РАЗРАБОТКА АЛГОРИТМА ВЫБОРА МОДЕЛИ РУС ДЛЯ ЗАДАННЫХ ГОРНО-ГЕОЛОГИЧЕСКИХ УСЛОВИЙ

¹Жиронкин В.С., А.В. ¹Епихин А.В., ²Маковский Ю.С.

Научный руководитель — старший преподаватель А.В. Епихин ¹Научно исследовательский Томский политехнический университет, г. Томск, Россия ²ЧОУ ДПО «Нефтегазовый образовательный центр»

Разработка алгоритма выбора современных роторных управляемых систем (РУС) актуальна в условиях строительства сложных наклонно-направленных скважин, при помощи которых производится добыча трудно извлекаемых запасов нефти. Различные типы РУС имеют свои особенности, позволяющие реализовывать различные проекты заказчиков с максимальной эффективностью. Помимо этого, существует большое количество моделей РУС от разных производителей. Нашей целью является разработка алгоритма выбора типа и модели РУС. Для этого сформулированы следующие задачи: сравнить типы существующих РУС, ознакомиться с характеристиками РУС разных типов и моделей, выбрать модель РУС конкретного производителя.

Эффективность использования РУС на различных месторождениях в том числе нетрадиционных подтверждается исследованиями российских [6] и зарубежных [3] ученых. Существуют работы, посвященные сравнению отдельных аспектов применения РУС (эксплуатационный [1], конструктивный [5]). Вместе с тем, многообразие типов, производителей, моделей РУС ставит вопрос об определении критериев их выбора для конкретных условий. В качестве первого шага мы полагаем целесообразным рассмотреть особенности различных типов РУС (Таблица 1).

Как следует из Таблицы 1, моторизированный РУС обладает дополнительной мощностью, что позволяет разрушать более твердые породы и достигать высоких механических скоростей проходки. Гибридная РУС предназначена для строительства сложных скважин с 3D профилями. Роторные управляемые системы типа point-the-bit используются для создания более гладкого профиля скважины при отклонении, что может быть использовано при бурении скважин с протяженными участками горизонтального ствола, куда планируется спуск хвостовиков. РУС типа push-the-bit может быть использован как на шельфе, так и на море. Полностью вращающийся корпус позволяет избегать дифференциальных прихватов.

Вторым этапом должен быть выбор производителя и модели РУС исходя из их конструктивных особенностей (Таблица 2, 3). Предложенные производители и модели роторных управляемых систем взяты выборочно с целью демонстрации последовательности алгоритма.

Как следует из таблиц 2 и 3 конкурентные условия вызывают сближение моделей одного типа от разных производителей по основным параметрам. То есть, если модели роторных управляемых систем схожи по параметрам у различных производителей, то важным аспектом выбора той или иной системы будет опыт бурения в схожих геолого-технических условиях и наличие готовых решений в отношении типовых осложнений и внештатных ситуаций.

Особенности различных типов РУС

Таблииа 1

Критерии	Типы роторных управляемых систем						
	Point-the-Bit	Push-the-Bit	Гибридная	Моторизированная			
	Компании-производители и модели						
	Halliburton Geo-Pilot, Schlumberger Power Drive Xceed, и т.д.	Schlumberger PowerDrive X5, X6, Halliburton iCruise, и т.д.	Schlumberger Archer, Weatherford Revolution [4] и т.д.	Schlumberger vorteX, Baker Hughes AutoTrak X-treme, и т.д.			
Назначение	Направленное бурение, забуривание нового ствола из необсаженного ствола, бурение скважины с расширением	Бурение на шельфе и на суше, исключение эффекта прилипания (дифференциальных прихватов)	Высокое искривление скважин по зениту и азимуту, точность при забуривании нового ствола из необсаженного ствола	Трудные условия бурения, сверхглубокое бурение, нетрадиционные резервуары, высокопроизводительное бурение			
Особенности	Все элементы РУС вращаются, отсутствуют выдвижные элементы	Все элементы РУС вращаются, имеются выдвижные элементы	Имеется не вращающийся блок (Weatherford Revolution), отсутствуют выдвижные элементы	Встроенный в РУС забойный двигатель, имеются выдвижные элементы			
Преимущества	Надежность для точной проводки скважин в осложненных условиях на забое	Непрерывный контроль траектории скважины при бурении твердых пород	Высокая интенсивность набора зенитного угла и высокая скорость проходки	Усиление забойной мощностью, увеличение нагрузки на долото за счет увеличения кругящего момента, увеличение скорости механической проходки			

