на правах рукописи

Prof

Пустовалов Алексей Витальевич

ВЛИЯНИЕ ГАЗОВОЙ СРЕДЫ НА ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОГО ВЗРЫВА ПРОВОДНИКОВ И СВОЙСТВА ПОЛУЧАЕМЫХ НАНОПОРОШКОВ

Специальность 05.14.12 – техника высоких напряжений

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Томск – 2015

Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский политехнический университет»

Научный руководитель: Коршунов Андрей Владимирович, доктор химических наук, профессор

Официальные Шнеерсон Герман оппоненты: Абрамович, членкорреспондент Российской академии наук, доктор технических наук, профессор, Санкт-Петербургский государственный политехнический университет. г. Санкт-Петербург, профессор кафедры «Техника напряжений, электроизоляционная высоких И кабельная техника». Бекетов Игорь Валентинович, кандидат технических Институт электрофизики Уральского наук, Российской отделения академии наук, г. Екатеринбург, заведующий лабораторией импульсных процессов.

Ведущая организация: Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН), г. Томск.

Защита состоится «29» апреля 2015 г. в 14⁰⁰ часов на заседании диссертационного совета Д212.269.10 при ФГАОУ ВО НИ ТПУ по адресу: 634050 г. Томск, пр. Ленина, 30.

С диссертацией можно ознакомиться в библиотеке ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» по адресу: г.Томск, ул. Белинского, 55 и на сайте: http://portal.tpu.ru/council/2800/worklist

Автореферат разослан «12»марта 2015 г.

Ученый секретарь диссертационного совета Д 212.269.10 доктор технических наук, профессор

Harfaref

А.В. Кабышев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Развитие нанотехнологий является одним из приоритетных направлений развития науки, технологий и техники в Российской Федерации. К важнейшим направлениям нанотехнологий получение объектов нанометрового относится размера, в частности, При переходе нанопорошков металлов. массивных металлов OT к высокодисперсным порошкам наночастицам изменяется И ряд фундаментальных свойств материала (температура плавления, работа выхода электронов, химическая активность и др.). Это позволяет получать новые металлические и композиционные материалы с улучшенными механическими, электрофизическими, магнитными, физико-химическими характеристиками.

Одним из методов получения металлических нанопорошков является электрический взрыв проводников (ЭВП). Варьирование параметров ЭВП позволяет получать нанопорошки с многоуровневой структурной организацией (монокристалл, поликристалл) и заданным интервалом распределения частиц по размерам, что позволяет контролировать характеристики конечного продукта. Для метода ЭВП характерны низкая энергозатратность, связанная с импульсным подводом энергии к проводнику, простота технологии, доступность исходного сырья.

При получении металлических нанопорошков В условиях ЭВП используют инертные газы (Ar, Xe, He) или газы с относительно низкой химической активностью (H₂, N₂, CO). Характеристики газовой среды определяют протекание процесса взрыва и оказывают существенное влияние на формирование металлических частиц. Несмотря на большое число работ в области электрического взрыва проводников влияние газовой среды на взрыва систематически не изучено, закономерности методики расчёта параметров ЭВП с учетом свойств газовой среды отсутствуют. В связи с этим исследование влияния характеристик газовой среды на закономерности протекания ЭВП и свойства металлических нанопорошков имеют важное фундаментальное И прикладное значение. Несомненный интерес для практического применения металлических нанопорошков представляет упрощение технологии пассивирования металлических частиц с целью повышения устойчивости порошков при их хранении и использовании.

Работа выполнена в рамках ФЦП «Научные и научно-педагогические кадры инновационной России на 2009–2013 гг.», проект «Исследование коллоидно-химических свойств нанодисперсий и органозолей металлов и их сульфидов, получаемых диспергационными методами» (ГК № П1042 от 31.05.2010 г.), проект «Исследование электрокинетических явлений в нанодисперсных лиозолях и аэрозолях металлов, полученных методом импульсных электрических разрядов в газовых и жидких средах» (ГК № П270 от 23.07.2009 г.).

3

<u>Цель диссертационной работы</u>: установить влияние давления, состава и электрической прочности газовой среды на энергетические характеристики электрического взрыва проводников и на дисперсность, фазовый состав и физико-химические свойства получаемых металлических нанопорошков.

<u>Идея работы</u> заключается в контроле параметров ЭВП и характеристик получаемых металлических нанопорошков при изменении свойств газовой среды.

Для достижения поставленной цели потребовалось решить следующие задачи:

1. Экспериментально определить параметры ЭВП Al и Fe (C, U_0 , L_{κ} , l, d), обеспечивающие критический режим взрыва в атмосфере воздуха и аргона при давлении от 1 до 6 атм. Установить закономерности изменения энергетических параметров (e/e_c , η , $t_{\text{ЭВП}}$, j) критического режима взрыва при изменении состава и давления газа.

2. Установить количественные зависимости $\lambda_{\kappa} = f(\varepsilon, v), \quad \eta_{\kappa} = f(\varepsilon),$ необходимые для расчета параметров критического взрыва в атмосфере аргона при заданном давлении.

3. Исследовать закономерности протекания ЭВП в режимах, отличных от критического. Установить характер изменения энергетических параметров ЭВП при изменении газовой среды с воздуха на аргон.

