новых положений. Возможными направлениями расширения сценария могут быть:

1) замена стационарной модели источников нестационарной;

- 2) включение источников первичных позитронов (пульсары, аннигиляция или распад темной материи, источники нового типа);
- 3) учет нелокального характера распространения частиц в турбулентной (фрактальной) среде.

Целью диссертационного исследования являлось построение модели диффузии электронов космических лучей в галактической среде фрактального типа, расчет энергетического спектра электронов и позитронов при различных предположениях об источниках.

Достижение данной цели потребовало решения следующих задач:

- 1. Формулировка модели диффузии электронов космических лучей в среде фрактального типа, включающей «полеты Ле́ви», ловушки с конечным временем удержания и непрерывные потери энергии частиц.
- Расчет энергетического спектра электронов для точечных источников. Анализ влияния изменения параметров модели на форму спектра частиц.
- Расчет спектра синхротронного излучения релятивистских электронов. Определение показателя спектра генерации электронов в источнике с использованием экспериментальных данных по спектру излучения, наблюдаемого в районе Земли.
- 4. Анализ применимости модели статистических пуассоновских ансамблей источников для описания наблюдаемого спектра электронов с учетом данных современных экспериментов.
- 5. Применение теоретических результатов для анализа экспериментальных данных по спектрам электронов и позитронов космического излучения.

Научная новизна и значимость работы:

- 1. Впервые для описания распространения электронов и позитронов космических лучей в галактической среде разработана модель фрактальной диффузии, включающая «полеты Ле́ви» и непрерывные потери энергии частиц в ловушках с конечным временем удержания.
- 2. Впервые получены аналитические решения уравнений диффузии для мгновенного, импульсного и стационарного источников со степенным по энергии спектром инжекции электронов при учете потерь энергии на ионизацию, тормозное и синхротронное излучение, обратное комптоновское рассеяние.
- 3. Установлено, что показатель спектра генерации электронов в источнике космических лучей, согласующийся с имеющимися экспериментальными данными по спектру синхротронного излучения, изменяется от $p \approx 2.5$ в области низких энергий до $p \approx 2.85$ при $E > 10^3$ ГэВ.
- 4. Впервые в рамках единой модели диффузии частиц описаны энергетический спектр электронов в диапазоне энергий $1 \div 10^4$ ГэВ, а также спектр и доля позитронов в общем потоке электронов и позитронов при $E \sim 10^{-1} \div 10^3$ ГэВ.
- 5. Выявлены условия, при которых модель фрактальной диффузии может приводить к появлению избытка в спектре электронов в области энергий $E \sim 300 \div 800$ ГэВ. Показано, что спектр в этом случае может быть представлен в виде суммы трех компонент. Первая компонента описывает вклад далеких ($r \ge 1$ кпк) старых ($t \ge 10^6$ лет) источников, вторая вклад от близких молодых источников ($r \sim (10^2 \div 10^3)$ пк, $t \sim 10^4 \div 10^5$ лет), последняя компонента излучение от близкого молодого источника типа сверхновой.

На защиту выносятся следующие результаты:

- 1. Уравнение диффузии электронов космических лучей с дробной производной, включающее потери энергии частицами в межзвездной галактической среде фрактального типа.
- 2. Аналитическое решение уравнения фрактальной диффузии для принятых в астрофизике высоких энергий типов источников. Обобщенное решение задачи распространения электронов от точечного мгновенного источника, позволяющее описать спектр как в случае нормальной, так и супердиффузии.

- 3. Энергетические спектры электронов и позитронов.
- 4. Модель источников электронов и позитронов, позволяющая описать характеристики лептонной компоненты космических лучей.

Обоснованность и достоверность научных положений и выводов, содержащихся в диссертационном исследовании, обеспечена сопоставлением полученных результатов с экспериментальными данными, имеющимися в литературе оценками и теоретическими результатами других авторов, а также результатами расчетов с использованием программного комплекса GALPROP (I. V. Moskalenko, A. W. Strong // *ApJ*, 1998).

