На правах рукописи

lys-

### ГУБАРЕВА ТАТЬЯНА ВЛАДИМИРОВНА

## МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПРЕОБРАЗОВАНИЯ ИОННЫХ МИКРОКРИСТАЛЛОВ ПРИ ВЫСОКОЭНЕРГЕТИЧЕСКОЙ АКТИВАЦИИ ПРИРОДНЫХ СИСТЕМ

Специальность 01.04.07 – Физика конденсированного состояния

АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук

Томск – 2012

Работа выполнена в ФГБОУ ВПО Братский государственный университет

#### Научный консультант: доктор физико-математических наук, доцент КОРЕПАНОВ Владимир Иванович

#### Официальные оппоненты:

#### ЯКОВЛЕВ Виктор Юрьевич

доктор физико-математических наук, профессор кафедры сильноточной электроники Томского политехнического университета

#### ДАНИЛОВ Владимир Иванович

доктор физико-математических наук, профессор, главный научный сотрудник Института физики прочности и материаловедения СО РАН

#### АДУЕВ Борис Петрович

доктор физико-математических наук, профессор, зам. директора Института угля и химического материаловедения СО РАН

# Ведущая организация: Иркутский филиал Института лазерной физики СО РАН, г. Иркутск.

Защита состоится 16 мая 2012 г. в 14:00 часов на заседании диссертационного Совета Д212.269.02 при ФГБОУ ВПО «Национальный исследовательский Томский политехнический университет» по адресу: 634050, г. Томск, ул. Усова, 7.

С диссертацией можно ознакомиться в научно-технической библиотеке ФГБОУ ВПО «Национальный исследовательский Томский политехнический университет» по адресу: 634034, г. Томск, ул. Белинского, 55.

Автореферат разослан: «\_\_\_\_» апреля 2012 г.

Ученый секретарь диссертационного совета Д212.269.02 доктор физико-математических наук

Uh

М.В. Коровкин

#### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

#### Актуальность темы

Щелочно-галоидные кристаллы (ЩГК) уже давно стали модельными объектами для изучения механизмов неударного создания первичных радиационных дефектов и процессов накопления вторичных, сложных (вплоть до коллоидов) дефектов в объеме твердого тела при облучении ионизирующими излучениями. Не менее значима роль этих кристаллов для радиационно-стимулированных поверхностных исследования явлений. Одним из таких значимых для науки и практики явлений является образование в ЩГК макроскопических поверхностных дефектов в виде радиационных кристаллитов (РК) при воздействии ультрафиолетового, рентгеновского, гамма- и др. излучений. Как оказалось облучение ионизирующими излучениями системы «ЩГК – воздух» приводит к эффективному изменению состава и свойств поверхности даже в сравнении с радиационными нарушениями в объеме кристаллов. При этом в условиях контакта кристаллов с атмосферным воздухом на поверхности создаются кристаллические фазы нитратов и оксигалогенидов щелочных металлов. Гетерогенный характер явления подтверждается тем, что с ростом удельной поверхности образцов происходит увеличении глубины слоя продуктов реакций.

Актуальной проблемой человечества в настоящее время является выяснение причин и механизмов влияния газообразных соединений галогенов и оксидов азота на атмосферный озон и климат. Замечено, что возможные процессы, приводящие к таким изменениям, могут быть связаны физико-химическими преобразованиями кристаллических частиц с щелочных галогенидов за время их переноса в атмосфере, которые могут существенным образом влиять на радиационный баланс Земли, климат и разрушение озона в атмосфере. Развитие этого направления исследований потребовало детального изучения механизма гетерогенных реакций ЩГК с участием оксидов азота (NO<sub>x</sub>), азотной кислоты (HNO<sub>3</sub>). Эти соединения способствуют преобразованию щелочно-галоидных аэрозольных частиц (АЧ) в нитраты щелочных металлов и образованию газообразных продуктов, непосредственно участвующих в газовых каталитических циклах разрушения озона в атмосфере.

Современные модели, предназначенные для описания трансформации щелочно-галоидных АЧ в атмосфере, должны учитывать не только химические процессы взаимодействия оксидов азота промышленного происхождения с АЧ естественного происхождения, но и трансформацию химического состава и структуры ЩГК в системе «ЩГК – воздух» при активации высокоэнергетическими факторами (ионизирующие излучения и газовые разряды). При этом для описания кинетики преобразования АЧ и протекания гетерогенных реакций на поверхности микрочастиц необходимо иметь информацию о динамике изменений в системе «ЩГК – воздух» при активации ионизирующими излучениями (рентгеновское и гамма), а также холодной газовой плазмой.

Такие модели в интересах атмосферной химии еще не разработаны ни в России, ни за рубежом.

В этой связи лабораторные исследования радиационно-химических и плазмохимических гетерогенных реакций в системе «ЩГК - воздух» могут быть использованы для разработки теоретических основ процессов трансформации АЧ в атмосфере. Однако применение результатов модельных исследований ЩГК для этих целей сдерживается недостаточным знанием природы гетерогенных процессов при облучении ЩГК в условиях действия факторов, характерных для реальной атмосферы.

Одной из главных проблем на данном этапе является отсутствие анализа и систематизации имеющихся экспериментальных данных с целью нахождения общих, типичных для этих систем закономерностей в области радиационной физикохимии поверхности ЩГК и в физикохимии поверхности атмосферных щелочно-галоидных АЧ. Кроме того нет обоснованного методико-методологического подхода к решению проблемы преобразования (трансформации) структуры, химического состава и оптических свойств аэрозольных частиц с учетом разнообразных факторов, действующих в реальной атмосфере.

Ясно, что выход продуктов радиационно-стимулированных реакций в гетерогенной системе «ЩГК - воздух» может зависеть от очень большого количества факторов: характеристики исходных кристаллов (степень их чистоты, наличие включений примесей, потенциал ионизации и т. д.), характеристики газовой фазы (состав, давление, температура), характеристики ионизирующих излучений, характер и степень влияния присутствующего при облучении света. Действие этих факторов во многом определяет особенности образования твердых и газообразных продуктов реакций. На результат гетерогенного процесса может оказывать также воздействие холодная газовая плазма и другие факторы.

Основные проблемы, сдерживающие понимание закономерностей преобразования структуры, химического состава и оптических свойств аэрозольных частиц атмосферы в условиях облучения кратко можно сформулировать следующим образом.

1. Отсутствуют систематические исследования системы «ЩГК – атмосферный воздух» под действием высокоэнергетических факторов для атмосферных аэрозольных систем.

2. Нет ясных представлений о механизмах гетерогенных реакций. Не выявлены закономерности кинетики и эффективности гетерогенных реакций в зависимости от действия основных метеорологических факторов.

3. Не изучены возможности плазмохимического преобразования ЩГК.

4. Не рассмотрены вопросы об оптимальных параметрах гетерогенных реакций.

5. Не достаточно изучены особенности преобразования структуры и оптических свойств ЩГК в зависимости от их химического состава и типа кристалла.

Исследования по тематике диссертационной работы соответствуют

приоритетным направлениям развития науки, технологий и техники, утвержденным Президентом РФ 7 июля 2011 г. Указом № 899 («Рациональное природопользование»), и относятся к области критических технологий федерального уровня, получивших высокий рейтинг по показателям состояния и перспективам развития.

Цель и задачи исследования. Цель настоящей работы состоит в том, чтобы изучить закономерности и особенности формирования фазового состава и оптических свойств кристаллов щелочных галогенидов при воздействии рентгеновского и гамма излучений и холодной газовой плазмы на систему «кристалл – воздух» и сделать обоснование модели процессов трансформации аэрозольных частиц в атмосфере, содержащей радиоактивность и грозовую активность.

Для достижения поставленной цели в рамках настоящей работы необходимо было решить следующие задачи:

1. Провести анализ опубликованных результатов исследований в различных областях науки (радиационная физика ЩГК, плазмохимия, исследования атмосферного аэрозоля, атмосферной радиоактивности и физикохимии атмосферных щелочно-галоидных частиц) для разработки гипотезы о возможности преобразования структуры ЩГК, фазового и химического состава, а также оптических свойств под действием различных высокоэнергетических факторов.

2. Развить методы экспериментального исследования поверхностных процессов в ЩГК. Разработать экспериментальные установки для изучения гетерогенных процессов с учетом влияния основных метеорологических параметров (температура, давление и состав газовой фазы, освещение дневным светом) для получения микрокристаллов с заданным химическим составом и кристаллической структурой.

3. Исследовать закономерностей формирования поверхностного слоя твердых продуктов реакций в составе ЩГК при облучении системы «кристалл – воздух» рентгеновским излучением.

4. Исследовать закономерности формирования продуктов гетерогенных реакций в состав ЩГК при гамма облучении системы «кристалл – воздух».

5. Исследовать изменения, происходящие на межфазовой границе при плазмохимическом воздействии на систему «ЩГК – воздух».

6. Сравнить процессы формирования твердых продуктов реакций в системе «кристалл – воздух» при высокоэнергетической активации (ионизирующие излучения и холодная воздушная плазма) и при активации оксидами азота и азотной кислотой, используемой в настоящее время в атмосферной химии.