4. Исследовать влияние давления аргона на среднеповерхностный диаметр частиц с учетом изменения пробивного напряжения газа при изменении его давления.

5. Установить влияние энергии, вводимой в проводник, и энергии, выделяемой в дуговой стадии разряда, на дисперсность и физико-химические свойства нанопорошков Al и Fe при постоянстве остальных параметров ЭВП.

6. Определить целесообразность использования методики пассивирования металлических нанопорошков непосредственно в процессе ЭВП в атмосфере аргона с добавками кислорода и углекислого газа.

Научная новизна работы заключается в следующем:

1. Предложен оригинальный способ исключения влияния дуговой стадии разряда ЭВП, заключающийся в отводе энергии дуги с использованием дополнительного разрядника, который позволяет установить влияние дуговой стадии разряда на формирование частиц металлического порошка.

2. Экспериментально установлены зависимости между энергетическими характеристиками ЭВП, давлением газовой среды и переменными ε, λ и ν. Предложены системы эмпирических уравнений, позволяющих рассчитать параметры ЭВП, обеспечивающие выбранный режим взрыва.

3. Предложен критерий, связывающий давление газа, длину взрываемого проводника и напряжение зажигания дуговой стадии разряда $U_3 = f(P^{0,25}l)$ при

ЭВП в критическом режиме взрыва, который является универсальным для ЭВП различных металлов в различных газовых средах.

4. Экспериментально установлено, что отключение дуговой стадии разряда приводит к увеличению среднего размера частиц Al на 15 %, Fe – на 50 % при условии ввода в проводник энергии до $2e_c$.

5. Введение в атмосферу Ar добавок CO₂ от 0,06 до 0,08 г_{CO2}/г_{Me} в процессе ЭВП Al и Fe позволяет получать пассивированные металлические нанопорошки с низкой степенью агломерированности.

Положения, выносимые на защиту:

1. Методика расчета параметров заданного режима ЭВП в атмосфере аргона с учетом давления газа, основанная на экспериментальных зависимостях между энергетическими характеристиками ЭВП, давлением газовой среды и обобщенными переменными подобия ЭВП *ε*, *λ* и *v*.

2. Критерий, определяющий условие зажигания дугового разряда в критическом режиме ЭВП $U_3 = f(P^{0,25} \cdot l)$.

3. Увеличение энергии, выделяемой в дуговой стадии разряда до $2e_c$ при ЭВП Al, приводит к уменьшению среднеповерхностного диаметра частиц на 15 %, при ЭВП Fe – на 50 %.

4. Усовершенствованный метод пассивирования нанопорошков Al и Fe непосредственно в процессе ЭВП, заключающийся во введении O_2 в атмосферу Ar до 0,04 Γ_{O2}/Γ_{Al} или CO_2 до 0,08 Γ_{CO2}/Γ_{Al} при получении Al, и до 0,03 Γ_{O2}/Γ_{Fe} или 0,06 Γ_{CO2}/Γ_{Fe} при получении Fe, позволяющий получать нанопорошки с низкой степенью агломерированности.

Практическая ценность работы заключается в следующем:

1. На основании результатов работы рассчитаны параметры (C, U_0 , L_{κ} , l, d) технологического процесса получения нанопорошков из платинородиевого сплава в атмосфере Ar и изготовлена установка для американской фирмы "Owens Corning Science & Technology LLC" (контракт № 3-673/2013КУ).

2. Предложена методика расчета параметров ЭВП (C, U_0 , L_{κ} , l, d) с учетом давления газа, которая может быть использована для расчета начальных условий ЭВП различных металлов в различных газовых средах.

3. Результаты исследования влияния дуговой стадии разряда на дисперсность порошков позволили уточнить существующие режимы ЭВП для получения порошков тугоплавких металлов (Fe, Ni, Mo, W, Pt).

<u>Личный вклад соискателя</u> заключается в постановке задач и программы исследования, в обработке и интерпретации экспериментальных и расчетных данных, обобщении установленных закономерностей, формулировании положений и выводов диссертационной работы. Все результаты, приведенные в диссертации, получены самим автором или при его непосредственном участии.

Апробация работы. Основные результаты по теме диссертационной работы доложены и обсуждены на XVIII Российской молодежной научной экспериментальной конференции «Проблемы теоретической и химии» (г. Екатеринбург); Третьем международном форуме по нанотехнологиям (г. Москва): XV, XVIII. XVII международных научно-практических конференциях студентов и молодых ученых «Современные техника И технологии» (г. Томск); VIII международной конференции студентов И молодых ученых «Перспективы развития фундаментальных наук» (г. Томск); XIX Менделеевском съезде по общей и прикладной химии (г. Волгоград); 3-й Всероссийской научной конференции с международным участием «Наноматериалы и технологии» (г. Улан-Удэ); VII международном форуме по стратегическим технологиям «The 7th International Forum on Strategic Technology IFOST 2012» (г. Томск)

Публикации. По теме диссертации опубликовано 21 работа, в том числе 4 статьи в журналах из списка ВАК, 2 статьи в зарубежных журналах.