Теоретическая и практическая ценность работы состоит в разработке модели диффузии электронов и позитронов космических лучей в галактической среде фрактального типа; включении в модель статистических пуассоновских ансамблей источников; анализе поведения энергетических спектров электронов и позитронов при супердиффузионном режиме распространения, включающем «полеты Ле́ви», ловушки с конечным временем удержания и непрерывные потери энергии частиц. Полученные теоретические данные по спектрам электронов и позитронов, синхротронного излучения, а также доли позитронов в общем потоке электронов и позитронов могут быть использованы как при анализе результатов современных экспериментов, так и при планировании новых.

Вклад автора. Численное решение поставленных задач и анализ полученных результатов производились автором самостоятельно. Идея применения модели фрактальной диффузии к распространению электронов космических лучей в межзвездной галактической среде принадлежит д.ф.-м.н., проф. А. А. Лагутину. Выявление условий, при которых модель фрактальной диффузии могла бы приводить к возникновению немонотонностей в спектре космических лучей в районе излома и избытку электронов в области энергий $E \sim 300 \div 800$ ГэВ выполнено совместно с научным руководителем и доц. А. Г. Тюменцевым.

Апробация основных результатов работы. Основные результаты, представленные в диссертации, докладывались на XXX и XXXI Международных конференциях по космическим лучам (Мерида, Мексика, 2007; Лодзь, Польша, 2009), 30-ой Всероссийской конференции по космическим лучам (Санкт-Петербург, 2008), а также на семинарах кафедры радиофизики и теоретической физики АлтГУ.

Исследования, представленные в диссертации, поддерживались грантами РФФИ №07-02-01154 и №09-02-01183. В 2008-2009 годах исследования автора поддерживались стипендией администрации Алтайского края им. Г. Титова.

Публикации. Результаты диссертационного исследования представлены в 9 печатных работах [1–9]: в трудах российских и международных конференций, в российских научных журналах и препринте Алтайского государственного университета, в том числе 2 статьи [5,6] опубликованы в изданиях, рекомендованных ВАК для публикации результатов диссертационных работ.

Структура и объём работы. Диссертация состоит из введения, четырех глав, заключения и приложения. Содержит 43 рисунка, 9 таблиц и список литературы из 139 ссылок. Полный объем работы 123 страницы.

Основное содержание работы

Введение содержит обоснование актуальности темы, рассмотрены современные положения стандартного сценария происхождения и распространения лептонной компоненты космических лучей. Обсуждаются возможные направления расширения стандартного сценария, позволяющие описать данные современных экспериментов. Сформулированы цель и задачи исследования. Представлена научная новизна и значимость работы, приводятся основные положения, представленные к защите. Кратко излагается содержание работы.

В первой главе **«Уравнение диффузии электронов космических лучей в галактической среде фрактального типа»** разрабатывается модель диффузии электронов в галактической среде, имеющей, как показывают эксперименты последних лет, неоднородности и пустоты фрактального типа. Важным следствием фрактального характера распределения неоднородностей вещества и магнитного поля Галактики является наличие свободных пролетов частиц на большие расстояния X со степенным распределением $P\{X > x\} \propto x^{-\alpha}, x \to \infty, \alpha < 2$ (так называемые «полеты Ле́ви»). Случайное время T пребывания частицы в неоднородностях среды, наделяемых свойствами «ловушек», при этом также описывается степенным распределением $P\{T > t\} \sim t^{-\beta}, t \to \infty, \beta < 1$ («ловушки Ле́ви»).

Диффузия частиц в турбулентной (фрактальной) среде моделируется скачкообразным случайным процессом (Е. W. Montroll, G. H. Weiss // J. Math. Phys., 1965). Уравнение фрактальной диффузии без учета потерь энергии и ядерных взаимодействий, полученное в данной главе, имеет вид

$$\frac{\partial N}{\partial t} = -D(E,\alpha,\beta) \mathcal{D}_{0+}^{1-\beta} (-\Delta)^{\alpha/2} N(\mathbf{r},t,E) + S(\mathbf{r},t,E).$$
(1)

Коэффициент фрактальной диффузии $D(E, \alpha, \beta)$

$$D(E, \alpha, \beta) = D_0(\alpha, \beta) E^{\delta}.$$

Дробные операторы Рисса $(-\Delta)^{\alpha/2}$ и Римана-Лиувилля $D_{0+}^{1-\beta}$ отражают соответственно нелокальность и немарковость процесса диффузии частиц в турбулентной среде.