Научная новизна. Выполнено первое систематическое исследование процессов создания и эволюции твердых фаз продуктов реакций, образующихся на поверхности ряда ЩГК с простой и гранецентрированной кубической решеткой под действием рентгеновского излучения на систему «ЩГК – воздух» в диапазоне доз до 7,5·10<sup>8</sup> Р, температур 80 - 373 К, в присутствии дневного освещения, при наложении электрического поля.

2. Впервые исследованы закономерности формирования твердых продуктов реакций при облучении ЩГК с различными типами кристаллических решеток. Обнаружены и изучены особенности ИК - спектров поглощения кристаллов CsCl, CsBr, CsI, обусловленные твердыми продуктами гетерогенных реакций после гамма облучения дозами 9,6·10<sup>2</sup> - 2·10<sup>5</sup> Гр в системе «ЩГК – воздух». Введены представления о формировании поликристаллического многофазного слоя продуктов реакций в облученных микрокристаллах иодидов щелочных металлов.

3. Впервые обнаружено явление преобразования монокристаллов щелочных галогенидов в нитраты, хлораты и перхлораты щелочных металлов при плазмохимическом воздействии на систему «микрокристаллы KCl – воздух» и определены условия формирования поверхностных слоев, состоящих из трех фаз KNO<sub>3</sub>, KClO<sub>4</sub>.

4. Обнаружена корреляция процессов радиационного создания твердых фаз в составе ЩГК, облучаемых в системе «кристалл – воздух» с радиационно-химическими и фотохимическими процессами в воздухе и установлена связь параметров этих процессов с фазовым составом слоя продуктов реакций на поверхности облученных кристаллов.

5. Впервые обнаружены и изучены явления образования твердых фаз (нитратов щелочных металлов) в составе ЩГК при возбуждении системы «ЩГК - воздух» рентгеновским излучением без доступа дневного освещения и явления подавления образования твердых фаз (нитратов щелочных металлов) при облучении в сочетании с дневным освещением, связанные с фотохимическим разрушением реакционно-способных продуктов радиолиза воздуха.

6. Впервые изучены спектры поглощения в ультрафиолетовом, видимом и инфракрасном спектральном диапазоне для ЩГК при облучении системы «кристалл – воздух» рентгеновским излучением в условиях наложения на реакционный объем постоянного электрического поля.

7. Впервые обобщены и систематизированы результаты исследования фазового состава ЩГК, обработанных в системе «ЩГК – воздух», выполненные в области радиационной физики ионных кристаллов, плазмохимии и в физикохимии атмосферного аэрозоля.

Научная и практическая значимость полученных результатов. Полученные данные об особенностях твердых фаз продуктов реакций в составе ЩГК, их роли в процессе образования поликристаллического поверхностного слоя, о влиянии различных факторов (холодной газовой плазмы, вида ионизирующего излучения, дозы облучения; температуры, давления, влажности воздуха, освещения дневным светом, наложения электрического поля; строения кристаллов, морфология поверхности кристаллов) на преобразование фазового состава ЩГК в системе «кристалл – воздух» открывают новые возможности для разработки путей управления стойкостью материалов к действию ионизирующих излучений и холодной воздушной плазмы. Данные по изменению структуры и фазового состава ЩГК при обработке в системе «кристалл – воздух» необходимо использовать при оценке надежности работы различных миниатюрных устройств в условиях высокой радиационной нагрузки, при разработке радиационнохимических и плазмохимических технологий получения слоев нитратов, хлоратов и перхлоратов щелочных металлов на поверхности ЩГК.

Выявленные закономерности преобразования фазового состава ЩГК и влияния образующихся продуктов реакций на оптические свойства микрокристаллов позволяют использовать их как теоретическую основу для прогнозирования новых механизмов трансформации щелочно-галоидных аэрозольных частиц в атмосфере, которые обусловлены действием таких высокоэнергетических факторов, как ионизирующие излучения, холодная воздушная плазма.

Достоверность полученных результатов подтверждается физической обоснованностью моделей преобразования структуры, фазового состава и оптических свойств ЩГК в процессе протекания гетерогенных реакций в системе «ЩГК – воздух», стимулированных высокоэнергетическими факторами, непротиворечивостью и соответствием существующим представлениям о радиационно-стимулированных процессах на поверхности твердого тела.

Личный вклад автора заключается в постановке цели и задач исследования, путей их реализации, экспериментальной работе по гетерогенному синтезу, получению основных экспериментальных результатов, интерпретации и обобщении результатов, формулировке основных выводов.

#### Научные положения, вынесенные на защиту

1. При облучении рентгеновскими лучами системы «ЩГК – воздух» в лабораторных условиях на начальных стадиях (при дозах до 6·10<sup>2</sup> P) формирование фаз продуктов реакций на поверхности ЩГК определяется послойным механизмом. После формирования промежуточного «монослоя» увеличение дозы облучения до 2,7·10<sup>3</sup> Р приводит к росту трехмерных островков, состоящих из нитратов щелочных металлов. При дозах облучения более 2,6·10<sup>4</sup> формируются островки с огранкой. Дальнейшее облучение  $7.5 \cdot 10^8$ приводит образованию лозами Р сплошного до к поликристаллического слоя нитрата щелочного металла на поверхности ШГК.

2. При облучении рентгеновскими лучами (дозами до 7,5·10<sup>8</sup> Р) системы «ЩГК – воздух» в двух исследованных случаях слой из нитратов щелочных металлов на поверхности ЩГК не образуется: 1) в условиях освещения реакционного объема дневным светом, когда активные продукты радиолиза воздуха разрушаются под воздействием дневного света; 2) в условиях наложения постоянного электрического поля на реакционный объем, когда в воздухе происходит снижение образования оксидов азота.

3. При гамма облучении системы «кристалл – воздух» наблюдается процесс формирования слоя продуктов реакций в зависимости от химического состава и структуры ЩГК, в случае хлоридов и бромидов образуется поверхностный слой из нитратов щелочных металлов, а в случае

иодидов происходит образование фаз двух типов (MeNO<sub>3</sub>, MeIO<sub>3</sub>, где Me – щелочной металл).

4. При плазмохимическом воздействии на систему «ЩГК – воздух» выявлено образование нитратов, хлоратов и перхлоратов щелочных металлов. При обработке в воздушной среде на поверхности кристаллов KCl формируются три фазы: нитрат калия (KNO<sub>3</sub>), хлорат калия (KClO<sub>3</sub>) и перхлорат калия (KClO<sub>4</sub>). При обработке в среде кислорода происходит изменение состава структуры исходных кристаллов KCl, связанные с образованием хлората и перхлорат калия.

5. Модель радиационно-химических и плазмохимических взаимодействий в системе «кристалл – воздух», позволяющая объяснить закономерностей образования и накопления твердых и газообразных галогенсодержащих продуктов в условиях воздействия атмосферной радиоактивности и грозовой активности, определить степень влияние радио и грозовой активности на изменение оптических свойств аэрозольных частиц, атмосферные циклы азота, галогенов и озона.

Апробация результатов исследования. Результаты работы докладывались и обсуждались на следующих Российских и Международных симпозиумах, конференциях и семинарах:

- совещания, научно-технические конференции и рабочие группы -III Всесоюзное совещание «Воздействие ионизирующего излучения и света на гетерогенные системы», Кемерово, 1982; научно-техническая конференция. БрИИ, Братск, 1997; XXI - XXII научно – техническая конференция Братского государственного технического университета. Братск. 2000, 2001; VII – XVII Рабочая группа Аэрозоли Сибири. Томск. 2000 - 2010.

- всероссийские конференции - Российская конференция «Атмосфера и здоровье человека». Иркутск: 1997; Первый Всероссийский симпозиум «Твердотельные детекторы ионизирующих излучений» (ТТД-97). Екатеринбург, 1997; Пятая всероссийская научно-техническая конференция безопасность». «Энергетика: экология, надежность, Томск. 1999: V Всероссийский семинар «Физические и физико-химические основы ионной имплантации». Нижний Новгород. 2000; III Всероссийская конференция «Физические и физико-химические основы ионной имплантации». Нижний Новгород. 2010.

- международные конференции и симпозиумы - 9-я международная конференция по радиационной физике и химии неорганических материалов (РФХ-9). ТПУ, Томск, 1996; Международная научно – практическая конференция «Человек вселенная». Иркутск: – среда – -1997; Международная конференция «Физико-химические процессы В неорганических материалах». Кемерово, 1998; Международная научная конференция «Радиационно-термические эффекты И процессы В материалах». 1998; 10-я Международная неорганических \_ Томск. конференции «Радиационная физика и химия неорганических материалов (РФХ-10)». Томск, 1999; Международная конференция «Сопряженные задачи механики и экологии». Томск. 2000; Международная конференция

8

«Физико-химические процессы в неорганических материалах». Кемерово. 2001; VII-X, XII, XIV-XVII международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Томск. 2000 – 2011; VII Международная научная конференция «Радиационно-термические эффекты и процессы в неорганических материалах» (РТЭП-2010).

Публикации. Основные результаты работы изложены в 56 работах, из которых 26 опубликованы в рецензируемых журналах и в изданиях, размещенных в международной системе цитирования Scopus, их перечень приведен в конце автореферата.