<u>Структура и объем диссертационной работы.</u> Диссертация состоит из введения, пяти глав, выводов и списка цитируемой литературы. Диссертация изложена на 132 страницах, включает 66 рисунков, 22 таблицы и список литературы из 94 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, определена цель и поставлены задачи исследования, сформулированы новизна, защищаемые положения и практическая значимость работы.

В первой главе приведены результаты обзора литературных данных о характеристик ЭВП на свойства получаемых влиянии порошков. Проанализирована роль энергии, вводимой в проводник, и энергии, выделяемой в дуговой стадии разряда, состава газовой атмосферы и давления на дисперсность фазовый получаемых частиц. Приведено И состав феноменологическое описание процесса ЭВП, обсуждены закономерности разрушения проводника в зависимости от начальных условий взрыва. Проанализированы методы расчета начальных условий ЭВП, обеспечивающих необходимый режим взрыва. Обоснована постановка цели задач И исследования.

Во второй главе описана экспериментальная установка, представлены методики исследования процесса ЭВП, аналитические методики определения свойств получаемых порошков металлов.

Исследование процесса ЭВП и получение образцов порошков металлов осуществляли с использованием установки, схема которой представлена на рисунке 1.

Рисунок 1 – Схема установки: 1 – коммутатор (P₁), 2 – реактор, 3 – устройство подачи проволоки, 4 – устройство улавливания порошка, 5 – фильтр напуска и забора газа, 6 – ротаметр, 7 – вентилятор.

Установка работает следующим образом. Источник высокого напряжения заряжает конденсатор (С) до заданного уровня. Устройство подачи проводника обеспечивает выпрямление и подачу проволоки (3) В реактор (2)технологического модуля. При приближении проводника к высоковольтному происходит срабатывание коммутатора И электроду (1)конденсатор разряжается на участок проволоки между высоковольтным и заземленным электродами. Проводник взрывается, продукты взрыва с помощью устройства улавливания порошка (4) собираются в контейнере. Далее процесс повторяется. Электрический взрыв проводников осуществляли в атмосфере воздуха при н.у. (давление 1 атм, температура 20° C), в атмосфере аргона при давлении от 1 до 6 атм, а также в смеси аргона с O_2 и CO_2 при давлении 2 атм.

Режимы электрического взрыва, удельную энергию, вводимую в проводник при взрыве (*e*), удельную энергию выделяемую в дуговой стадии разряда (e_{Λ}), коэффициент передачи энергии от накопителя к проводнику (η), время протекания процесса ($t_{3B\Pi}$) и плотность тока (*j*) определяли по

осциллограммам тока по методике ¹. Параметры ЭВП оценивали с использованием обобщенных переменных²:

$$\varepsilon = \frac{CU_0^2 \cdot 10^{-18}}{n^2 d^4 Z}, \quad \left[\frac{\mathcal{A}\mathcal{H}}{\mathcal{M}^4 O \mathcal{M}}\right]; \quad \lambda = \frac{l \cdot 10^{-6}}{n d^2 Z}, \left[\frac{1}{O \mathcal{M} \cdot \mathcal{M}}\right]; \quad \nu = \frac{10^3 \cdot \sqrt{LC}}{d}, \left[\frac{c}{\mathcal{M}}\right] \quad (1)$$

где C – емкость конденсаторной батареи [Ф]; U_0 – зарядное напряжение [В]; d – диаметр проводника [м]; Z – волновое сопротивление контура [Ом]; l – длина взрываемого проводника [м]; L – индуктивность контура [Гн]; n – число взрываемых проводников.

На основе анализа литературных данных были выбраны граничные условия:

$$0,08 \le \varepsilon \le 1,8$$

 $3,7 \le v \le 6,4$
 $0,4 \le \lambda \le 5,9$

Исследование влияния давления аргона на протекание процесса ЭВП приводили в два этапа. На первом этапе изучено влияние давления аргона на критический режим взрыва (кривая 2 на рисунке 2, *a*), определены зависимости λ_{κ} от ε и v, η_{κ} от ε в атмосфере воздуха и аргона. На втором – исследовали режимы ЭВП с длиной проводника, меньшей длины, обеспечивающей критический взрыв. Определены зависимости η/η_{κ} от λ/λ_{κ} и e/e_{c} от λ/λ_{κ} при постоянстве ε и v для режимов без паузы тока (кривая 3 на рисунке 2, *a*).

Рисунок 2 – а) Осциллограммы тока и напряжения ЭВП: 1- режим с паузой тока; 2 – критический режим; 3 – режим без паузы тока
б) LC контур с дополнительным разрядником. Р₁ – основной коммутатор; Р₂ – дополнительный коммутатор; ВП – взрываемый проводник

¹ Кварцхава, И.Ф. Осциллографическое определение энергии электрического взрыва проволочек / Кварцхава И.Ф., Бондаренко В.В. Плютто А.А. и др. // Ж. эксп. и Теор. Физ. – 1956. – Т.31, – Вып. 5, – С. 745-751

² Азаркевич, Е. И. Применение теории подобия к расчету некоторых характеристик электрического взрыва проводников / Е. И. Азаркевич // ЖТФ. – 1973. – Т. 43. – № 1. – С. 141

Для изучения влияния дуговой стадии разряда на свойства получаемых порошков в установку был добавлен дополнительный коммутатор (рисунок 2, δ), роль которого заключалась в шунтировании дуговой стадии разряда. Разрядник коммутировался пиком перенапряжения ($U_{\rm n}$) (рисунок 2, a), возникающим в момент электрического взрыва проводника.