Далее в диссертационном исследовании рассматривается супердиффузионный режим переноса частиц, включающий «полеты Ле́ви» и ловушки с конечным временем удержания (1 < α < 2, β = 1). Получено уравнение супердиффузии электронов в дробных производных с учетом непрерывных энергетических потерь

$$\frac{\partial N}{\partial t} = -D(E,\alpha)(-\Delta)^{\alpha/2}N(\mathbf{r},t,E) + \frac{\partial(B(E)N(\mathbf{r},t,E))}{\partial E} + S(\mathbf{r},t,E), \quad (2)$$

где B(E) = -dE/dt описывает среднюю скорость потерь энергии. Соответствующее уравнение для функции Грина $G(\mathbf{r}, t, E; \mathbf{r}_0, t_0, E_0)$ записывается в форме

$$\frac{\partial G}{\partial t} = -D(E,\alpha)(-\Delta)^{\alpha/2}G + \frac{\partial (B(E)G)}{\partial E} + \delta(\mathbf{r} - \mathbf{r}_0)\delta(t - t_0)\delta(E - E_0).$$
(3)

Потери энергии в работе полагались равными

$$-\frac{dE}{dt} = B(E) = b_0 + b_1 E + b_2 E^2 \approx b_2(E + E_1)(E + E_2), \qquad (4)$$

где b_0 , b_1 и b_2 соответствуют ионизационным, тормозным, синхротронным и обратным комптоновским потерям соответственно. $E_1 \approx b_0/b_1$ и $E_2 \approx b_1/b_2$ — приближенные решения уравнения B(E) = 0.

Выражение для функции Грина уравнения (3) представлено в аналитическом виде

$$G(\mathbf{r}, t, E; E_0) = \frac{g_3^{(\alpha)}(|\mathbf{r}|\lambda^{-1/\alpha})H(1 - b_2t(E + E_2))H(t)}{\lambda^{3/\alpha}(1 - b_2t(E + E_2))^2} \times \delta\left(E_0 - \left\{\frac{E + E_1}{1 - b_1t(E + E_2)/(E_2 - E_1)} - E_1\right\}\right).$$
 (5)

Здесь $g_3^{(\alpha)}(r)$ обозначает плотность вероятности трехмерного сферическисимметричного устойчивого распределения,

$$\lambda(E, E_0) = \int_{E}^{E_0} \frac{D(E', \alpha)}{B(E')} dE'.$$
 (6)

Во второй главе «Чувствительность спектров электронов и позитронов к параметрам модели фрактальной диффузии и параметрам источников» найдены решения уравнения супердиффузии (2) для принятых в астрофизике высоких энергий типов источников. Проводится анализ влияния изменения основных параметров модели (показателя диффузии α , показателя спектра генерации частиц в источнике p, расстояния до источника r и возраста источника t) на форму спектра частиц. Ниже приведены полученные аналитические выражения для спектров электронов.

Точечный мгновенный источник. Дифференциальный спектр электронов от точечного мгновенного источника со степенным по энергии спектром инжекции частиц

$$S(\mathbf{r}, t, E) = S_{\mathrm{M}} E^{-p} \delta(\mathbf{r}) \delta(t) = S(E) \delta(\mathbf{r}) \delta(t)$$

для режима супердиф
фузии (1 < α < 2) с учетом потерь энергии (4) в области энерги
й E > 10 ГэВ определяется выражением

$$N(\mathbf{r}, t, E) = S_{\rm M} E^{-p} (1 - b_2 t E)^{p-2} \lambda(t, E)^{-3/\alpha} g_3^{(\alpha)} \left(|\mathbf{r}| \lambda(t, E)^{-1/\alpha} \right) \times \\ \times H(1 - b_2 t E) H(t) \quad (7)$$

