АНАЛИЗ ФОРМАЛИЗОВАННОГО УГЛЕВОДОРОДНОГО СОСТАВА ПРОДУКТОВ ПЕРЕРАБОТКИ УГЛЕВОДОРОДОВ C_5 - C_7 НА ЦЕОЛИТЕ

Д.М. Лукьянов, И.А. Богданов Научный руководитель – инженер-исследователь ОХИ ИШПР И.А. Богданов Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, dml4@tpu.ru

Поиск технологий и способов, повышающих глубину переработки углеводородного сырья, является одной из приоритетных задач современной нефтегазовой промышленности. Перспективным методом частичного решения данной задачи видится вовлечение стабильного газового конденсата в процессы получения моторных топлив.

Стабильным газовым конденсатом называется жидкая смесь углеводородов, из которой удалены низкомолекулярные (C_1 – C_4) соединения. Наибольшую часть стабильного газового конденсата составляют н-парафины C_5 – C_7 .

Целью данной работы является анализ формализованного углеводородного состава продуктов переработки н-пентана, н-гексана и н-гептана на цеолитном катализаторе.

Переработка нормальных парафинов C_5 – C_7 (процесс цеоформинг) производилась при температуре $375\,^{\circ}$ С, давлении $0,25\,$ МПа с объемным расходом сырья $2\,$ ч $^{-1}$. Составы продуктов процесса определялись методом газожидкостной хроматографии в соответствии с [1]. Некоторые индивидуальные вещества из хроматограмм были агрегированы на основании схожести

физико-химических свойств в подгруппы. В результате объединения получены формализованные составы продуктов переработки н-парафинов C_5 – C_7 (таблица 1).

Интерпретация результатов:

- 1. Максимальный выход пропана наблюдается в процессе цеоформинга н-гексана, что связано с его образованием в результате разрыва С С связи в середине молекулы н-гексана.
- 2. При переработке н-пентана наблюдается значительное его содержание в продуктах процесса. Предположительно, температуры 375°C недостаточно для эффективного протекания первичных реакций крекинга н-пентана.
- 3. Выход олефинов возрастает с увеличением молекулярной массы сырья, что объясняется снижением энергии активации реакции крекинга парафинов в ряду н-пентан, н-гексан, н-гептан.
- 4. С увеличением молекулярной массы сырья возрастает выход тяжелых н-парафинов C_{9+} и ароматических соединений. Эту тенденцию можно объяснить возрастанием роли реакции перераспределения водорода в олефинах, результатом которой является образование н-па-

Таблица 1. Формализованный состав продуктов цеоформинга н-парафинов C_5 – C_7

Вещество/группа веществ	н-пентан	н-гексан	н-гептан
пропан	1,286	4,648	1,039
бутаны	17,403	16,136	12,117
н-пентан	35,421	4,737	5,227
н-гексан	2,603	3,305	1,464
н-гептан	0,070	0,112	2,757
нормальные парафины С ₉₊	0,681	4,818	8,090
ароматические соединения C_6 – C_9	10,192	18,228	26,423
ароматические соединения С ₉₊	0,117	0,921	8,054
изопентан	14,582	7,325	7,725
изопарафины ${ m C_6-C_8}$	9,140	31,446	7,606
изопарафины C_{9+}	3,458	0,366	6,335
нафтены	3,293	4,422	5,440
олефины	1,717	3,523	7,700

рафинов и ароматических соединений [2]. Большой выход н-парафинов C_{9+} может быть связан с выравниванием скоростей реакций их образования и термического разложения.

5. С увеличением молекулярной массы сырья снижается выход бутанов. Выход изопентана максимален при цеоформинге н-пентана, а выход изопарафинов C_6 — C_8 максимален при цеоформинге н-гексана.

Можно сделать предположение о двух основных направлениях превращений исследуемых нормальных парафинов в процессе цеоформинга. Исходное сырье подвергается крекингу с образованием олефинов. Легкие олефины С,–С,

обладающие большой реакционной способностью, быстро вступают во вторичные реакции конденсации с образованием более тяжелых олефинов. Образованные вторичные олефины реагируют в двух направлениях: реакции перераспределения водорода с образованием тяжелых н-парафинов и ароматических соединений, а также реакции изомеризации путем метильного сдвига с дальнейшим гидрированием. Эти направления являются конкурирующими, соотношение между ними зависит от состава сырья.

Работа выполнена при поддержке Гранта Президента Российской Федерации № МК-351.2020.3.

Список литературы

1. ГОСТ 32507-2013 «Бензины автомобильные и жидкие углеводородные смеси. Определение индивидуального и группового углеводородного состава методом капиллярной газовой хроматографии».

2. Дж. Рабо. Химия цеолитов и катализ на цеолитах. – М: «Мир», 1980. – 506 с.

СПОСОБ ОЦЕНКИ СТРУКТУРНО-МЕХАНИЧЕСКИХ СВОЙСТВ ТЕХНОЛОГИЧЕСКИХ ЖИДКОСТЕЙ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА

Л.А. Магадова, Д.Н. Малкин, П.К. Крисанова, С.А. Бородин Научный руководитель – д.т.н., профессор Л.А. Магадова

ФГАОУ ВО «РГУ нефти и газа (НИУ) имени И.М. Губкина» НОЦ «Промысловая химия»

119991, Россия, г. Москва, Ленинский проспект, д. 65, корп. 1, krisanova_polina@mail.ru

Для успешного проведения операции гидравлического разрыва (ГРП) технологическая жидкость должна обладать достаточной вязкостью для транспортировки проппанта, контроля давления в трещине и получения планируемой ее геометрии [1].

Распространенным способом определения вязкости жидкостей разрыва является ротационная вискозиметрия. Сущность метода заключается в том, что исследуемую жидкость помещают в зазор между двумя соосными цилиндрами, один из которых (ротор) вращается с постоянной скоростью.

В НОЦ «Промысловая химия» был предложен комплексный подход оценки структурно-механических свойств жидкости разрыва, основанный на применении не только ротационной, но и осцилляционной реологии. Осцилляционная реология позволяет осуществить количественную

оценку как вязкостных, так и упругих свойств материала. При проведении измерений исследуемый образец минимально деформируется, что позволяет более детально и точно оценить свойства исследуемого образца [2].

В таблице 1 приведены результаты оценки структурно-механических свойств как традиционных жидкостей разрыва на основе гуара, так и инновационных систем на основе синтетического полимера, а также бесполимерных жидкостей на основе вязкоупругих поверхностно-активных веществ (ВУПАВ). Из таблицы 1 видно, что при меньших значениях эффективной вязкости системы на основе ВУПАВ и синтетического полимера, в сравнении со сшитым гуаровым гелем, характеризуются более высокими показателями упругих свойств.

Дальнейшие исследования показали (табл. 2), что системы на основе ВУПАВ и син-