Для исследования влияния газовой среды на процесс ЭВП и свойства получаемых порошков были выбраны алюминиевые и железные проводники. Выбор материала проводников обусловлен различием их физических свойств и практической значимостью нанопорошков этих металлов. Для электрического взрыва проводника использовали алюминиевую проволоку марки АТ диаметром 0,35 и 0,25 мм и низкоуглеродистую стальную проволоку марки CB08 диаметром 0,35 и 0,20 мм.

Форму и размеры частиц металлических порошков определяли с использованием просвечивающего (JEM-2100F) и растрового (JSM-7500F) электронных микроскопов, по фотографиям образцов строили гистограммы распределения частиц по диаметру. По площади удельной поверхности (S_{yq}) порошков, измеренной с помощью прибора «Сорбтометр–М» по методу БЭТ, рассчитывали среднеповерхностный диаметр частиц (d_s). Массовую долю металла в порошках определяли с использованием волюмометрического анализа по объему водорода. Рентгенофазовый анализ образцов осуществляли при помощи дифрактометра Shimadzu XRD–7000 (Си_{Ка}-излучение). Физико-химические процессы при нагревании порошков в атмосфере аргона и воздуха изучали с использованием метода дифференциально-термического анализа (ДТА) (термоанализатор SDT Q 600), скорость нагрева 10 °С/мин, объемная скорость потока рабочего газа 100 мл/мин.

В третьей главе диссертации приведены результаты исследования влияния давления аргона на протекание ЭВП и изменение основных характеристик взрыва, таких как вводимой в проводник энергии, энергии, выделяемой в дуговой стадии разряда, и коэффициента передачи энергии от накопителя к проводнику.

Анализ полученных данных для критического режима взрыва Al и Fe проводников в атмосфере воздуха показал, что описанные в литературе зависимости $\lambda_{\kappa} = f(\varepsilon, v), e_{\kappa} = f(\varepsilon, \lambda, v)$ и $\eta_{\kappa} = f(\varepsilon)$ недостаточно точны для использования их в расчетах. Для более точного вычисления параметров ЭВП, обеспечивающих условия критического режима взрыва, предложены системы уравнений:

для Al:
$$\begin{cases} \lambda_{\kappa} = 2,5(\varepsilon \cdot \upsilon)^{0,53} \\ \eta_{\kappa} = 36\varepsilon^{-0,5} \end{cases}, \quad (2) \quad для Fe: \begin{cases} \lambda_{\kappa} = 3\varepsilon^{0,53} \\ \eta_{\kappa} = 45\varepsilon^{-0,35} \end{cases}$$
(3)

Расчет критических режимов ЭВП в атмосфере Ar при различных давлениях осуществляли относительно ЭВП в атмосфере воздуха при н.у. Исследования ЭВП в атмосфере Ar при давлениях от 1 до 6 атм позволили установить, что параметры критического взрыва в Ar при давлении 6 атм

совпадают с параметрами критического взрыва в воздухе при н.у. С уменьшением давления Ar снижается пробивное напряжение газа, при этом для обеспечения критического режима взрыва длина проводника должна быть увеличена.

Исследования напряжения зажигания дуговой стадии разряда (U_3) в критическом режиме взрыва показали, что U_3 при различных давлениях Ar и различных значениях длины взрываемого проводника для ЭВП одного металла описываются функцией $P^{0,25}l$ (рисунок 3). Для определения напряжения зажигания дугового разряда в критическом режиме взрыва соотношение $(P^{0,25}l)$ может быть использовано в качестве критерия, сходного с критерием для разряда в газе.

Рисунок 3 – Зависимость напряжения зажигания дугового разряда в критическом режиме ЭВП от произведения *P*^{0,25}·*l*.

На основании проведенных исследований предложено уравнение, позволяющее рассчитать длину проводника, обеспечивающую критический режим ЭВП в атмосфере аргона при различных давлениях относительно расчетной $l_{\rm k}$ для ЭВП в воздухе при н.у.:

$$l_{\kappa}^{\rm Ar} = 1,55 \cdot P^{-0,25} \cdot l_{\kappa}^{\rm B}$$
(4)

Исследования режимов ЭВП в воздухе при н.у. при длине проводника, меньшей критической, показали, что рост удельной энергии, вводимой в проводник при взрыве, наблюдается в интервале $0,4 \le l/l_{\kappa} \le 1$ (рисунок 4). При длине взрываемого проводника, меньшей $0,4l_{\kappa}$, наблюдается снижение удельной энергии, вводимой в проводник, вызванное ранним развитием дуговой стадии разряда.

Аналогичные исследования, проведенные в среде Ar при давлении от 1 до 6 атм, показали, что зависимости, описывающие основные параметры ЭВП при P = 6 атм, также совпадают с аналогичными зависимостями для воздуха при н.у. Уменьшение давления Ar приводит к уменьшению пробивного напряжения

газа, и как следствие, к более раннему наступлению момента развития дугового разряда. При этом максимальный уровень вводимой в проводник энергии уменьшается и смещается в сторону больших длин проводника (рисунок 5).