или в другой форме

$$N(\mathbf{r}, t, E) = \frac{S(E)}{r^3} (1 - b_2 t E)^{p-2} \left(\frac{r}{r_{\rm ad}}\right)^3 g_3^{(\alpha)} \left(\frac{|\mathbf{r}|}{r_{\rm ad}}\right)^2 H(1 - b_2 t E) H(t).$$
(8)

В (8) введено обозначение

$$r_{\rm ad} = 2\lambda(t, E)^{1/\alpha} = 2\left[D(E, \alpha)t \frac{1 - (1 - E/E_{\rm max})^{1-\delta}}{(1 - \delta)E/E_{\rm max}}\right]^{1/\alpha},\qquad(9)$$

где $E_{\max} = (b_2 t)^{-1}$. Выражение (9) при $\alpha = 2$ принимает вид

$$r_{\rm ad} \equiv r_{\rm dif} = 2 \left[D(E) t \frac{1 - (1 - E/E_{\rm max})^{1-\delta}}{(1-\delta)E/E_{\rm max}} \right]^{1/2}.$$
 (10)

Принимая во внимание, что $g_3^{(2)}(r)$ есть плотность нормального гауссова распределения, из (8) с учетом (10) получаем известный результат модели нормальной диффузии (F. A. Aharonian et al. // A&A, 1995)

$$N(\mathbf{r}, t, E) = \frac{S(E)}{\pi^{3/2} r^3} (1 - b_2 t E)^{p-2} \left(\frac{r}{r_{\rm dif}}\right)^3 \exp\left[-\left(\frac{|\mathbf{r}|}{r_{\rm dif}}\right)^2\right] H(1 - b_2 t E) H(t).$$

Таблица 1: Спектр частиц от точечного импульсного (1), точечного стационарного (2) и однородного стационарного (3) источников

N⁰	Функция источника	Дифференциальный спектр
		$\min[t, 1/b_2(E+E_2)]$
1	$S(\mathbf{r},t,E) = S_{\mathbf{H}}E^{-p}\delta(\mathbf{r})\times$	$N(\mathbf{r},t,E) = S_{\mathbf{H}} \qquad \int dt' E_0(t')^{-p} \times$
		$\max[0, t - T]$
	$\times H(T-t)H(t)$	$\times \lambda(t', E)^{-3/\alpha} (1 - b_2 t'(E + E_2))^{-2} \times$
		$ imes g_3^{(lpha)}\left({f r} \lambda(t',E)^{-1/lpha} ight)$
-		$1/b_2(E+E_2)$
2	$S(\mathbf{r}, E) = S_{\rm c} E^{-p} \delta(\mathbf{r})$	$N(\mathbf{r}, E) = S_{\rm c} \qquad \int \qquad dt' E_0(t')^{-p} \times$
		(1, 1, 2)
		$\times \lambda(t', E)^{-3/\alpha} (1 - b_2 t'(E + E_2))^{-2} \times$
		$ imes g_3^{(lpha)}\left(\mathbf{r} \lambda(t',E)^{-1/lpha} ight)$
3	$S = S_0 f(E)$	$N(E) = \frac{S_0}{ B(E) } \int_{E}^{\infty} dE_0 f(E_0)$

Аналитические выражения для спектров частиц, полученные в работе для других типов источников, представлены в таблице 1.

В параграфе «Определение параметров модели» представлены значения основных параметров модели.

Оценка одного из ключевых параметров модели — показателя α — основывается на результатах исследований диффузии частиц в космической и лабораторной плазме.