Структура и объем работы. Диссертация состоит из введения, 6 глав, заключения и списка литературы. Объем диссертации – 300 страниц, включая 80 рисунков, 20 таблиц. Список литературы содержит 350 наименований.

#### СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследований, сформулированы цель и задачи исследований, научная новизна работы и её практическая значимость, проведен краткий обзор содержания диссертации, перечислены положения, выносимые на защиту.

Первая глава «Радиационные изменения поверхности ЩГК при облучении в системе «кристалл – воздух» посвящена анализу исследований поверхности ЩГК. Рассмотрены различные методы исследования поверхности, описаны их физические принципы. Показано, что методы воздействия ионизирующих излучений на систему «ЩГК – воздух» способны оказывать наиболее существенное влияние на структуру, фазовый состав и свойства поверхности. Сделано заключение, что особенно эффективными являются методы инициирования гетерогенных реакций в системе «ЩГК – воздух», включающие воздействие ионизирующего излучения

Сформулированы основные проблемы, которые не были решены к началу проведения данных исследований:

1. Мало исследовано влияние свойств исходных реагентов на кинетику синтеза и фазовое состояние получаемых продуктов при воздействии ионизирующих излучений и не исследовано влияние холодной воздушной плазмы на изменение оптических свойств, химического и фазового состава ЩГК.

2. Различные механизмы формирования фазового состава при химическом взаимодействии ЩГК и газовых реагентов предлагались в исследованиях по физикохимии атмосферного аэрозоля, большинство работ направлено на изучение газообразных продуктов гетерогенных реакций, мало исследовано влияние свойств исходных реагентов на кинетику гетерогенного синтеза и фазовое состояние получаемых твердых продуктов. В присутствии высокоэнергетических факторов (ионизирующих излучений и холодной газовой плазмы) эти механизмы исследованы не были.

3. Наблюдения в атмосфере показывают аномально высокое насыщение воздуха газообразными галогенами, а также нитратами,

хлоратами и перхлоратами, которое в настоящее время объясняют воздействием антропогенного загрязнения воздуха оксидами азота, однако это насыщение невозможно объяснить для тех регионов, которые не испытывают промышленное загрязнение.

4. Не были исследованы механизмы формирования структуры ЩГК, учитывающие структурно-фазовые превращения, протекающие при воздействии на систему «кристалл – воздух» гамма излучения, а также рентгеновского излучения в сочетании с действием основных метеорологических факторов.

5. Не было исследовано влияние высокоэнергетических факторов на оптические свойства ЩГК, обработанных в системе «кристалл – воздух», одновременно в УФ, видимом и ИК диапазонах.

6. В радиационной физике большинство работ направлено на изучение твердых продуктов гетерогенного синтеза в системе «ЩГК – воздух». Мало изучены начальные стадии синтеза, в ходе которых формируется поверхность контакта исходных реагентов, разрушаются межатомные связи, начинается миграция атомов реагентов с образованием промежуточных состояний.

На основании выполненного обзора литературы сформулированы цель и задачи исследования.

Во второй главе «Методы обработки, кристаллы для исследования, методы и методики исследования» обоснован выбор объектов и методов исследования, описано оборудование и установки, использованные при обработке микрокристаллов, а также аналитическое оборудование, которое применялось при проведении анализа структурно-фазового состояния кристаллов и исследовании их физических свойств.

Образцы для исследования. Атмосферный аэрозоль определяется наличием в воздухе жидких или твердых частиц, диаметр которых составляет  $10^{-9} - 10^{-4}$  мкм. Атмосферные АЧ частицы образуются из разнообразных естественных и антропогенных источников. Первичные частицы образуются в жидком или твердом виде из таких источников как поверхность суши и Мирового океана, горение биомассы и топлива, вулканические извержения и др. Вторичные частицы образуются в атмосфере.

В настоящей работе исследовались микрокристаллы ЩГК в виде нитевидных кристаллов (НК) КСl, КВr, NaCl, KI, RbBr, которые близки по своим размерам к атмосферным АЧ (рис. 1), а также микрокристаллы ЩГК в виде порошков, полученных механическим способом (рис. 2). НК выращивались из водного раствора соли квалификации «ос. ч.» через пористую перегородку. Поверхности НК были огранены плоскостями (100). Размер НК: длина 1-10 мм, диаметр 10-100 мкм.

Выбор кристаллов в нитевидной форме основан на том, что они содержат минимальное исходное количество примесей и дефектов кристаллического строения (вакансий, дислокаций, блоков). НК имеют хорошо развитую поверхность боковых граней, отличающихся высоким совершенством (отсутствие ступеней скола), а также и развитую поверхность.



Рис. 1. Изображения образцов ЩГК: а - атмосферная аэрозольная щелочно-галоидная частица, находящаяся на волокнистом фильтре; б - НК и кристаллографическая индексация граней и направлений в кристалле; в – способы закрепления нитевидных кристаллов для оптических исследований, г – способы закрепление нитевидных кристаллов для электронно-микроскопических исследований



Рис. 2. Приготовление порошкового препарата для фазового анализа: 1 - порошок образца; 2 - стеклянный кружок; 3 - клей; 4 - кювета

Обработка ЩГК проводилась при активации системы «кристалл – воздух» рентгеновским излучением в специально сконструированном и реакторе (рис. изготовленном нами 3). Это позволило проводить В широком интервале доз рентгеновского излучения, исследования температуры, давления и состава газовой фазы. Подготовка образцов (нанесение электронно-микроскопических реплик) для исследований производилась сразу после окончания облучения внутри реактора.

Источниками рентгеновского излучения служили рентгеновские трубки БСВ-2 (медный антикатод) и БХВ-7 (хромовый антикатод), питание

которых осуществлялось от рентгеновского аппарата УРС-60. Режим работы рентгеновской трубки БСВ-2: U=45 кВ, I=20 mA, мощность экспозиционной дозы 2  $P \cdot c^{-1}$ , мощность излучения в условиях эксперимента 3 P c  $^{-1}$  см $^{-2}$ . Режим работы рентгеновской трубки БХВ-7: U=30 кВ, I=10 mA, мощность экспозиционной дозы составляла 500  $P \cdot c^{-1}$ , мощность излучения в условиях эксперимента 830 P c  $^{-1}$  см $^{-2}$ .

Для гамма облучения использовалась установка РХМ-γ-20 с источником излучения изотопа <sup>60</sup>Со. Температура в зоне облучения составляла 310 К. Облучение образцов проводилось в центральном канале, где мощность поглощенной дозы составляла 0.8 – 2.5 Гр/с.



Рис. 3. Схема экспериментальной установки для облучения образцов и подготовки их к ЭМ исследованиям: 1– баллон с газом; 2 – редуктор; 3 – осушитель, MgClO<sub>4</sub>; 4 – осушитель P<sub>2</sub>O<sub>5</sub>; 5 – вакуумный кран; 6 – манометр; 7 – силикагель; 8 – источник излучения; 9 – реактор; 10 – распределительный узел; 11 –форвакуумный насос; 12 – диффузионный насос.



Рис. 4. Реактор для обработки холодной газовой плазмой: 1 – баллон с газом; 2 – вакуумный кран; 3 – датчик давления; 4 – вакуумметр; 5 – реактор; 6 – термопара; 7 – образец; 8 – электроды; 9 – генератор; 10 – вакуумный насос

Обработка микрокристаллов в кислородной, азотной и воздушной плазме производилась на установке, разработанной авторами [1]. Основные блоки установки - вакуумный насос, микроволновый генератор УВЧ-66, рабочая камера, расположенная между обкладками конденсатора (рис. 4). Условия обработки: частота 40-68 МГц, мощность 20-70 Вт, напряжение 860-900 В, температура в реакторе 30-35°С, вес образца 100 мг. Обрабатывался неподвижный тонкий слой порошка КС1 (фракция < 0,1 мм). Образцы обрабатывались с временными интервалами 15, 30, 60 и 90 мин. Изменение массы образца в ходе эксперимента контролировалось гравиметрическим методом.

Поставленные в диссертации задачи по исследованию морфологии, структурно-фазовых превращений ЩГК при высокоэнергетических воздействиях решены с помощью комплекса экспериментальных методов. Для исследования обработанных кристаллов использованы рентгеновский дифрактометр ДРОН-2, электронные микроскопы УЭМВ-100К и JEM-6, спектрофотометр СФ-4, спектрометры UR-20 и Perkin-Elmer FT/IR 2000. Обработка экспериментальных данных проводилась на компьютере с использованием программ Graph Builder, Origin 7,5.

**В третьей главе** «Структура и оптические свойства ЩГК, подвергнутых рентгеновскому облучению в системе «кристалл – воздух» представлены выявленные закономерности и особенности состояния элементного и фазового состава, а также дефектной структуры кристаллов после обработки в лабораторных условиях и в условиях действия основных метеорологических факторов (температура, давление и влажность воздуха, освещение дневным светом).

Для выявления факторов, влияющих на процесс синтеза нитратов на поверхности щелочно-галоидных кристаллов, было проведено облучение системы «кристалл – воздух» рентгеновским излучением трубки БСВ-2 (доза облучения 1.4·10<sup>3</sup> Р). При электронно-микроскопических, исследованиях образцов установлено, что на поверхности кристаллов в лабораторных условиях формируется поверхностный слой, характеризующийся наличием каплевидных кристаллитов. Последующее облучение приводит к формированию ограненных кристаллитов, образование которых является результатом процесса коалесценции каплевидных кристаллитов.