Рисунок 5 – Зависимости параметров взрыва от длины взрываемого проводника. ЭВП в аргоне при различных давлениях. а) A1, $\varepsilon = 0,30 \pm 0,03 \ \text{Дж/м}^4 \text{Ом}, \upsilon = 3,7 \ \text{с/m},$ б) Fe, $\varepsilon = 0,23 \pm 0,02 \ \text{Дж/м}^4 \text{Om}, \upsilon = 3,7 \ \text{с/m},$ — - функции для ЭВП в воздухе при н.у.

На основании полученных результатов предложены уравнения, позволяющие рассчитать параметры ЭВП Аl и Fe в атмосфере воздуха, обеспечивающие режимы с максимальным уровнем энергии, вводимой в проводник при взрыве:

для Al:
$$\begin{cases} \lambda_{min} = 0.4\lambda_{\kappa} \\ \eta_{min} = 0.7\eta_{\kappa} \\ \left(\frac{e}{e_c}\right)_{max} = 5.03\varepsilon^{0.14}v^{-0.36} \end{cases}$$
(5); для Fe:
$$\begin{cases} \lambda_{min} = 0.45\lambda_{\kappa} \\ \eta_{min} = 0.65\eta_{\kappa} \\ \left(\frac{e}{e_c}\right)_{max} = 2.46\varepsilon^{0.12} \end{cases}$$
(6)

Для расчета максимального уровня вводимой в проводник энергии при взрыве в атмосфере Ar при заданном давлении предложены уравнения:

$$\begin{cases} \lambda_{min}^{Ar} = 2,15P^{-0,42} \cdot \lambda_{min}^{B^{03,4}} \\ \eta_{min}^{Ar} = 1,25P^{-0,11} \cdot \eta_{min}^{B^{03,4}} \\ \left(\frac{e}{e_c}\right)_{max}^{Ar} = 0,58P^{0,31} \left(\frac{e}{e_c}\right)_{max}^{B^{03,4}} \end{cases}$$
(7)

Уравнения (7) справедливы как для ЭВП Аl, так и для ЭВП Fe.

Таким образом, повышение напряжения пробоя газа при повышении давления (изменении электрической прочности) позволяет отсрочить момент зажигания дугового разряда и тем самым увеличить энергию, вводимую в проводник при ЭВП. Предложена методика расчета критического режима взрыва Al и Fe проводников в атмосфере Ar при заданном давлении. Предложены уравнения, позволяющие рассчитать параметры ЭВП, обеспечивающие режимы с максимальным уровнем e/e_c .

В четвертой главе приведены результаты исследований влияния давления аргона, вводимой в проводник энергии, и энергии, выделяемой в дуговой стадии разряда, на физико-химические свойства порошков Al и Fe.

Изучение влияния давления аргона на дисперсность получаемых порошков проводили при условии, что коэффициент передачи энергии от накопителя к проводнику изменялся от 90 % до 50 %. В этих условиях энергия, выделяемая в дуговой стадии разряда, составляла менее 0,5 от энергии, вводимой в проводник. Это позволило исключить ее существенное влияние на формирование частиц порошка.

При увеличении давления Ar среднеповерхностный диаметр частиц увеличивается, что соответствует литературным данным. Увеличение давления Ar от 1,5 до 6 атм позволяет повысить максимальный уровень e/e_c , что, в свою очередь, способствует дальнейшему снижению d_s частиц (рисунок 6).

Рисунок 6 – Зависимость среднеповерхностного диаметра частиц от удельной энергии, введенной в проводник, при различных давлениях аргона: a) Al, б) Fe

На основании полученных данных предложено уравнение зависимости среднеповерхностного диаметра частиц Al и Fe, формирующихся в условиях ЭВП в атмосфере Ar, от энергии, вводимой в проводник:

$$d_{\rm s} = k \exp^{0.12P} \left(e/e_{\rm c} \right)^{-b} \tag{8}$$

где коэффициенты k и b для Al равны 250 и 1,3, а для Fe – 185 и 1,44, соответственно.

По уравнениям (5–8) был проведен расчет зависимости максимального уровня вводимой в проводник энергии и среднего размера частиц от давления Ar (рисунок 7).

Рисунок 7 – Расчетные зависимости максимального уровня вводимой в проводник энергии при ЭВП и среднего диаметра частиц от давления Ar: a) Al; б) Fe (ε = 0,3; v = 3,6)

Из расчетов следует, что максимальный уровень e/e_c возрастает во всем интервале давлений. Наиболее интенсивный рост наблюдается при изменении давления от 0,5 до 6 атм, зависимость d_s от P проходит через минимум в области 2–4 атм. При P < 2 атм d_s возрастает с уменьшением давления, что вызвано уменьшением максимального уровня вводимой в проводник энергии. При P > 4 атм, несмотря на рост максимального уровня e/e_c , d_s увеличивается. Это вызвано возрастанием сопротивления газа расширяющимся продуктам взрыва, что приводит к увеличению концентрации пара в момент конденсации частиц.