Известно, что при супердиффузионном режиме распространения (1 < α < 2) ширина диффузионного пакета изменяется со временем по закону $\Delta x^2 \sim t^{2/\alpha}$. Интерпретация данных по магнитосфере, приведенная в (Greco A. et al. // *J. Geophys. Res.*, 2003), привела авторов этой работы к выводу о том, что диффузионный пакет расплывается со скоростью $\Delta x^2 \sim t^{1.4}$. Исследование поведения частиц перед ударным фронтом в околоземной плазме позволило авторам (Perri S. et al. // *J. Geophys. Res.*, 2008) получить оценку $\Delta x^2 \sim t^{1.19}$. Таким

образом, основываясь на этих результатах для параметра α получаем

$$\alpha \approx 1.4 \div 1.7.$$

Для коэффициента фрактальной диффузии $D(E, \alpha) = D_0(\alpha)E^{\delta}$ из анализа ядерной компоненты космических лучей (см. Лагутин А. А., Тюменцев А. Г. // Известия АлтГУ, 2004) получены оценки $D_0(\alpha) \approx 2 \cdot 10^{-4} \div 4 \cdot 10^{-2}$ пк^{α}/год, $\delta \approx 0.27$, что практически соответствует случаю колмогоровской турбулентности $\delta = 1/3$.

Показатель спектра генерации электронов *p* в области ТэВ-ных энергий полагаем равным 2.85 (см. Лагутин А. А., Тюменцев А. Г. // Известия АлтГУ, 2004). При низких энергиях оценку получим из анализа спектра синхротронного излучения.

В третьей главе «Спектр синхротронного излучения в галактической среде фрактального типа» представлены расчеты спектра в предположении, что излучение испускается в межзвездной среде потоком электронов, инжектируемых системой точечных стационарных источников.

Рис. 1: Сопоставление результатов расчетов спектра синхротронного излучения для различных p при $\alpha = 1.4$ с экспериментальными данными: \circ — Webber W. R. et al. // ApJ, 1980; • — Peterson J. D. et al. // Proc. of the 26th ICRC, 1999

Показано, что самосогласованное описание имеющихся экспериментальных данных по спектру синхротронного излучения в широком диапазоне частот $\nu \sim 2 \ {\rm MFu} \div 2 \ {\rm FFu}$ (соответствующая энергия электронов $E \sim 0.1 \div 10 \ {\rm FyB}$) достигается, если показатель спектра генерации электронов в источнике $p \approx 2.6$ для режима супердиффузии с $\alpha = 1.4$ (см. рис. 1). Заметим, что данное значение p соответствует так называемым диффузным электронам межзвездной среды. Следует полагать, что спектр инжекции этих электронов в источнике будет более жестким. Далее в работе считается, что спектр электронов в области низких энергий $E < 10 \ {\rm FyB}$ формируется источниками с показателем $p \approx 2.5$, что соответствует стандартному сценарию генерации электронов в источниках.

В третьем разделе главы представлены расчеты спектра синхротронного излучения от плоского стационарного источника, моделирующего систему удаленных источников, видимых с ребра. Показано, что спектр в этом случае выражается через плотность вероятности одномерного симметричного устойчивого распределения. Сопоставление расчетов с экспериментальными данными подтвердило результаты работы (Ragot B. R., Kirk J. K. // A&A, 1997) об аномальном характере диффузии электронов в межзвездной среде скопления галактик Кома.

В четвертой главе «Расчет спектров электронов и позитронов» представлены результаты расчетов спектров частиц. В работе считается, что наблюдаемый спектр формируется источниками с функцией генерации S(E), показатель которой изменяется от $p \approx 2.5$ в области низких энергий (установлен из анализа спектра синхротронного излучения) до $p \approx 2.85$ при $E \sim 10^3$ ГэВ (установлен из анализа ядерной компоненты космических лучей).

Спектр электронов от всех галактических источников представлялся в виде

$$J(\mathbf{r}, t, E) = J_G(\mathbf{r}, E) + J_L(\mathbf{r}, t, E) = \frac{v}{4\pi} \left(N(\mathbf{r}, E) + \sum_{r \leqslant 1 \kappa \pi \kappa} N(\mathbf{r}_j, t_j, E) \right),$$
(11)

где J_G обозначает вклад многочисленных старых удаленных источников (r > 1 кпк, $t > 10^6$ лет), J_L определяется близкими молодыми источниками ($r \le 1$ кпк, $t \le 10^6$ лет).

