разованию гидрогранатов переменного состава, за счет чего плотность цементного камня и, как следствие, его прочность увеличиваются.

Наибольшая прочность достигается в составах с концентрацией не более 10%. При достижении концентрации шлаков в 50% прочность цементного камня сильно падает. Прочность таких составов ниже чем прочность контрольного образца. С ростом доли шлаков в смеси уменьшаются сроки схватывания, что можно объяснить разницей в скорости реакции цемента и шлака с водой.

Наилучшие показатели прочности у шлака «РУСАЛ Ачинск» в количестве 5%, что можно объяснить более быстрыми сроками схватывания и меньшими значениями нормальной густоты, соответственно большей плотностью цементного камня.

Список литературы

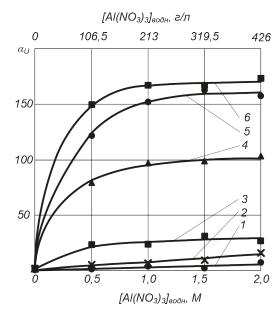
- 1. H. Taylor. Chemistry of Cement. M: Mir, 1996. -560 p.
- 2. J. Stark., B. Wicht. Durability of concrete. Oranta, 2004. – P. 200–248.
- 3. И.В. Корчунов, А.О. Торшин, С.Е. Курдюмова и соавт. // Сухие строительные смеси, 2017. $-N_{2}2.-C.42-46.$

ВЛИЯНИЕ ВЫСАЛИВАТЕЛЕЙ НА ЭКСТРАКЦИОННЫЕ СВОЙСТВА УРАНА И ПЛУТОНИЯ

Н.А. Журавлев, И.В. Распутин, В.А. Карелин Научный руководитель – д.т.н., профессор ОЯТЦ ТПУ В.А. Карелин

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, nikolay_shuravlev@mail.ru

Процесс экстракционной переработки отработавшего ядерного топлива (ОЯТ) энергетических реакторов обычно проводят в 2,5-3,5 М растворах азотной кислоты. Способы разделения U и Pu основаны на совместной экстракции U^{6+} и Pu^{4+} с частью ПД, последующей многоступенчатой реэкстракцией этих ПД, восстановительной реэкстракцией Pu⁴⁺ ураном (4+), а затем реэкстракции U⁶⁺ азотной кислотой с концентрацией 0,5–0,8 М.


Основной недостаток такой технологии загрязнение экстрактов трансплутониевыми элементами, например Np, и продуктами деления – Zr, Tc и и низкая степень использования экстрагента.

Для устранения указанных недостатков предлагается разделение U и Ри проводить в шестивалентном состоянии в виде UO_2^{2+} и PuO_2^{2+} в присутствии высаливателя – нитрата алюминия $(Al(NO_3)_3)$. Процесс совместной экстракции U и Pu проводят в 7 M HNO_3 , а затем PuO_2^{2+} восстанавливают нитратом урана (4+). При этом PuO_2^{2+} восстанавливается до Ри⁴⁺, а U⁴⁺ окисляется до ${\rm UO_2}^{2+}$. Затем ${\rm UO_2}^{2+}$ реэкстрагируется 0,7 М HNO $_3$ в водную фазу.

изучения влияния концентрации (Al(NO₂)₂) выполнены исследования зависимости изменения коэффициента распределения α_{p_u} от концентрации $Al(NO_3)_3$ в растворах с концентрацией $UO_2(NO_3)_2$, равной 200–250 г/л. Исследования проведены в 4-8 М HNO₂, а при уменьшении ее концентрации РиО₂(NO₃)₂ возможно образование $Pu(NO_3)_4$. На рис. 1 показаны зависимости изменения а, от концентрации АІ(NO₃), с 30% ТБФ в углеводородном разбавителе РЭД-2.

Необходимо отметить, что при увеличении концентрации $Al(NO_3)_3$ до 1 М $\alpha_{_{II}}$ резко возрастает, например при кислотности 4-8 M HNO₃. При увеличении концентрации Al(NO₃), значение а, практически не изменяется. Такое явление объясняется способностью HNO₂ оказывать высаливающее воздействие на урановый продукт. Поэтому оптимальные условия экстракционного процесса достигаются при концентрации $Al(NO_3)_3$, равной 1 М.