Данные электронно-микроскопических исследований кристаллизации продуктов реакций свидетельствуют об образовании на поверхности исходного кристалла твердых продуктов, которые на самых ранних стадиях облучения образуют промежуточные каплевидные кристаллиты. Затем образуются островки и происходит формирование их огранки (табл. 1).

| величины экспозиционной дозы |                       |                                   |                 |
|------------------------------|-----------------------|-----------------------------------|-----------------|
| №<br>п/п                     | Доза<br>облучения, Р  |                                   | Размер          |
|                              |                       | ларактеристика продуктов реакции, | поверхностных   |
|                              |                       | обрабатываемого кристалла         | кристаллитов,   |
|                              |                       |                                   | МКМ             |
| 1.                           | $>2,7\cdot10^{3}$     | Кристаллиты в форме капель        | Диаметр 0,1-0,2 |
| 2.                           | > 1,3.10 <sup>4</sup> | Кристаллиты в форме дисков        | Диаметр 0,1-0,2 |
|                              |                       |                                   | Высота 0,1      |
| 3.                           | >2,6.10 <sup>4</sup>  | Кристаллиты с огранкой            | Диаметр 0,5     |
|                              |                       |                                   | Высота 0,4      |

Таблица 1. Характеристика продуктов реакций, образующихся на поверхности НК КВг в системе «кристалл – воздух» при активации рентгеновским излучением, в зависимости от величины экспозиционной дозы

Процесс кристаллизации продуктов гетерогенной реакции отличает высокая чувствительность к наличию структурных дефектов на поверхности исходных кристаллов. Электронно-микроскопические изображения различных участков поверхности боковых граней (100) кристаллов КСl и КВг после облучения в системе «ЩГК – воздух» приведены на рис. 5. Как видно из рисунка, на поверхности кристаллов образовались микрокристаллы (кристаллиты), представляющие собой продукт гетерогенных реакций.

Расположение кристаллитов на поверхности макрокристаллов KCl связано с геометрическим рельефом поверхности (ступени скола), как показано на рис. 5а и рис. 5б. На поверхности HK, отличающейся высоким геометрическим совершенством, кристаллиты равномерно располагаются на реагирующей поверхности, как показано на рис. 5.



Рис. 5. Поверхности (100) кристаллов после активации системы кристалл/воздух рентгеновским излучением (доза облучения 1.4·10<sup>3</sup> P): а) – скол макрокристалла KCl, б) – скол макрокристалла KBr, в) – скол макрокристалла KCl:Sr 0.5 мол %, г) – поверхность НК KCl

На рис. 6 представлены результаты изучения типов огранки и ориентации кристаллитов, образовавшихся при обработке нитевидных кристаллов, по данным электронно-микроскопического анализа. На схеме показаны типичные виды огранки кристаллитов и их ориентация относительно кристаллографических направлений плоскостей боковых граней для исходных кристаллов KCl, KBr, NaCl.

Из полученных данных следует, что формы кристаллитов в случае кристаллов KCl, KBr и кристаллов NaCl различаются. При обработке кристаллов KCl, KBr образуются плоские трехгранные призмы. На поверхности кристаллов NaCl образуются кристаллиты с кубической огранкой. Кристаллиты на облученной поверхности (100) исходных кристаллов KCl и KBr располагаются вдоль направлений <110>, в то время кристаллитов ориентированы <100>ребра ВДОЛЬ направления как поверхности (100)кристаллов NaCl. Несовпадение типа огранки кристаллитов связано с тем, что продуктом гетерогенной реакции в случае обработки кристаллов KCl и KBr является KNO<sub>3</sub>. При обработке кристаллов NaCl образуется NaNO<sub>3</sub>.



Рис. 6. Продукты реакции в системе «кристалл – воздух» при активации рентгеновским излучением (доза облучения 1.4·10<sup>3</sup> Р): а) кристаллиты на поверхности макрокристалла KBr; б) кристаллиты на поверхности нитевидных кристаллов NaCl; в) кристаллиты на поверхности нитевидных кристаллов NaCl; в) кристаллиты на

Метод ЭМ декорирования золотом применялся в настоящей работе для изучения поверхностных продуктов реакций. Результаты декорирования исходных необлученных нитевидных кристаллов NaCl приведены на рис. 7. Анализ картины декорирования показывает, что исходная поверхность нитевидного кристалла обладает высоким совершенством, так как декорирующие частицы золота распределены на ней равномерно. Это свидетельствует об отсутствии дефектов структуры. На поверхности облученного кристалла выявлены РК.



Рис. 7. Электронно-микроскопические изображения изменения поверхности боковой грани (100) НК NaCl в зависимости от облучения (доза 1.4·10<sup>3</sup> P) в системе «кристалл – воздух», полученные при декорировании поверхности кристаллов золотом: а) поверхность исходного кристалла; б) поверхность, содержащая РК, после облучения.

Электронно-микроскопические исследования поверхности кристаллов после обработки рентгеновским излучением позволили исследовать процесс кристаллизации продуктов реакций на поверхности боковой грани НК КВг, KCl, NaCl в диапазоне доз 2.4·10<sup>5</sup>–4.3·10<sup>5</sup> Р. Облучение приводит к образованию продуктов реакций, которые покрывают поверхность исходных кристаллов сплошной пленкой, как показано на рис. 8.



Рис. 8. Стадии образования сплошной поверхностной пленки кристаллического нитрата натрия на поверхности нитевидных кристаллов NaCl после обработки в системе «кристалл – воздух», активированной рентгеновским излучением при 285 K, доза облучения 2.4·10<sup>5</sup>– 4.3·10<sup>5</sup> P

На основании полученных экспериментальных результатов показано, что при облучении системы «ЩГК – воздух», кроме создания и накопление дефектов в объеме частиц (центры окраски, вакансии и др.), протекают интенсивные процессы на границе твердое тело - атмосферный воздух.

Кинетические закономерности, характерные для образования РК выявлены по данным электронно-микроскопических исследований. Для этого изучена зависимость толщины слоя, образованного продуктами гетерогенных реакций, на поверхности нитевидных щелочно-галоидных кристаллов в зависимости от времени (дозы) рентгеновского облучения (см. рис. 9). Объем вещества, закристаллизовавшегося поверхности НК при облучения определялся условиях ПО данным электронноразных микроскопических исследований. Затем расчетным путем определена толщина гипотетического слоя продуктов реакций при допущении, что они равномерно распределяются по поверхности кристалла.

Сложный характер процессов на поверхности кристаллов отражается на форме кинетических кривых. Изображенная на рис. 9 кинетическая кривая может быть разбита на отдельные участки. Участок кривой, соответствующий очень малым степеням превращения, вызван явлениями первичной активации реагентов и образованием отдельных микрочастиц продукта на активных участках поверхности. Эти частицы стабилизируются в виде отдельных кластеров. Второй участок – период индукции, когда происходит перестройка структуры кластеров и образование сплошного молекулярного слоя. В результате дополнительной активации индукционный

период переходит в период ускорения. Соответствующий этому периоду участок 3 отражает процесс зарождения центров кристаллизации и формирования границы фаз, на которой локализуется химическая реакция. Период быстрого накопления продукта (участок 4) и максимальной скорости процесса соответствует интенсивному росту зародышей вплоть до их слияния и образования сплошной реакционной зоны (участок 5).



Рис. 9. Толщина слоя продуктов реакций, образующихся на поверхности нитевидного кристалла NaCl в системе «кристалл – воздух» при активации рентгеновским излучением при 285 К. Время облучения 120 мин соответствует экспозиционной дозе облучения 4.3 · 10<sup>5</sup> Р

Исследование влияния температуры на рост радиационных кристаллитов на поверхности нитевидных кристаллов КСІ, КВг и NaCl показывает, что и этот фактор оказывает заметное влияние на кинетику процесса. По электронно-микроскопическим данным рассчитывался объем фазы нитратов, приходящийся на единицу поверхности облучаемого образца. Установлено, что при температурах выше 320 – 330 К процесс замедляется. С температуры системы количество вешества. повышением кристаллизующегося при экспозиционной дозе 10<sup>7</sup> Дж/см<sup>2</sup>, уменьшается (рис. 10).

Рентгеноструктурные исследования облученных образцов позволили нитратов зарегистрировать образование щелочных металлов. Ha дифрактограммах образцов после облучения дозами до 1·10<sup>8</sup> Р·см<sup>-2</sup> наряду с рефлексами исходного вещества обнаружены новые рефлексы. Наибольшее облучения наблюдается количество продукта В образце KI. Ha дифрактограммах облученных кристаллов NaCl, RbBr, KCl появляются рефлексы. которые дополнительные указывают на преобладающее присутствие нитратов щелочных металлов. В значительно меньшем количестве отмечено образование нитритов, а для иодидов щелочных образование карбонатов. металлов наблюдается Результаты рентгеноструктурных исследований представлены в табл. 2.