Влияние энергии, выделяемой в дуговой стадии разряда, изучали при постоянном давлении аргона 3 атм, при этом исследовали характеристики порошков, полученных в режимах ЭВП с $20 \le \eta \le 90$ %, а также в условиях раннего развития дуговой стадии разряда. Результаты исследования показали, что повышение вводимой в проводник энергии от $0.9e_c$ до $1.9e_c$ позволяет уменьшить d_s частиц более чем в 2 раза (от 400 до 165 нм). Увеличение энергии, выделяемой в дуговой стадии разряда, от $0.9e_c$ до $2e_c$ при $e/e_c = 1.9$ (образцы Al-114 и Al-86, таблица 1) позволяет уменьшить d_s на 10% (от 165 до 150 нм).

						1				1						
Образец	<i>U</i> , кВ	С, мкФ	<i>l</i> , мм	e/e _c	$e_{\rm A}/e_{\rm c}$	<i>t</i> _{ЭВП} , мкс	η, %	$S_{ m yd},$ ${ m m}^2/{ m r}$	<i>d</i> _s , нм	Аl ⁰ , мас. %	РФА	ПЭМ				
											$d_{\mathrm{OKP}},$	a _n ,	$a_{\rm s}$,	$a_{\rm m}$,	1.	A_{\max} ,
											HM	HM	HM	HM	HM	МКМ
Al-110	19	1,08	120	0,9	0	2,3	87	5,6	400	96	> 150	160	240	380	0,4	4,1
Al-140	18	1,08	95	1,1	pprox 0	2,2	87	7,6	290	93						
Al-73	22	1,08	110	1,2	0,1	1,8	86	8,8	250	92						
Al-72	22	1,08	85	1,6	0,2	1,7	82	10,3	215	91						
Al-74	22	1,08	70	1,8	0,3	1,6	74	12,5	180	91						
Al-114	29	1,08	85	1,9	0,9	1,5	67	13,5	165	90						
Al-86	30	2,16	120	1,9	2	1,3	43	14,5	150	89	72	120	140	170	0,7	1,1
Al-77	29	1,08	40	1,6	3,8	1,2	46	12,2	180	90						
Al-119	30	2,18	30	0,8	12,5	0,95	4	12,7	175	90	89	130	170	200	0,7	1,8
Примечание: Лиаметр Al проволоки $d = 0.25$ мм $P_{Ar} = 3$ атм Al^0 – содержание																

Таблица 1 – Влияние энергетических параметров ЭВП на характеристики Аl порошков.

Примечание: Диаметр Al проволоки d = 0,25 мм, $P_{Ar} = 3$ атм, Al^o – содержание металлического алюминия в порошке, d_{OKP} – размер областей когерентного рассеяния; a_n, a_s, a_m – среднечисловой, среднеповерхностный и среднемассовый диаметр частиц, k – коэффициент полидисперсности частиц, A_{max} – максимальный диаметр частиц по данным ПЭМ.

Рисунок 8 – Микрофотографии и гистограмма распределения частиц по размерам: образец Al-110.

Рисунок 9 – Микрофотографии и гистограмма распределения частиц по размерам: образец Al-86.

С уменьшением $d_{\rm S}$ частиц происходит уменьшение содержания металлического алюминия в порошках после их пассивирования от 96 до 89 мас. %, размеров $d_{\rm OKP}$ от 150 до 72 нм и размеров частиц микронного

диапазона. При этом интервал распределения частиц по диаметру сужается, максимальный диаметр смещается в область меньших значений (рисунки 8 и 9), коэффициент полидисперсности порошка возрастает.

В режимах с ранним развитием дуговой стадии разряда с уменьшением e/e_c наблюдается увеличение d_s . Из данных ПЭМ следует, что в образце фиксируется значительная доля спеченных частиц (рисунок 10).

Рисунок 10 – Микрофотографии и гистограмма распределения частиц по размерам: образец Al-119.

Отключение дуговой стадии разряда при ЭВП с помощью дополнительного коммутатора приводит к увеличению среднеповерхностного диаметра частиц не более, чем 15 % (рисунок 11).

Рисунок 11 – Зависимость среднеповерхностного диаметра Al частиц от энергии, вводимой в проводник

Из анализа результатов следует, что для получения порошков Al с наименьшим среднеповерхностным диаметром частиц следует применять режимы ЭВП с максимальным уровнем энергии, вводимой в проводник. Увеличение энергии, выделяемой в дуговой стадии разряда, с целью дополнительного уменьшения среднего размера частиц является нерациональным.

С помощью ДТА показано, что при уменьшении d_s частиц Al скорость окисления при нагревании электровзрывных порошков в атмосфере воздуха возрастает более чем в 100 раз. Образец, полученный при $0.9e_c$ ($d_s = 400$ нм) окисляется с максимальной скоростью $1.6 \cdot 10^{-3}$ мг/с, уменьшение d_s частиц до 150 нм приводит к увеличению скорости окисления до $220 \cdot 10^{-3}$ мг/с.