Для учета солнечной модуляции использовалась известная модель (Gleeson L. J., Axford W. I. // *ApJ*, 1968)

$$J_{\rm mod}(\mathbf{r}, E) = \frac{E^2 - m_e c^2}{(E + \Phi(t))^2 - m_e c^2} J(\mathbf{r}, E + \Phi(t)),$$

где m_e — масса электрона, потенциал модуляции $\Phi(t) \approx 600 \text{ МэВ}$ (средняя оценка на время проведения основных экспериментов).

Распределение источников в области r > 1 кпк описывалось в соответствии со стандартным сценарием (система стационарных источников).

Рис. 2: Спектр электронов с использованием статистической модели источников. Число пуассоновских ансамблей $n = 10^4$, среднее число источников в ансамбле k = 10, максимальный возраст источников $t \approx 3 \cdot 10^5$ лет

Вклад источников в локальной области $r \leqslant 1$ к
пк описывался в рамках двух моделей.

Модель І. В качестве источников электронов выбраны активные области в Галактике, простанственно-временные координаты которых совпадают с координатами остатков сверхновых звезд. Модель II (статистическая модель). Построена на базе пуассоновских ансамблей. Параметр распределения Пуассона k — среднее число источников в локальной области — полагался равным $10 \div 15$ (на основании современных результатов по числу сверхновых и пульсаров с $t \leq 10^6$ лет (см., например, Abdo A. et al. // *ApJS*, 2009; Hooper D. et al. // *JCAP*, 2009; Gendelev L. et al. // *JCAP*, 2010)).

Проведенные расчеты показали, что для статистической модели источников удается получить лучшее согласие с современными экспериментальными данными по спектру электронов в области ТэВ-ных энергий (см. рис. 2).

Рис. 3: Сопоставление спектра электронов, полученного в модели фрактальной диффузии ($\alpha = 1.4$) с учетом вклада близкого источника типа сверхновой ($r \approx 500$ пк, $t \approx 3 \cdot 10^5$ лет, p = 2), с экспериментальными данными

В четвертом разделе главы формулируются условия, при которых

модель фрактальной диффузии могла бы приводить к описанию избытка электронов в области энергий $E \sim 300 \div 800$ ГэВ, выявленного в экспериментах PPB-BETS, ATIC, H.E.S.S. Хотя сегодня существуют данные обсерватории Fermi, которые не подтверждают результаты предыдущих экспериментов, тем не менее следует исследовать сложную структуру спектра электронов в области высоких энергий. Необходимость дополнительных исследований связана с тем, что при энергиях E > 300 ГэВ данные, представленные Fermi-LAT, получены с использованием численного моделирования методом Монте Карло (А. А. Moiseev et al. // *Proc. 30th ICRC*, 2008). С другой стороны, большие статистические ошибки данных коллабораций PPB-BETS и ATIC также требуют проверки в будущих экспериментах.

В проведенном исследовании наличие особенностей в поведении спектра электронов при $E \sim 300 \div 800$ ГэВ связывается с немонотонным поведением массового состава и с наличием сложной структуры в спектре ядерной компонентры космических лучей при энергиях $10^5 \div 10^7$ ГэВ. В ряде работ (см., например, А. D. Erlykin, А. W. Wolfendale // Adv. Space Res., 2001) сложную структу спектра ядер в районе излома связывают с вкладом близкого молодого источника типа сверхновой. Расчеты спектров электронов и протонов, проведенные с использованием этой гипотезы, приводят к следующим выводам.