Таблица 2 Сравнение параметров отдельных моделей РУС ряда ведущих производителей на примере push-the-bit и pointthe-bit

Параметры	Point-tl	ne-Bit	Push-the-Bit		
	Schlumberger	Gyrodata	Schlumberger	APS Technology	
	Power Drive Xceed	Wellguide	Power Drive X6	SureSteer-RSS475	
			[2]		
Диаметр ствола, мм	175,5-228,6	120-254	120,7-279,4	121-171	
Максимальная скорость	350	150-250	125-220	200	
вращения, об/мин					
Максимальный крутящий	25-61	10,8-41	12,2-94,9	13,1	
момент на долоте, кН*м					
Максимальная	6,5-8	3-12,5	2-10	12	
пространственная					
интенсивность, °/30 м					
Максимальная осевая	244,6-333,6 /	113,2 / (138)	137,8-1000,8 /	(137,9)	
нагрузка, кН /	(137,9)		(137,9)		
(Максимальное давление					
на забое, Мпа)					

На третьем шаге необходимо удостовериться в том, что выбранная модель РУС соответствует горногеологическим условиям бурения и технико-технологическим особенностям проекта на скважину (планируемый диаметр скважины, термобарические условия разреза, характеристики и тип бурового раствора, требуемые интенсивности искривления по интервалам профиля, общая протяженность скважины), которые определяют технологические характеристики РУС, исходя из которых и происходит выбор типа и модели.

Резюмируя вышесказанное можно сделать вывод, что алгоритм подбора роторной управляемой системы накладывают влияние не только горно-геологические и технико-технологические условия строительства скважины, но и опыт работы в подобных условиях. Это объясняется тем, что роторные управляемые системы — высокотехнологичное оборудование, пределы эксплуатации и особенности использования которого еще не до конца изучены. Следовательно, работа в каждом новом проекте дает для разработчиков роторных управляемых систем ряд направлений для корректировки и улучшения функционирования оборудования.

Таблица 3 Сравнение параметров отдельных моделей РУС ряда ведущих производителей на примере гибридных и моторизированных моделей

Параметры	Гибридная		Моторизированная	
	Schlumberger	Weatherford	Schlumberger	APS technology
	Archer	Revolution	VorteX	SureSteer-RSM675
Диаметр ствола, мм	120,7-171,5	146-470	127-244	213-222
Максимальная скорость вращения, об/мин	350	300	350	80
Максимальный крутящий момент на долоте, кН*м	12,2-21,6	27,1-86,7	16,2-88,1	15
Максимальная пространственная интенсивность, °/30 м	15-18	15-18	5-10	8
Максимальная осевая нагрузка, кН / (Максимальное давление на забое, Мпа)	155,6-244,6 / (137,9)	113,4-408,2 / (172-207)	133,4-533,7 / (137,9)	(137,9)

Литература

- Marck, J. / Influence of Rotary-Steerable-System Design on Borehole Spiraling. Marck, J., Detournay. E. // SPE Journal. 2016. – Vol. 21. – P.293–302.
- 2. Schlumberger PowerDrive X6. Rotary Steerable System, 2017. [Электронный ресурс] Режим доступа: https://www.slb.com/-/media/files/drilling/product-sheet/powerdrive-x6-ps.ashx [2.02.2021].
- 3. Tribe, I.R. / Precise Well Placement With Rotary Steerable Systems and Logging-While-Drilling Measurements. Tribe, I.R., Burns, L., Howell, P.D., and R. Dickson // SPE Drill & Complection. 2003. Vol. 18. P. 42–49.
- Weatherford Revolution. Rotary Steerable System, 2015. [Электронный ресурс] Режим доступа: <u>https://www.weatherford.com/en/documents/brochure/products-and-services/drilling/revolution-rotary-steerable-systems/</u> – [2.02.2021].
- 5. Епихин А.В., Жиронкин В.С., Яночко Ю. Влияние нагрузок на надежность роторной управляемой системы наклоннонаправленного бурения типа «Push-the-bit» // Вестник КузГТУ. – Кемерово, 2020. – № 3. – С. 45-57.
- 6. Крюков О.В., Фонг, Нгуен Куок, Г.Г. Лапухин. Опыт применения роторных управляемых систем при бурении наклонно-направленных скважин на месторождениях СП «Вьетсовпетро» // Нефтяное хозяйство. М, 2017. № 1. С. 28–30.