Изучение влияния e/e_c и e_{a}/e_c на дисперсность нанопорошков Fe показало, что d_s частиц увеличивается с ростом как e/e_c , так и e_{a}/e_c . Увеличение e/e_c от 0,8 до максимально возможного уровня 1,6 приводит к уменьшению d_s более чем в два раза от 330 до 135 нм (таблица 2). При этом зависимость d_s от e/e_c описывается уравнением (8).

Образец	<i>U</i> , кВ	<i>l</i> , мм	e/e _c	$e_{\rm A}/e_{ m c}$	<i>t</i> _{ЭВП} , мкс	η, %	$S_{ m yd},$ ${ m m}^2/{ m \Gamma}$	<i>d</i> _S , нм	Fe ⁰ ,	РФА	ПЭМ			
									масс.	$d_{\mathrm{OKP}},$	a _n ,	$a_{\rm s}$,	k	A_{\max} ,
									%	HM	HM	HM	ĸ	МКМ
Fe-85	20	90	0,8	0,02	4,8	91	2,3	330	91	112	110	170	0,3	6,3
Fe-30	26	95	1,2	0,13	3,2	84	4,1	185	90					
Fe-59	29	95	1,45	0,21	3	81	4,5	170	85					
Fe-32	26	65	1,49	0,44	2,4	66	5,1	150	88					
Fe-27	30	96	1,5	0,26	2,7	78	5,2	145	84					
Fe-82	29	55	1,6	1,18	1,6	49	5,6	135	86	45	103	120	0,7	1,2
Fe-26	32	60	1,3	1,22	1,63	38	6,4	120	85					
Fe-62	29	40	0,9	2,35	1,4	23	8	95	84	33	90	100	0,7	1,4

Таблица 2 – Влияние энергетических параметров ЭВП на характеристики порошков Fe

Примечание: d = 0.35 мм; C = 2.27 мк Φ ; L = 0.75 мк Γ н; $P_{Ar} = 3$ атм.

Рисунок 12 – Зависимость среднеповерхностного диаметра частиц Fe от суммы энергии, вводимой в проводник при взрыве, и энергии, выделяющейся в дуговой стадии разряда

В режимах с ранним развитием дуговой стадии разряда, несмотря на снижение e/e_c , d_s частиц уменьшается. Образец, полученный при минимальном уровне e/e_c и максимальном e_{π}/e_c (образец Fe-62), характеризуется наименьшим d_s частиц (95 нм). Так как уменьшение d_s наблюдается как при увеличении e/e_c , так и при увеличении e_{π}/e_c , зависимость d_s можно описать функцией суммы

энергии, вводимой в проводник при взрыве, и энергии, выделяющейся в дуговой стадии разряда (рисунок 12):

$$d_{\rm S} = 256 \left((e + e_{\rm g})/e_{\rm c} \right)^{-0.8} \tag{9}$$

Результаты экспериментов с отключением дуговой стадии разряда при ЭВП Fe подтвердили влияние дуги на дисперсность получаемых порошков (рисунок 12). Среднеповерхностный диаметр частиц, полученных С отключением дуговой стадии разряда, более чем в 1,5 раза больше, чем d_s присутствии частиц, полученных В дугового разряда (рисунок 13). Среднеповерхностный диаметр частиц образцов, полученных как с дуговой стадией разряда, так и без нее, описывается уравнением (9) (рисунок 13, δ).

Рисунок 13 – Зависимости: а) среднеповерхностного диаметра частиц Fe от энергии, вводимой в проводник при взрыве, б) среднеповерхностного диаметра частиц Fe от суммы энергии, вводимой в проводник при взрыве, и энергии, выделяемой в дуговой стадии разряда

По данным рентгенофазового анализа, основной кристаллической фазой порошков Fe, полученных в атмосфере аргона, является α -Fe. Размеры областей когерентного рассеяния уменьшаются с уменьшением d_s . Кроме того, с уменьшением d_s уменьшается содержание металлического железа в образцах, а также диаметр микронных частиц; максимум распределения частиц по диаметру смещается в область меньших значений (таблица 2, рисунки 14-15). Следует отметить, что фракция частиц образца диаметром менее 100 нм, полученного в режимах с ранним развитием дуговой стадии разряда (Fe-62), находится в спеченном состоянии и представлена цепочками из нескольких частиц (рисунок 16).

С использованием ДТА установлено, что скорость окисления порошков железа при линейном нагреве в воздухе с уменьшением d_s увеличивается более, чем в три раза. Порошки со средним диаметром частиц 330 нм окисляются с максимальной скоростью $1,4\cdot10^{-3}$ мг/с, скорость окисления частиц порошка с $d_s = 95$ нм возрастает до $4,9\cdot10^{-3}$ мг/с. Дополнительно определено, что средняя энергия активации процесса окисления не зависит от дисперсности порошка,

для образцов Fe-85, Fe-30, Fe-62 эта величина составила 110 кДж/моль, что на 40 % меньше, чем энергия активации процесса окисления грубодисперсных порошков.

Рисунок 14 – Микрофотографии и гистограмма распределения частиц по размерам: образец Fe – 85.

Рисунок 15 – Микрофотографии и гистограмма распределения частиц по размерам: образец Fe-82.

Рисунок 16 – Микрофотографии и гистограмма распределения частиц по размерам: образец Fe-62.

