## ИССЛЕДОВАНИЕ НАПРАВЛЕНИЯ ПРЕВРАЩЕНИЙ СМОЛИСТО-АСФАЛЬТОВЫХ КОМПОНЕНТОВ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ ПРИ ТЕРМОЛИЗЕ В УСЛОВИЯХ СВЕРХКРИТИЧЕСКОГО ИЗОПРОПИЛОВОГО ФЛЮИДА

Зырянова П.И., Кривцова К.Б.

Научный руководитель - инженер К.Б. Кривцова

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

На сегодняшний день основным энергоресурсом является лёгкая и средняя нефть, снижение запасов которой вызывает необходимость вовлечения в процессы переработки нетрадиционного углеводородного сырья (природные битумы, тяжёлые нефти и тяжёлые нефтяные остатки). Нетрадиционное нефтяное сырье отличается повышенным содержанием высокомолекулярных соединений (ВМС), представленных смолисто-асфальтеновыми веществами (САВ). САВ состоят из конденсированных ароматических углеводородов, полициклических гетероатомных и металлоорганических соединений. При термическом воздействии САВ склонны к конденсации и агрегированию, следствием чего является коксообразование. Таким образом, ВМС имеют специфические состав и химическое строение, которые обуславливает основные проблемы переработки ТНС.

Схемы процессов глубокой переработки основаны на наличии термодеструктивных процессов, в результате которых снижается молекулярная масса, и наличии водорода, позволяющем при высокой температуре и давлении снизить коксообразование и удалить гетероатомные соединения, а также на применении каталитических технологий, которые интенсифицируют вышеперечисленные процессы. Однако из-за необходимости предварительной подготовки тяжёлого нефтяного сырья, дефицита водорода и быстрой дезактивации дорогостоящего катализатора подобный подход требует больших эксплуатационных затрат. В последнее время повышенный интерес вызывают исследования, направленные на поиск альтернативного источника водорода, активатора как гидрогенизационных, так и деструктивных реакций. Так, активно изучается возможность использования доноров водорода в сверхкритических условиях (СКУ) в переработке ТНС с целью увеличения степени его конверсии [2]. Основой данных процессов служат уникальные свойства сверхкритических флюидов, обладающих высокой растворяющей и диффузионной способностью при изменении температуры и давления, а также высокой плотностью и низкой вязкостью [1].

Целью данной работы является исследование направления превращений смолисто-асфальтеновых веществ тяжелого нефтяного остатка в присутствии сверхкритического изопропилового флюида при различных термобарических параметрах.

В качестве объекта исследования выбран прямогонный мазут Усинской нефти. Эксперименты по термолизу мазута в среде сверхкритического изопропилового спирта проводились в реакторе с мешалкой объемом 60 см3 в соотношении сырье:вода 1:15, длительность процесса составила 60 мин при температурах 375 и 425 °С. Термолиз мазута без добавки проводился в реакторе объемом 13 см3 при температуре 400 °С, длительностью 60 мин. Вещественный состав продуктов термолизов определяли «горячим» методом Гольде. Элементный состав высокомолекулярных соединений после термолиза в сверхкритике изопропилового спирта (ИПС) определяли на СНNS-анализаторе Vario EL Cube (Германия). Исходные данные физико-химических характеристик и состава мазута представлены в таблице1.

Таблица 1

| Исходные физико-химические характеристики мазута Показатели Значения |  |  |  |  |
|----------------------------------------------------------------------|--|--|--|--|
| 976,5                                                                |  |  |  |  |
| 710,3                                                                |  |  |  |  |
| -                                                                    |  |  |  |  |
| 82,0                                                                 |  |  |  |  |
| 350,0                                                                |  |  |  |  |
| ав, % мас.                                                           |  |  |  |  |
| 54,5                                                                 |  |  |  |  |
| 37,0                                                                 |  |  |  |  |
| 8,5                                                                  |  |  |  |  |
|                                                                      |  |  |  |  |

В результате проведенных экспериментов установлено, что термолиз мазута в среде СКФ приводит к эффективному снижению высокомолекулярных соединений. Так, проведение термолиза в условиях сверхкритического ИПС при температуре 425 °C способствует уменьшению содержания САВ в образце: количество смол на 8,4 % ниже по сравнению с результатами, полученными после термолиза с ИПС при температуре 375 °C, и на 68,1 % больше по сравнению с термолизом без добавок. Содержание асфальтенов на 82,3 % и 75,4 % меньше по сравнению с термолизом в сверхкритике ИПС при температуре 375 °C и термолизом без добавки, соответственно. Содержание масел увеличивается на 21,2 % и 1,5 % по сравнению с термолизом без протонодонора и с ИПС при температуре 375 °C. Результаты вещественного состава продутов представлены в таблице 2.

