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Abstract 
In this research an algorithm is proposed to produce comparative results between Pulmonary Fibrosis of 

the lungs and COVID computer tomography lung images for the purpose of research to aid in the field of 

medical science. The Siamese Network which is based on parallel tandem operation to produce comparative 

results, is altered by changing or altering the implementation function using the VGG16 neural network. The 

input data set in the method uses a variation of healthy lung CT images along with CT images of cases with 

pulmonary fibrosis and COVID. The main aim is to produce a comparative study on the textural variation of 

the CT images under study to further enhance research outputs in the future with accuracy and less time 

consumption. 

 

Introduction 
The widespread Coronavirus disease (COVID-19) has become a topic of high research [1, 2] since its fast 

and immediate spread globally which has become a serious concern since the beginning of the year 2020. 

Artificial Intelligence [3] and improved deep learning techniques [4] over the years with the help of Computer 

Tomographic (CT) scans to detect diseases has proved major success in the field of medical science. The 

AlexNet [5] in 2012 and GoogleNet [5,6] which is used to detect cancer are examples of CNN models 

producing accurate results in medical science. In the case of COVID and other related lung fibrosis CT images, 

it can be easily misclassified predicting incorrect diagnosis [7]. The textural pattern between the CT images 

can be invariantly studied simultaneously to produce differential results. By classifying and identifying various 

texture features [8,9] in these images early detection is possible without misclassification.  

Hence, with the help of a Siamese deep learning network [10], COVID abrasive manifestations in CT 

scans is distinguished from Pulmonary Fibrosis CT scans. The network is based on a divided infrastructure 

where the inputs of two variants are input simultaneously with shared weights between them. The main aim is 

produce results to aid radiologists and thereby help in future related diagnostic research. 

 

Methods and Technology 
The overall working architecture is based on the Siamese network [10] which is commonly known as the 

‘twin network’. The concept of this neural network is defined by two neural networks working parallelly in 

tandem by using a shared weights [11]. The comparative study of the varying CT lung scans consisting of 

Healthy, COVID and pulmonary fibrosis CT scans requires a modified version of the existing model. The 

VGG16 model [12] is implemented as the twin network here for the simultaneous feature detection in the 

Siamese Model. 

The parallel network Siamese model is used for presenting two input CT scans into the network and to 

verify whether the images belong to the same define classified class [13]. The model proposed is a 3D 

framework using deep learning to detect misclassified CT scans of COVID and Pulmonary Fibrosis. The model 

helps in extracting both 2D local and 3D global features [14,15]. The Siamese network in this case uses the 

VGG16 with ReLu operator. A series of CT scans are input into the model and fibrotic features are detected 

simultaneously with the help of the k-means and the region growing algorithm. The region growing algorithm 

in this case helps in detection of nodular and non-nodular regions. This is then compared with manually 

annotated images by the VGG annotator. The CT scan have now defined features which are the max pooled 

[16]. These features are then sent to the fully connected layer of the Siamese network and by the Euclidean 

distance [16] operator the features are compared and then set to a probability score by the softmax activation 

function for each classified image such as the healthy, COVID-19 and the pulmonary fibrosis CT scan. Thus, 

the final output predicts the comparative analysis. This output is further tested with a validation test dataset 

that consists of images that are already defined and accurately diagnosed. The Final output from the model is 

the verified CT image scan with classified diagnoses, eliminating the misclassified ones. . During the pre-

processing, feature extraction takes place where the fibrotic regions are identified by the K-mean algorithm. 

This unsupervised algorithm [17] helps in locating pixels of varying differential texture and clustering them by 

identifying the nearest pixels by basing it on the K-centroids. It is given as follows: 
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Where, Hf  is the objective function 

      K is the number of clusters 

       i is the number of cases 

       xn is a selected case  

            ym is the centroid for the cluster m 

 

Once the fibrotic abrasive regions have been identified, the region growing algorithm is further applied to 

differentiate the nodules from non-nodular detection. This algorithm is similar to the clustering algorithm 

where the image is partitioned into regions. The discontinuity between the greyscale property helps in 

determining any direct region. The final fully connected layer [16,17] in the VGG16 consists of 4096 channels 

in total and after the softmax activation function is applied the final output is that consisting of 1000 classes. 

This is then compared with a pretrained data set consisting of images with a healthy CT scan, COVID19 and 

pulmonary fibrosis CT scan which finally predicts the output with a true classified CT scan. After the final 

layer as depicted in the image with 1000 classes, the output is compared with the defined dataset to produce 

the required output. 

The training data set was randomly split into the data set for training the model and the comparative dataset 

for manual annotation with a ratio of 8:2. The manual annotated dataset was not include in any internal model 

training and validation [18] and only used for the purpose of comparison to produce the relative output. The 

process is carried out on an 8GB GPU processor. The dataset was divided into 6 groups and sent for testing. 

The sensitivity, specificity and the AUC are recorded to identify the distinction between COVID and fibrotic 

images. The average sensitivity and specificity recorded for COVID images equal to 0.97 and 0.94. The average 

sensitivity and specificity recoded for fibrotic images approximates to 0.93 and 0.99. 

 

Conclusion 

The robust model of the Siamese deep learning network, helps in distinguishing CT scans into a healthy 

one, COVID-19 affected and those with Pulmonary fibrosis. The VGG16 network incorporated into the 

Siamese model helps in identifying features accurately and distinctively. The CT scans on comparison with the 

ground truth classified images that were produced manually along with the k-means  and the region growing 

algorithm helps in defining the features more distinctively. 

The limitations faced by the system are due to the lack of an available large dataset containing COVID-

19 CT scans, predictions of only true or false case scenarios could be predicted. The future of the research 

would include to diagnose its severity and distinguish the cases from existing pulmonary fibrotic cases from 

post COVID-19 pulmonary fibrotic cases. However with the acquired dataset,  the model produces results with 

accuracy based on the statistical analysis with efficiency. 

 

Fig. 1. The architectural structure of the proposed model to identify healthy, COVID and 

Pulmonary Fibrosis CT Lung Scan 
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