- 1. Включение в принятую систему источников электронов дополнительного источника типа сверхновой, ускоряющего частицы до энергий $E_{\rm max} \approx 3.4 \cdot 10^4$ ГэВ с $S(E) \sim E^{-2}$ позволяет описать сложную структуру спектра электронов (см. рис. 3). Требуемый для описания неоднородностей в спектрах энергетический выход близкой молодой сверхновой составляет ~ $2 \cdot 10^{46}$ эрг/источник — для электронов и ~ $2 \cdot 10^{48}$ эрг/источник для протонов.
- 2. «Генетическая» связь особенностей поведения массового состава в районе излома (энергии $E \sim 10^5 \div 10^7 \ \Gamma$ эв) и избытка электронов в области $E \sim 300 \div 800 \ \Gamma$ эВ позволяет не рассматривать сценарии, включающие темную материю.

В последнем параграфе главы представлены результаты расчетов спектра и доли позитронов (см. рис. 4 и 5). До эксперимента РАМЕLA считалось, что позитроны космических лучей являются продуктами ядерных реакций космических лучей с межзвездной средой. Однако, рост доли позитронов в общем потоке электронов и позитронов при энергиях E > 10 ГэВ позволяет предположить, что наряду с механизмами вторичного происхождения позитронов имеются и первичные

Рис. 4: Спектр позитронов в модели фрактальной диффузии ($\alpha = 1.4$). Учет вклада вторичных позитронов осуществлялся с использованием программного комплекса GALPROP (параметры модели представлены в Grasso D. et al. // Astropart. Phys., 2009))

частицы, которые генерируются и ускоряются, подобно другим компонентам космических лучей, в источнике.

Указанием на единую природу источников электронов и позитронов можно считать совпадение наклона наблюдаемого спектра электронов (при E > 3 ГэВ, $J_{e^-} \sim E^{-(3.44\pm0.03)}$) и спектра позитронов (E > 0.7 ГэВ, $J_{e^+} \sim E^{-(3.43\pm0.05)}$) (Casadei D. et al. // ApJ, 2004). Выход доли позитронов на постоянное значение при $E > 10^2$ ГэВ (см. рис. 5) также следует рассматривать как действие единого механизма генерации и ускорения электронов и позитронов в источнике. Проверкой этой гипотезы могут послужить новые экспериментальные данные PAMELA в области $E > 10^2$ ГэВ, а также данные коллаборации AMS-02, начало работы которой запланировано на лето 2010 года (Falco S. D. // Adv. Spase Res., 2010).

Распространение позитронов в межзвездной среде описывалось уравнением диффузии с дробной производной с параметрами, установленными для электронной компоненты космических лучей.

Рис. 5: Доля позитронов в общем потоке электронов и позитронов в модели фрактальной диффузии (сплошная линия) и для стандартного сценария (пунктирная линия; расчеты проведены с использованием программного комплекса GALPROP)

В заключении приведены основные результаты диссертационной работы.

- Сформулировано уравнение диффузии с дробной производной, описывающее распространение электронов космических лучей в галактической среде фрактального типа. Получено аналитическое выражение для функции Грина при супердиффузионном режиме распространения частиц.
- 2. Найдены решения уравнения фрактальной диффузии для точечных источников со степенным по энергии спектром инжекции электронов, моделирующих генерацию частиц в астрофизических объектах. Показано влияние изменения основных параметров модели на форму спектра частиц. Предложено обобщенное решение задачи распространения электронов от точечного мгновенного источника, позволяющее описать спектр как в случае нормальной, так и супердиффузии.