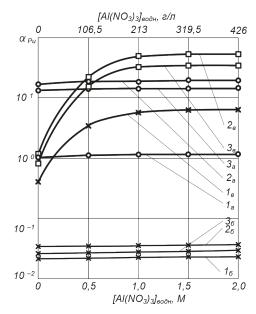

На рис. 2 показано влияние $Al(NO_3)_3$ на экстрагируемость Ри⁶⁺ и Ри⁴⁺ в 30% растворе ТБФ в РЭД-2. Из рисунка видно, что при добавлении $Al(NO_3)_3$ значительнее всего увеличивается $\alpha_{p_0}^{6+}$ по сравнению с другими валентными формами Pu. Например, в 0,5 M Al(NO $_3$) $_3$ α_{Pu}^{6+} увеличился 2,8 до 40,6 (в 14,5 раз). При увеличении концентрации $Al(NO_3)_3$ с 0,5 до 1 М $\alpha_{p_0}^{6+}$ продолжает расти, но в значительно меньшей степени с 40,6 до 73 (в 1,8 раза). Дальнейшее увеличение концентрации $Al(NO_3)_3$ (с 1 до 1,5 M) не приводит к существенному росту α_{Pu}^{6+} (увеличение всего лишь с 73 до 75 — в 1,03 раза). Таким образом, при увеличении концентрации $Al(NO_3)_3$ с 0,1 до 2,0 М α_{Pu}^{6+} увеличивается с 2,8 до 75 — в 26,7 раз.

Рис. 1. Влияние концентрации нитрата алюминия на экстракцию урана 30%-ным раствором ТБФ в РЭД-2. Концентрация HNO₃: 1-0.5 M; 2-1 M; 3-2 M; 4-4 M; 5-7 M; 6-8 M

Список литературы

1. Журавлев Н.А., Карелин В.А., Распутин И.В. Особенности применения нитрата алюминия при переработке ОЯТ // Химия и химичеВыполненные исследования свидетельствуют о том, что при использовании в качестве высаливателя 1,0 М $Al(NO_3)_3$ экстракционное извлечение Pu целесообразно проводить в виде Pu^{6+} (из $PuO_2(NO_3)_4$), а не в виде Pu^{4+} (из $Pu(NO_3)_4$).

Рис. 2. Изменение α_{p_u} от концентрации $Al(NO_3)_3$ в 250 г/л $UO_2(NO_3)_2$. Концентрация HNO_3 : 1a, 16, 1в – 4 M; 2a, 26, 2в – 7 M; 3a, 36, 3в – 8 M; $a - Pu(NO_3)_4$; $6 - Pu(NO_3)_5$; $6 - PuO_2(NO_3)_2$

ская технология в XXI веке. – Томск: Изд-во Томского политехнического университета, 2020. – С. 448–430.

ЭЛЕКТРОЭРОЗИОННОЕ ДИСПЕРГИРОВАНИЕ ПОРОШКОВ ЖЕЛЕЗА

А.С. Зотов

Научный руководитель – к.х.н., доцент ОЯТЦ С.П. Журавков

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр.Ленина, 30, asz44@tpu.ru

Тонкодисперсные порошки железа могут использоваться для практических целей, таких как улучшение качества многих технических продуктов — топлив, полимеров, фильтров, присадок к смазочным материалам, красящих и магнитных пигментов, или в качестве катализаторов синтеза. Цель работы — исследование физико-химических свойств тонкодисперсных порошков, полученных методом электроэрозионного диспергирования.

Выполнение работы

Для получения порошков железа электроэрозией использовали лабораторную установку, описанную в работе [1]. Общая схема установки представлена на рисунке 1. В качестве реактора использовали фарфоровый стакан объёмом 1 дм³.

Источник питания построен по принципу разряда емкостного накопителя на нагрузку через быстродействующий тиристор и импульсный трансформатор. К электродам приклады-