Рис. 10. Толщина пленки продуктов реакций на поверхности НК КВг (g = 11 мкм) при обработке кристаллов в системе «кристалл-воздух», активированной рентгеновским излучением при изменении температуры в реакторе: 1 - 373 K, 2 - 323 K, 3 - 285 K. Время облучения 120 мин соответствует экспозиционной дозе  $4.3 \cdot 10^5$  Р

Таблица 2. Результаты идентификации веществ, образующихся при рентгенизации микрокристаллов на воздухе при 20°С по данным рентгеноструктурного анализа прореагировавших микрокристаллов. Мощность экспозиционной дозы рентгеновского излучения составляла 8·10<sup>2</sup> P·c<sup>-1</sup>·cм<sup>-2</sup>

| Исходное<br>вещество | Экспозиционная доза,<br>Р·см <sup>-2</sup> | Межплоскостные расстояния d, Å | Новая фаза                     |
|----------------------|--------------------------------------------|--------------------------------|--------------------------------|
| NaCl                 | $9.10^{7}$                                 | 3,05                           | NaNO <sub>3</sub>              |
| VC1                  | 7,2·10 <sup>7</sup>                        | 3,78                           | KNO <sub>3</sub>               |
| KU                   |                                            | 3,30                           | KNO <sub>2</sub>               |
| VDr                  | $1.0.10^8$                                 | 3.78                           | KNO <sub>3</sub>               |
| KDI                  | 1,0.10                                     | 3,30                           | KNO <sub>2</sub>               |
|                      |                                            | 4,54 3,17; 1,82                | KIO <sub>3</sub>               |
| KI                   | $3,3\cdot10^7$                             | 2,85                           | K <sub>2</sub> CO <sub>3</sub> |
|                      |                                            | 3,78                           | KNO <sub>3</sub>               |
| RbBr                 | $7,5 \cdot 10^8$                           | 3,04                           | RbNO <sub>3</sub>              |

Основной особенностью гетерогенных реакций в системе «кристалл – воздух» при облучении является образование и кристаллизация новых твердых продуктов. При облучении в течение нескольких часов на поверхности исходных кристаллов формируется сплошной поверхностный слой из этих продуктов.

Если облучение системы «кристалл – воздух» происходит в сочетании с освещением дневным светом, то образования слоя продуктов реакций (нитратов щелочных метало) не происходит. В таблице 3 приведены результаты анализа продуктов реакций после облучения системы «кристалл – воздух» рентгеновским излучением в отсутствии и в присутствии дневного

света. Результаты получены из совокупности выполненных нами электронномикроскопических, рентгеноструктурных исследований и измерений ИК спектров в диапазоне 1100-1500 см<sup>-1</sup>.

Таблица 3. Результаты рентгеноструктурных исследований образцов после облучения рентгеновскими лучами дозой 1 10<sup>8</sup> Р в системе «кристалл – воздух» в темновых условиях и при облучении рентгеновскими лучами в сочетании с дневным светом

| Исходные ЩГК | Фазовый состав образца<br>ные ЩГК после облучения без<br>доступа дневного света |                   | Фазовый состав образца<br>после облучения в<br>сочетании с дневным<br>светом |              |
|--------------|---------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------|--------------|
| NaCl         | основная<br>фаза                                                                | NaCl              | основная<br>фаза                                                             | NaCl         |
| NaCI         | дополнитель<br>ная фаза                                                         | NaNO <sub>3</sub> | дополнитель<br>ная фаза                                                      | отсутствует- |
| VC1          | основная<br>фаза                                                                | KCl               | основная<br>фаза                                                             | KCl          |
| KU           | дополнитель<br>ная фаза                                                         | KNO <sub>3</sub>  | дополнитель<br>ная фаза                                                      | отсутствует  |
| <i>V</i> Br  | основная<br>фаза                                                                | KBr               | основная<br>фаза                                                             | KBr          |
| KDI          | дополнитель<br>ная фаза                                                         | KNO <sub>3</sub>  | дополнитель<br>ная фаза                                                      | отсутствует  |

ЩГК при Взаимодействие на поверхности активации системы «кристалл – воздух» рентгеновским излучением является сложным многостадийным процессом. Наиболее вероятными представляются следующие стадии: радиолиз воздуха с образованием оксидов азота NOx, захват оксидов азота поверхностью ЩГК; реакции на поверхности кристалла С образованием поверхностных фаз нитратов щелочных металлов; поверхности кристаллизация на облучаемого кристалла поликристаллического слоя из твердых продуктов реакций.

Наиболее вероятны следующие реакции образования нитратов щелочных металлов в составе обработанных кристаллов при их облучении рентгеновскими лучами в системе «ЩГК – воздух»:

1) образование оксидов азота при облучении воздуха;

2) адсорбция оксидов на поверхности кристалла:

$$NOx (\Gamma) \to NOx(agc) \tag{1}$$

3) диссоциация NOx(адс) на поверхности кристалла:

$$2NO_{2}(adc) \rightarrow NO_{3}^{-}(adc) + NO^{+}(adc), \qquad (2)$$

4) взаимодействие образующихся продуктов диссоциации с поверхностью кристалла:

$$MX(TB) + NO^{+}(agc) + NO^{-}_{3}(agc) \rightarrow MNO_{3}(TB) + NOX(\Gamma), \qquad (3)$$

где М – щелочной металл, Х – галоген.

При облучении системы «кристалл – воздух» рентгеновскими лучами в сочетании с действием дневного света в газовой фазе происходит фотохимическое разрушение NO<sub>2</sub> по реакции:

$$NO_{2} \xrightarrow{\lambda < 430_{HM}} NO + O(^{3}P).$$
(4)

При облучении системы «кристалл – воздух» рентгеновскими лучами в сочетании с действием дневного света в газовой фазе происходит фотохимическое разрушение NOx. Поэтому при активации системы «кристалл – воздух» в условиях освещения дневным светом реакции образования твердых фаз нитратов щелочных металлов на поверхности обрабатываемых ЩГК не происходит.

**В четвертой главе** «Исследования ЩГК при облучении системы «ЩГК – воздух» гамма излучением» показано, что облучение кристаллов  $\gamma$  - лучами сопровождается образованием центров окраски в объеме кристаллов и формированием дополнительных фаз продуктов реакций.

По данным ИК - спектроскопического анализа, облучение ЩГК  $\gamma$  - лучами во всех случаях приводит к появлению спектрах полос нитрат ионов. На рис. 11 представлены ИК - спектры  $\gamma$  – облученных образцов NaCl и CsCl в диапазоне частот 1500-1250 см<sup>-1</sup> (основная полоса поглощения нитратов).



Рис. 11. ИК - спектры кристаллов NaCl (a) и CsCl (б), подвергнутых гамма облучению дозами: 1 - 9,6 $\cdot 10^2$  Гр; 2 – 2,8 $\cdot 10^3$  Гр; 3 – 6,9 $\cdot 10^4$  Гр.

Наличие поверхности раздела между кристаллом-подложкой и нитратом, взаимным влиянием этих фаз друг на друга, а также наличием большого количества дефектов кристаллического строения приводит к вырождению нормального колебания v<sub>3</sub> плоской молекулы MNO<sub>3</sub>. Поэтому

наблюдаемые в ИК - спектре полосы поглощения 1500-1300 см<sup>-1</sup> для NaNO<sub>3</sub> и 1460-1280 см<sup>-1</sup> для CsNO<sub>3</sub> имеют сложную структуру и состоят из нескольких перекрывающихся полос. В зависимости от времени облучения между отдельными полосами наблюдается перераспределение интенсивностей.

На рис. 12 показаны инфракрасные спектры образцов NaCl и CsCl, содержащие полосы поглощения в области 1500-1250 см<sup>-1</sup> (основные полосы поглощения нитрат-ионов). Продукты реакций в составе обработанных кристаллов в виде соединений MeNO<sub>3</sub> регистрируются в спектрах всех обработанных образцов. Как показано на рис. 12, поглощение в области 1500-1300 см<sup>-1</sup> для NaNO<sub>3</sub> и 1460-1280 см<sup>-1</sup> для CsNO<sub>3</sub> появляется уже после обработки малыми дозами 2,8·10<sup>3</sup> Гр.



Рис. 12. ИК - спектры кристаллов после облучения гамма-излучением в системе «кристалл – воздух»: 1 – NaCl, доза 2,8·10<sup>3</sup> Гр; 2 – NaCl, доза 6,9·10<sup>4</sup> Гр; 3 – CsCl, доза 1,9·10<sup>3</sup> Гр; 4 – CsCl, доза 2,8·10<sup>3</sup> Гр; 5 – CsCl, доза 6,9·10<sup>4</sup> Гр.

В инфракрасных спектров обработанных ходе исследования микрокристаллов было обнаружено, что в спектрах облученных образцов появляются дополнительные полосы по сравнению с исходными образцами. облученных микрокристаллов NaCl обнаружены полосы В спектре поглощения в области 1373, 1447 см<sup>-1</sup> и более слабые полосы 2429, 1789, 836, 737 см<sup>-1</sup>. Широкая полоса при 3400 см<sup>-1</sup> отсутствует. При детальном рассмотрении был выявлен неэлементарный характер поглощения на частотах 1300 - 1500 см<sup>-1</sup>, обусловленный суперпозицией ряда сильно перекрывающихся полос 1350 и 1425 см<sup>-1</sup>.