- 3. Выполнен анализ спектра синхротронного излучения от системы точечных стационарных источников. Показано, что самосогласованное описание экспериментальных данных достигается, если показатель спектра генерации электронов в источнике $p \approx 2.6$ в области энергий E < 10 ГэВ.
- 4. Проведено исследование спектров электронов и позитронов в рамках двух моделей источников с функцией генерации S(E), показатель которой изменяется от $p \approx 2.5$ в области низких энергий до $p \approx 2.85$ при $E \sim 10^3$ ГэВ. Показано, что статистическая модель, основанная на пуассоновском ансамбле источников, при супердиффузионном режиме распространения частиц в турбулентной среде позволяет описать имеющиеся экспериментальные данные, в том числе и изменение наклона энергетической зависимости доли позитронов при $E \gtrsim 10$ ГэВ.
- 5. Сформулированы условия, при которых модель фрактальной диффузии позволяет описать сложную структуру спектра электронов в области энергий E ~ 300 ÷ 800 ГэВ. Совместный анализ спектров протонов и электронов показал, что требуемый для описания немонотонностей в спектрах энергетический выход близкой молодой сверхновой в протоны составляет ~ 2 · 10⁴⁸ эрг/источник, а в электроны ~ 4 · 10⁴⁶ эрг/источник.
- 6. Установленная в работе связь немонотонности в спектре ядер в области 10^6 ГэВ с аномалией в спектре электронов при $E \sim 300 \div 800$ ГэВ позволяет не рассматривать сценарии, включающие темную материю.

Основные публикации по теме диссертации

- Никулин Ю. А., Волков Н.В. Синхротронное излучение галактик в модели аномальной диффузии космических лучей // Труды молодых ученых АлтГУ. Вып. 3. — Изд-во АлтГУ, 2006. — С. 175–178.
- Bugayov V. V., Lagutin A. A., Tyumentsev A. G., Volkov N. V., Kuzmin A. S. Synchrotron radiation of cosmic ray electrons in the anomalous diffusion model // Proc. of the 30th ICRC (Merida, Mexico, 2008). - 2008. - 2. - Pp. 179-182.

- Лагутин А. А., Тюменцев А. Г., Волков Н. В., Кузьмин А. С. Спектр электронов в галактической среде фрактального типа // Известия АлтГУ. — 2008. — № 1(57). — С. 12–17.
- 4. Лагутин А. А., Волков Н. В., Кузьмин А. С., Тюменцев А. Г. Спектр генерации электронов в галактических источниках космических лучей // 30-я всероссийская конференция по космическим лучам. Тезисы докладов (Санкт-Петербург, ФТИ им. А.Ф. Иоффе РАН, 2008). — 2008. — С. 22.
- Лагутин А. А., Волков Н. В., Кузьмин А. С., Тюменцев А. Г. Спектр генерации электронов в галактических источниках космических лучей // Известия РАН. Серия физическая. — 2009. — 73, № 5. — С. 620-622.
- 6. Лагутин А. А., Тюменцев А. Г., Волков Н. В. Спектр космических лучей в галактической среде фрактального типа при различных сценариях ускорения частиц в источнике // Известия РАН. Серия физическая. — 2009. — 73, № 5. — С. 599-601.
- Yushkov A. V., Lagutin A. A., Volkov N. V., Tyumentsev A. G. Injection spectrum of electrons in the Galaxy sources of the cosmic rays // Proc. of the 31th ICRC (Poland, Lodz, 2009). - 2009. - OG 1.3. - ID 992.
- Yushkov A. V., Lagutin A. A., Tyumentsev A. G., Volkov N. V. Cosmic rays spectrum in a fractal-like galaxy medium for different particle acceleration mechanisms in a source // Proc. of the 31th ICRC (Poland, Lodz, 2009). - 2009. - OG 1.4. - ID 920.
- Волков Н. В., Лагутин А. А., Тюменцев А. Г. Спектр электронов и позитронов в галактической среде фрактального типа // Препринт АлтГУ. — 2010. — № 1.

Волков Николай Викторович

РАСЧЕТ СПЕКТРОВ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ КОСМИЧЕСКИХ ЛУЧЕЙ В ГАЛАКТИЧЕСКОЙ СРЕДЕ ФРАКТАЛЬНОГО ТИПА

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Оригинал-макет подготовлен и отпечатан в пакете ІАТЕХ 2_€ с использованием шрифтов В.К. Малышева

Подписано к печати 17.05.2010 Формат 60 × 84/16. Печать офсетная. Усл. печ. л. 1. Тираж 100 экз.

Заказ 191

Распространяется бесплатно

Типография при ГОУ ВПО «Алтайский государственный университет» 656049, г. Барнаул, пр. Ленина, 61