Таблица 2

Состав продуктов термолиза в СКФ

|            | Исходный мазут | Мазут после<br>термолиза | Мазут, ИПС 375 | Мазут, ИПС 425 |
|------------|----------------|--------------------------|----------------|----------------|
| Газ        | -              | 12,41                    | 0,29           | 5,01           |
| Масла      | 54,5           | 50,41                    | 63,03          | 64,01          |
| Смолы      | 37,0           | 5,03                     | 17,23          | 15,78          |
| Асфальтены | 8,5            | 9,13                     | 12,71          | 2,25           |
| Кокс       | -              | 23,02                    | 6,73           | 12,95          |

По данным элементного анализа для асфальтенов отмечено увеличение отношения Н/С с увеличением температуры термолиза. Однако, для молекул смол наблюдается обратная зависимость: с увеличением температуры процесса отношение Н/С уменьшается. Более того, при увеличении температуры термолиза в среде сверхкритического ИПС за счет непрерывно идущих деструктивных и радикально-цепных реакций происходит переформирование ВМС. В данных преобразованиях помимо САВ участвуют частицы ИПС различного сорта, образующиеся при достижении СКУ, из-за которых происходит увеличение кислородсодержащих соединений в САВ. Также в переформировании участвуют высокомолекулярные гетероатомные соединения, которые на молекулярном уровне встраиваются в САВ. Данные факты подтверждаются увеличением доли кислорода, серы и азота в асфальтенах и смолах термолизатов. Результаты представлены на рисунках 1, 2.

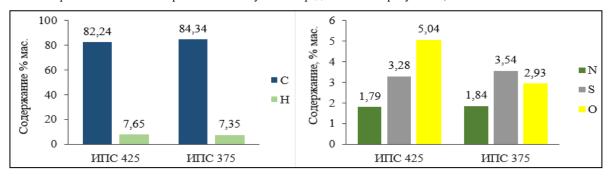



Рис. 1 Элементный состав асфальтенов после термолиза в среде сверхкритического ИПС

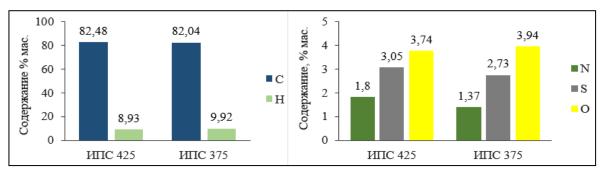



Рис. 2 Элементный состав смол после термолиза в среде сверхкритического ИПС

В результате проведенных исследований выявлено, что термолиз без добавления протонодонора не позволяет достичь необходимой степени конверсии сырья. При термолизе в среде ИПС в большей степени наблюдается снижение количества высокомолекулярных соединений по сравнению с термолизом без добавок. Однако, проведение термолиза в спиртовом флюиде при большей температуре способствует большему выходу кокса и газа. Так, содержание кокса после термолиза в среде сверхкритического ИПС при температуре 425 °С выше на 48,0 % мас., газа — на 94,2 % мас. по сравнению с результатами, полученными после термолиза при 375 °С. Деструкция САВ в условиях сверхкритического ИПС интенсифицируется с увеличением температуры, в результате чего увеличиваются доли соединений, переходящих в газы за счёт разрыва алифатических цепочек ВМС. С другой стороны, асфальтены и смолы параллельно учувствуют в реакциях поликонденсации, тем самым повышается выход кокса.

## Литература

- 1. Буслаева Е.Ю. Сверхкритический изопропанол как реагент в органической, металлоорганической, неорганической химии и нанотехнологии // Радиоэлектроника. Наносистемы. Информационные Технологии. 2012. Т. 4. № 2. С. 38–49.
- Кривцова К.Б. Термолиз нефтяного остатка в среде сверхкритического изопропилового спирта / К.Б. Кривцова, П.И. Зырянова, М.А. Копытов // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. – 2020. – № 11. – С. 17 – 20.