Результаты измерения ИК – спектров ЩГК, обработанных в системе «кристалл – воздух» гамма излучением представлены в таблице 4.

21

| Исходное | Полоса поглощения ИК -                      | Интерпретация полос в ИК      |
|----------|---------------------------------------------|-------------------------------|
| вещество | спектра, $\omega$ , <i>см</i> <sup>-1</sup> | - спектре                     |
|          | 1360, 835                                   | NO <sub>3</sub>               |
| KCl      | 1260,1380                                   | NO <sub>2</sub>               |
|          | 1080, 1140                                  | ClO <sub>4</sub>              |
|          | 1390, 840                                   | NO <sub>3</sub>               |
| KBr      | 1280, 1360, 810                             | NO <sub>2</sub>               |
|          | 790                                         | BrO <sub>3</sub>              |
|          | 760                                         | IO <sub>3</sub> -             |
| KI       | 1460, 840                                   | CO <sub>3</sub> -             |
|          | 1260, 1380                                  | NO <sub>2</sub>               |
|          | 1380, 835                                   | NO <sub>3</sub>               |
| D1-D#    | 1270, 1380                                  | NO <sub>2</sub>               |
| KOBI     | 790                                         | BrO <sub>3</sub> <sup>-</sup> |
|          | 1460, 840                                   | $CO_3^{-1}$                   |

Таблица 4. Идентификация веществ в составе кристаллов, обработанных в системе «кристалл – воздух» при воздействии гамма облучения

При рентгеноструктурных исследованиях облученных образцов зарегистрировано появление дополнительных фаз. Фазовый состав обработанных образцов определяли методом сравнения дифрактограмм исходных и облученных образцов.

Дифрактограммы образцов NaF после облучения  $\gamma$  - квантами содержат интенсивные, средние и слабые полосы исходных кристаллов, а также дополнительные полосы нитрата натрия. Продукты гетерогенного взаимодействия образованы после гамма облучения системы «кристалл – воздух» дозой 0,3 МГр. Дифрактограммы микрокристаллов NaF, содержащие дополнительные линии новых фаз (продуктов реакций), показаны на рис. 13.



Рис. 13. Рентгенограмма микрокристаллов NaF после гамма облучения в системе «ЩГК – воздух» дозой 0,3 МГр

В обработанном образце КІ продукты реакций идентифицируются как КNO<sub>3</sub>. Как показывают результаты рентгеноструктурных исследований, для облученного образца КІ возможна уверенная идентификация образовавшейся новой фазы. Для исследованных образцов в рентгенограммах проявляются практически все возможные полосы (рефлексы), соответствующие дополнительной фазе нитрата калия, как показано на рис. 14.



Рис. 14. Рентгенограмма образца КІ после гамма облучения в системе «кристалл – воздух» дозой 0,3 МГр

Подобные результаты наблюдаются и для обработанных образцов RbI, для которых продукты реакций идентифицируются как RbNO<sub>3</sub>. В этом случае облученного образца RbI возможна уверенная илентификация лля образовавшейся новой фазы. На полученной дифрактограмме проявляются возможные полосы (рефлексы), соответствующие практически все дополнительной фазе нитрата рубидия.

Для образцов CsCl был изучен фазовый состав продуктов радиационностимулированных процессов в зависимости от дозы гамма облучения. В результате проведенных исследований показано, что уже на ранних стадиях облучения на дифрактограммах обработанных образцов появляются дополнительные полосы. В начале облучения эти полосы соответствуют наиболее интенсивным полосам нитрата цезия, а по мере увеличении дозы облучения на дифрактограммах появляются практически все полосы, соответствующие нитрату цезия.

Продуктами стимулированных гамма излучением реакций являются соединения NaNO<sub>3</sub>, KNO<sub>3</sub>, RbNO<sub>3</sub>, CsNO<sub>3</sub>. При этом кристаллические решетки созданных нитратов щелочных металлов при комнатной температуре могут относиться к разным сингониям.

В пятой главе «Свойства кристаллов, подвергнутых действию холодной газовой плазмы» рассмотрены кинетические особенности

изменения структуры, свойств поверхностных слоев ЩГК, протекающих при обработке микрокристаллов в холодной газовой плазме. Для проверки предположения о возможности активации поверхности ЩГК при обработке в холодной газовой плазме было проведено воздействие на образцы холодной кислородной (ХКП), азотной (ХАП) и воздушной (ХВП) плазмы.

**Обработка в холодной воздушной плазме.** Обработка образцов KCl в ХВП приводит к физико-химическому модифицированию поверхности KCl и образованию продуктов реакций в поверхностном слое в процессе воздействия на него ионов.

Химическое модифицирование поверхности подтверждается данными ИК - спектроскопии обработанных образцов. О кинетических особенностях процесса свидетельствуют данные, показывающие, что уже на начальных стадиях обработки наблюдаются заметные изменения ИК – спектров. Анализ полученных спектров показывает, что обработка в плазме приводит к появлению дополнительных полос поглощения в областях 1300-1040, 1040-780, 670-550 и 450-520 см<sup>-1</sup>, соответствующих полосам поглощения ионами  $\text{ClO}_4$ ,  $\text{ClO}_3$ , а также полосы поглощения при 1370 см<sup>-1</sup>, соответствующей поглощению ионами NO<sub>3</sub> (рис. 15).



Рис. 15. ИК - спектры образца КСІ после обработки холодной воздушной плазмой: 1 – 5 мин.; 2 – 10 мин.; 3 – 20 мин.; 4 – 40 мин

Обработка холодной воздушной плазмой в течение 30 минут сопровождается увеличением веса образцов, как показано в табл. 5. Учитывая это обстоятельство, можно предположить, что обработка приводит к образованию продуктов реакций в виде кристаллических хлоратов, перхлоратов и нитратов калия, которые по своим свойствам существенно отличаются от исходных кристаллов KCl.

Таблица 5. Изменение массы образцов KCl в зависимости от времени обработки в холодной воздушной плазме

| Время обработки, мин. | Изменение массы образца, % |
|-----------------------|----------------------------|
| 15                    | 0                          |
| 30                    | 0                          |
| 60                    | +1                         |
| 90                    | +2                         |

**Обработка ЩГК в кислородной плазме.** ИК - спектры образцов КСl, обработанных в ХКП содержат полосы поглощения, характерные для ионов ClO<sub>4</sub><sup>-</sup> и ClO<sub>3</sub><sup>-</sup> (рис. 16). Полоса поглощения при 1370 см<sup>-1</sup> в спектрах, обработанных холодной кислородной плазмой, отсутствует.



Рис. 16. ИК - спектры образца КСІ после обработки кислородной плазмой: 1 – 5 мин., 2 – 10 мин., 3 – 20 мин., 4 – 40 мин., 5 – 60 мин., 6 – 80 мин.

Анализ полученных спектров позволяет сделать заключение о том, что интенсивность полос поглощения  $ClO_4^-$  примерно в 2 раза больше интенсивности  $ClO_3^-$ . Для полос поглощения  $ClO_4$  и  $ClO_3$  были построены зависимости площадей под соответствующими полосами от времени обработки кристаллов в воздушной и кислородной плазме (рис. 17).



Рис. 17. Зависимость площади под полосами поглощения от времени обработки КСІ в холодной воздушной и в кислородной плазме.

При обработке KCl кислородной плазмой получаются соединения с большой степенью окисленности. При времени обработки образцов более 60 мин количество KClO<sub>4</sub> значительно уменьшается. Это говорит о том, что в процессе длительной обработки плазмой происходит также окисление образовавшихся на первых стадиях облучения соединений и их разрушение.

Обработка ЩГК в холодной азотной плазме. Проведенные эксперименты показали, что обработка образцов КСІ сопровождается изменением массы образцов. В ИК - спектрах содержатся также полосы поглощения, характерные для анионов хлората СІО<sub>3</sub>. Причиной образования СІО<sub>3</sub> является присутствие в азоте, который использовался в настоящих экспериментах, некоторого количества примеси кислорода. Это и обусловило образование хлората калия.

Определены кинетические особенности изменения состава образцов KCl, обработанных в ХВП, ХКП и ХАП.

Плазма характеризуется следующими основными особенностями:

- перенос энергии к молекулам газа осуществляется электронами, ускоряемыми полем;

- электроны, теряя энергию в неупругих столкновениях, возбуждают молекулы и порождают новый поток электронов и активных частиц в виде ионов и радикалов;

- поток ионов и радикалов обеспечивает их оседание и передачу энергии поверхности обрабатываемого твердого тела и стенкам реактора;

- обрабатываемый материал получает энергию от электромагнитного поля за счет поглощения ВЧ или СВЧ энергии, затем переходит в возбужденное состояние и взаимодействует с частицами плазмы. Известно, что высокочастотная энергия в диапазоне частот более 10 МГц передается в основном по поверхностному слою твердого тела.

26

Известно, что низкотемпературная плазма используется для синтеза различных химических соединений (получение оксидов азота из воздуха, нитридов и др.). В большинстве случаев основным источником заряженных частиц являются процессы ионизации молекул газа электронным ударом. Электроны в плазме сталкиваются с молекулами газов с образованием положительных ионов и вторичных электронов согласно следующим реакциям:

$$e + N_2 \rightarrow N_2^+ + e + e, \qquad (5)$$

$$e + O_2 \rightarrow O_2^+ + e + e, \tag{6}$$

$$e + H_2O \rightarrow H_2O^+ + e + e. \tag{7}$$

В азотсодержащих смесях играют важную роль реакции ассоциативной ионизации с участием электронно-возбужденных атомов азота:

$$N(^{2}P) + N(^{2}P) \rightarrow e + N_{2}^{+}$$

$$N(^{2}P) + O(^{3}P) \rightarrow e + NO^{+}$$
(8)
(9)

равновесной плазмы Анализ состава термодинамически воздуха разветвленных, показывает, что гамму цепных И обратимых плазмохимических реакций, приводящих к образованию NO, можно выразить одной химической формулой:

$$N_2 + O_2 \leftrightarrow 2NO$$
 (10)

Плазмохимическая технология процессов с участием конденсированной фазы сложнее по сравнению с процессами в газовой фазе. Характерные времена физико-химических превращений в конденсированной фазе намного превышают времена процессов в газовой фазе.

Как показали наши исследования, при обработке ЩГК в холодной газовой плазме образуются возбужденные атомы и ионы. Это приводит к ее высокой химической активности и позволяет осуществлять реакции с достаточно высокими скоростями при низких температурах (50-70°C), в результате чего образуются хлораты, перхлораты и нитраты калия.

В шестой главе «Обоснование модели процессов трансформации атмосферных аэрозольных частиц под действием ионизирующих излучений и холодной воздушной плазмы» приведено сравнение исследований процессов превращения ЩГК, находящихся в составе атмосферного аэрозоля, с результатами гетерогенного поведения ЩГК в системе «кристалл – воздух» при высокоэнергетических воздействиях, полученных в настоящей работе. сравнения исследованных Приведен анализ результатов процессов превращения ШГК, находящихся в составе атмосферного аэрозоля, с результатами гетерогенного поведения ЩГК в системе «кристалл – воздух» при высокоэнергетических воздействиях, полученных в лабораторных условиях при выполнении настоящей работы.

Для количественной оценки, надежного предсказания и эффективного контроля естественного и антропогенного влияния атмосферного аэрозоля на климат и здоровье людей требуется всесторонняя характеристика и понимание механизмов преобразования частиц, а также формирования и трансформации их свойств во время переноса в атмосфере.

АЧ во время переноса в атмосфере подвергаются различным физическим и химическим воздействиям, сопровождающимся изменением размера, структуры и состава частиц. Химический состав АЧ может измениться в процессах коагуляции, химических реакций и др. Концентрация, состав и распределение размера атмосферных частиц аэрозоля очень изменчиво во времени и в пространстве. Преобладающий химический состав частиц в атмосферном воздухе определяют сульфаты, нитраты, аммоний, морская соль, минеральная пыль, органические вещества и углерод. Каждая составляющая может составлять 10-30 % от полной массы аэрозольного вещества. В зависимости от географического расположения, времени, метеорологических условий устанавливаются определенные размеры частиц. При этом относительное количество различных химических компонентов в составе аэрозольных частиц может изменяться на порядок величины или Для предсказания больше. количественной оценки, надежного И эффективного контроля естественного антропогенного И влияния атмосферного аэрозоля на климат и здоровье людей требуется всесторонняя характеристика и понимание механизмов преобразования частиц, а также формирования и трансформации их свойств во время переноса в атмосфере.

Как показывает наш анализ, процессы, исследованные нами, позволяют получить вещества (нитраты, перхлораты щелочных металлов и газообразные галогенсодержащие вещества), образование которых характерно для атмосферы.

Химический механизм взаимодействия ЩГК с оксидами азота находит широкое применение в гетерогенной химии атмосферного аэрозоля. Исследование ряда реакций применительно к солевому атмосферному аэрозолю проводилось в России и за рубежом. Следующие реакции ЩГК с азотной кислотой и оксидами азота содержатся в базах данных по атмосферной химии и используются при разработке различных моделей атмосферных процессов:

 $NaCl(TB) + HNO_{3}(\Gamma) \rightarrow NaNO_{3}(TB) + HCl(\Gamma)$ (11)

 $NaCl (TB) + 2NO_{2}(\Gamma) \rightarrow NaNO_{3} (TB) + CINO (\Gamma)$ (12)

 $NaCl (TB) + N_2O_5 (\Gamma) \rightarrow NaNO_3 (TB) + ClNO_2 (\Gamma)$ (13)

Однако на разработанные к настоящему времени атмосферные гетерогенные реакции с участием ЩГК азотной кислоты и оксидов азота накладываются ограничения. Эти процессы могут реализовываться лишь в регионах атмосферы, загрязненных промышленными выбросами с высоким содержанием оксидов азота. Специалисты отмечают, что эти механизмы с участием ЩГК не могут решить проблему получения надежных значений эмиссии реакционно-способных газообразных галогенов в атмосферный воздух.

Атмосферная химия хлора, вероятно, также связана с образованием перхлората в атмосфере. Считается, что образование перхлората в условиях атмосферы возможно за счет реакций щелочно-галоидных частиц с НО или О<sub>3</sub>. Однако эти реакции не позволяют объяснять уровни концентраций Cl<sub>2</sub>, измеряемые в атмосфере. К настоящему времени атмосферные источники

перхлората остаются неизвестными. Поэтому необходимы исследования для понимания факторов и источников загрязнений.

Атмосфера содержит источники ионизации и газовой плазмы (атмосферная радиоактивность и грозы). По этой причине можно предложить ряд механизмов объясняющих процессы в атмосфере.

Радиационно-химический механизм преобразования (трансформации) щелочно-галоидных аэрозольных частиц. Радиоактивность всегда присутствует в атмосфере. Наибольший вклад в атмосферную радиоактивность вносят источники, имеющие естественное происхождение (космические лучи, естественная радиоактивность земли и радиоактивные воздухе). Источниками искусственной продукты распада радона В радиоактивности являются атомные промышленные электростанции, предприятия и средства обслуживания исследований.

Исследования радиоактивных продуктов в атмосфере показали, что большая их часть оседает на нерадиоактивных аэрозольных частицах [2]. Вторичные радиоактивные аэрозоли образуются в результате присоединения радиоактивных веществ, присутствующих в атмосфере, к нерадиоактивным АЧ. Радиоактивные вторичные АЧ переносят около 95 % всей атмосферной радиоактивности.

В случае образования вторичных радиоактивных АЧ, ионизирующие излучения могут оказывать существенное влияние на трансформацию щелочно-галоидных АЧ. В этих условиях возможно изменение характеристик атмосферного аэрозоля, связанное с преобразованием фазового и химического состава щелочно-галоидных АЧ согласно реакциям (1-4).

Плазмохимический механизм преобразования щелочно-галоидных аэрозольных частиц В атмосфере. Грозовая активность является неотъемлемой особенностью атмосферы и связана с образованием в воздухе возбужденных атомов и ионов. Это приводит к их высокой химической активности и позволяет осуществлять реакции с достаточно высокими скоростями при низких температурах. Как показали наши исследования в этих условиях возможно изменение свойств частиц. связанное С преобразованием их фазового и химического состава согласно реакциям (5 – 10).

Воздействие высокоэнергетических факторов (ионизирующее излучение, холодная воздушная плазма) на систему «кристалл - газовая фаза» вызывает ряд процессов, разрушающих кристалл и его поверхность, а также изменяет состав газовой фазы. Этот тип химических превращений может быть реализован при переносе аэрозольными частицами радиоактивных компонентов в атмосфере. Таким образом, радиационная физикохимия ЩГК приобретает значение для атмосферной химии.

Радиационно-стимулированные реакции в системе «ЩГК – воздух» позволят решить актуальную задачу поиска оптимальных условий синтеза нитратов в атмосфере. Синтез нитратов щелочных металлов путем облучения системы «ЩГК – воздух» представляет собой совокупность разнообразных

физико-химических процессов. Последовательный анализ открывает путь к пониманию механизма и определению оптимальных условий проведения этого процесса, как в целях научных исследований, так и в целях расширения фундаментальных исследований атмосферного аэрозоля.

#### ОСНОВНЫЕ ВЫВОДЫ

1. Установлена последовательность структурно-фазовых превращений в ЩГК при воздействии высокоэнергетических факторов на систему «кристалл – воздух»:

a) радиолиз воздуха, формирование газообразных продуктов радиолиза воздуха в условиях изменения метеорологических факторов;

б) хемосорбция продуктов радиолиза воздуха на обрабатываемой поверхности ЩГК;

в) адсорбция продуктов радиолиза воздуха с образованием химических соединений в поверхностных слоях;

г) кристаллизация поверхностных фаз, диффузия элементов по границам поверхностных кристаллитов;

д) образование новых фаз на поверхности кристаллов и формирование поликристаллического поверхностного слоя.

2. Установлено, что присутствие дневного света при облучении системы «ЩГК – воздух» приводит к резкому снижению эффективности гетерогенного процесса за счет изменения механизмов реакций в газовой фазе.

3. Исследована поверхностная радиационная устойчивость ЩГК в условиях воздействия высокоэнергетических факторов на систему «ЩГК – воздух». Показано, что ЩГК, устойчивые в обычных условиях, при высокоэнергетических воздействиях эффективно взаимодействуют с газовой фазой за счет взаимодействия продуктов радиолиза воздуха и кристаллов.

4. Впервые синтезированы нитраты, хлораты и перхлораты щелочных металлов плазмохимическим методом. Показано, что при обработке в воздушной среде на поверхности кристаллов KCl формируются три фазы – нитрат калия (KNO<sub>3</sub>), хлорат калия (KClO<sub>3</sub>) и перхлорат калия (KClO<sub>4</sub>). При обработке в среде кислорода происходит изменение состава структуры исходных ЩГК и формируются хлорат и перхлорат калия.

5. Показаны возможности комплексного использования методов рентгеноструктурного анализа, ЭМ, спектроскопии в УФ, видимом и ИК диапазоне на примере исследования морфологии, структуры и состава продуктов гетерогенных превращений в ЩГК. Разработаны методики, расширяющие возможности используемых методов исследования поверхности ЩГК:

- определения толщины слоя продуктов гетерогенных реакций на поверхности НК по данным электронной микроскопии с использованием метода платиново-угольных реплик, нанесенных под углом к исследуемой поверхности;

- исследования распределения структурных составляющих в обработанных кристаллах при использовании вакуумного декорирования золотом фаз, образующихся на поверхности образца;

- исследования распределения дислокаций по данным вакуумного декорирования золотом поверхности обработанных образцов при их термообработке в процессе препарирования.

6. Полученные в работе закономерности являются основой для целенаправленного синтеза методом высокоэнергетических воздействий на систему «ЩГК – воздух» кристаллов с определенным фазовым составом и набором свойств, которые являются характерными для щелочно-галоидных аэрозольных частиц и приобретаются ими за время пребывания в атмосфере.

Полученные в работе результаты 7. позволяют использовать высокоэнергетические методы в нескольких важных областях. Присутствие в атмосферных ЩГК аэрозольных частиц нитратов позволяет составе использовать радиационно-химический подход для создания кристаллов со структурой, характерной для атмосферных аэрозольных частиц. В частности, перспективным является исследование вторичных радиоактивных атмосфере частиц. образующихся В при аэрозольных соединении радиоактивных веществ с нерадиоактивными аэрозольными щелочногалоидными частицами. Известно, что 95 % атмосферной радиоактивности переносится подобными аэрозольными частицами.

#### Основные публикации по теме диссертации

1. Губарева Т.В., Мелик-Гайказян И.Я., Шрайбман Б.Е. Радиационные нарушения поверхности ионных кристаллов при рентгенизации // Рукопись деп. в ВИНИТИ 21.12.81, № 5751-81. - 15 с.

2. Shudrikov E.S., Nazimov S.A., Gubareva T.V., Korobetskii I.A.. Transformations on the alkali-halide crystals surface by the high-energy irradiation and cold air plasma influence // American Chemical Society, Division of Petroleum Chemistry, Preprints. - 2000. - T. 45. -  $N_{2}$  4. - P. 567-569.

3. Губарева Т.В., Шудриков Е.С., Пугачев В.М. Структурно-фазовые превращения при взаимодействии микрокристаллов щелочно-галоидных соединений с ионизированным воздухом // Вестник нижегородского университета им. Н.И.Лобачевского, серия физика твердого тела. - 2001. - № 2. - С. 81-85.

4. Губарева Т.В. Исследование структуры и оптических свойств модельных солевых частиц солевого аэрозоля // Оптика атмосферы и океана. - 2001. – Т. 14, - № 6-7. - С. 473-640.

5. Губарева Т.В. Радиационно-стимулированные гетерогенные реакции и морской аэрозоль // Известия высших учебных заведений. Физика.- 2008. – № 11/3. - С. 181-185.

6. Губарева Т.В. Трансформация аэрозольных частиц в атмосфере // Изв. ТПУ. - 2010. - Т. 317. - № 2. - С. 152-157

7. Губарева Т.В. Спектры поглощения щелочно-галоидных частиц морского аэрозоля // Изв. ТПУ. - 2010. - Т. 317. - № 2. - С. 157-161.

8. Губарева Т.В. Гетерогенные реакции в системе щелочно-галоидный кристалл/воздух при активации рентгеновским излучением // Известия высших учебных заведений. Физика. - 2011 – т. 54, – № 1/2. – С. 198-204.

9. Gubareva T.V. Forecasting of formation of nitrates in an environment // Системы. Методы. Технологии. - 2011. - № 1 (9). - С. 132-139.

10. Губарева Т.В. Разработка физической модели гетерогенного взаимодействия атмосферного аэрозоля // Системы. Методы. Технологии. - 2011. - № 2 (10). - С. 73-77.

11. Губарева Т.В. Изучение образования нитратов щелочных металлов в атмосфере // Системы. Методы. Технологии. - 2011. - № 2 (10). - С. 149-154.

12. Губарева Т.В. Спектры поглощения щелочно-галоидных кристаллов после радиолиза системы кристалл/воздух // Системы. Методы. Технологии. - 2011. - № 3 (11). - С. 56-62.

13. Губарева Т.В. Перхлорат в окружающей среде: естественное образование // Системы. Методы. Технологии. - 2011. - № 3 (11). - С. 89-95.

14. Губарева Т.В. Гетерогенные реакции атмосферного аэрозоля: роль рентгеновского облучения // Вестник нижегородского университета им. Н.И.Лобачевского, серия физика твердого тела. - 2011. - № 4 (1). - С. 56–62.

15. Губарева Т.В., Мелешко А.А. Структура щелочно-галоидных кристаллов после действия гамма излучения на систему кристалл / воздух // Известия высших учебных заведений. Физика. - 2011 – т. 54, – № 11/3. – С. 136-142.

16. Губарева Т.В., Мелешко А.А. Инфракрасные спектры щелочногалоидных кристаллов после гамма облучения системы кристалл / воздух // Известия высших учебных заведений. Физика. - 2011 – т. 54, – № 11/3. – С. 128-135.

17. Губарева Т.В. Особенности кристаллического строения щелочногалоидных микрокристаллов после энергетических воздействий на систему «кристалл-воздух» // Системы. Методы. Технологии. - 2011. - №.4(12). - С. 132-138.

18. Губарева Т.В. Рентгенографические исследования щелочногалоидных кристаллов, обработанных в системе «кристалл-воздух» // Системы. Методы. Технологии. - 2011. - № 4(12). – 2011. - С. 139-146.

#### Список публикаций, размещенных в международной системе цитирования Scopus

19. Gubareva T. V., Korobetskii I. A., Shudrikov E. S. Complex laboratory studies of marine aerosols // Seventh International Symposium on Atmospheric and Ocean Optics. Proceedings of SPIE. - 2000. - V. 4341. – P. 544-549. SPIE - The International Society for Optical Engineering. doi:10.1117/12.411995.

20. Gubareva T. V. Optical properties of salt particles of a sea aerosol (laboratory experiment) // Eighth International Symposium on Atmospheric and Ocean Optics. Proceedings of SPIE. - 2002. - V. 4678. – P. 393-400. SPIE - The International Society for Optical Engineering. doi:10.1117/12.458465.

21. Gubareva T. V. Transformation of a sea aerosol under activity of the radioactive factor // Eighth International Symposium on Atmospheric and Ocean

Optics. Proceedings of SPIE. - 2002. - V. 4678. - P. 415-420. SPIE - The International Society for Optical Engineering. doi:10.1117/12.458469.

22. Gubareva T. V. Examinations of the structure of salt particles of a sea aerosol (laboratory experiment) // Eighth International Symposium on Atmospheric and Ocean Optics. Proceedings of SPIE. - 2002. - V. 4678. – P. 399-406. SPIE - The International Society for Optical Engineering. doi:10.1117/12.458467.

23. Gubareva T. V. Transformation marine aerosol and radiation in an atmosphere // Ninth Joint International Symposium on Atmospheric and Ocean Optics. Proceedings of SPIE. - 2003. - V. 5027. - P. 33-40. SPIE - The International Society for Optical Engineering. doi:10.1117/12.497281.

24. Gubareva T. V. Check and diagnostics of the state of sea aerosol by optical methods // Ninth Joint International Symposium on Atmospheric and Ocean Optics. Proceedings of SPIE. - 2003. - V. 5027. - P. 151-158. doi:10.1117/12.497311.

25. Gubareva T. V. Some aspects of studying of an opportunity of influence of external fields and radiations on a condition atmospheric salt aerosol // Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics. Proceedings of SPIE. - 2006. - V. 6160. - P. 2H-1/2H-6. SPIE - The International Society for Optical Engineering. doi:10.1117/12.675890

26. Gubareva T. V. Optical properties of a salt aerosol in natural and laboratory experiments // Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics. Proceedings of SPIE. - 2006. - V. 6160. - P. 2I-1/2I-9. SPIE - The International Society for Optical Engineering. doi:10.1117/12.675891.

#### Список цитированной литературы

1. Коробецкий И.А. Генезис и свойства минеральных компонентов углей / И.А. Коробецкий, М.Я. Шпирт. - Новосибирск: Наука, 1988. - 227 с.

2. Юнге Х. Химический состав и радиоактивность атмосферы. – М.: Иностранная лит-ра. - 1965. – 424 с.