Таким образом, оптимальными условиями ЭВП при получении порошков Al являются режимы с максимальным уровнем энергии, вводимой в проводник; увеличение энергии, выделяемой в дуговой стадии разряда, не позволяет уменьшить диаметр получаемых частиц. При существенно получении порошков Fe энергия, выделяемая В дуговом разряде, способствует уменьшению диаметра получаемых частиц, поэтому оптимальными являются режимы с уровнем энергии $(e + e_{\pi}) \approx 4e_{c}$.

В пятой главе диссертационной работы исследована возможность пассивирования порошков Al и Fe путем введения в атмосферу аргона химически активных газов O₂ и CO₂ в процессе получения порошков в условиях ЭВП.

Установлено, что расход газа до 1,2 г_{газа}/г_{ме} (скорость ввода до 12 л/ч) не приводит к изменению режимов ЭВП, так как не изменяет электрическую прочность газа. На рисунках 17 и 18 приведены зависимости изменения содержания металлического Al и Fe и изменения площади удельной поверхности образцов от количества добавляемого кислорода и углекислого газа.

Рисунок 17 - Зависимость содержания металлического алюминия (а) и площади удельной поверхности (б) порошков от количества добавляемого газа ($e/e_c = 1,9$)

Рисунок 18 - Зависимость содержание металлического железа (а) и площади удельной поверхности (б) порошков от количества добавляемого газа

С увеличением количества добавляемого газа S_{yd} образцов возрастает, содержание металлической составляющей в образцах уменьшается. Угол наклона графиков определяется химической активностью газа и энергией диссоциации молекул O_2 и CO_2 . Введение в Ar химически более активного O_2 приводит к более быстрому увеличению S_{yd} и, соответственно, уменьшению содержания металла в образце.

Показано, что расход химически активного газа, при котором возможно получение металлических порошков, устойчивых к быстрому окислению при

их контакте с кислородом воздуха, связан с энергией диссоциации добавляемого газа. Для получения порошков Al, устойчивых к окислению на воздухе, необходимо введение в аргон 0,04 Γ_{O2}/Γ_{Al} . Используя химически менее активный CO₂, расход газа необходимо увеличить до 0,08 Γ_{CO2}/Γ_{Al} . Для ЭВП Fe расход газов составляет 0,03 Γ_{O2}/Γ_{Fe} и 0,06 Γ_{CO2}/Γ_{Fe} .

Исследования фазового состава порошков, морфологии частиц и площади удельной поверхности не показали существенных различий между образцами, полученными в атмосфере Ar с небольшими добавками химически активного газа, и образцами, полученными в Ar и затем пассивированными в воздухе. Увеличение расхода O₂ приводит к появлению в составе порошков оксидов алюминия и железа. Увеличение расхода CO₂ приводит к формированию оксида и карбида Al при ЭВП Al, или только оксида при ЭВП Fe.

<u>Выводы</u>

1. Экспериментально определены параметры ЭВП Al и Fe (C, U_0, L_κ, l, d), обеспечивающие критический режим взрыва в атмосфере воздуха и аргона, на основании которых построены количественные зависимости $\lambda_{\kappa} = f(\varepsilon, v)$ и $\eta_{\kappa} = f(\varepsilon)$, позволяющие рассчитать параметры критического взрыва при любых значениях C, U_0, L_κ, d, l в среде воздуха и аргона. Предложенная методика расчета является универсальной и может быть использована для расчета ЭВП различных металлов в различных газовых средах.

2. Напряжение зажигания дуговой стадии разряда при электрическом взрыве проводника в газовой атмосфере подчиняется закону Пашена. Критерием, определяющим условие зажигания дугового разряда при ЭВП, является произведение $P^{0,25}l$. Увеличение одной из переменной (*P* или *l*) при постоянстве другой приводит к переходу в режим с паузой тока, уменьшение – в режим без паузы тока.

3. При уменьшении длины взрываемого проводника и сохранении остальных условий взрыва удельная энергия, вводимая в проводник при взрыве, увеличивается, но ее рост ограничен величиной напряжения пробоя газа. Уменьшение давления Ar от 6 до 2 атм приводит к уменьшению максимального уровня вводимой в проводник энергии от $1,6e_{\rm k}$ до $1,2e_{\rm k}$ для Al, и от $1,8e_{\rm k}$ до $1,4e_{\rm k}$ для Fe.

4. Предложены эмпирические уравнения, позволяющие рассчитать параметры эксперимента для осуществления ЭВП в заданном режиме взрыва в атмосфере воздуха и аргона при выбранном давлении. Уравнения могут быть применены для расчета параметров ЭВП различных металлов в различных газовых средах.

5. На основании экспериментально полученной зависимости $d_{\rm S} = f(P, e/e_{\rm c})$ установлено, что интервал давления аргона от 2 до 4 атм является оптимальным для получения порошков Al и Fe с наименьшим размером частиц. При давлении аргона менее 2 атм низкий уровень $e/e_{\rm c}$ ограничивает рост среднего размера

получаемых частиц. При P > 4, несмотря на рост максимального уровня e/e_c , средний размер частиц увеличивается из-за повышения сопротивления газа расширяющимся продуктам взрыва.

7. Предложена методика исследования влияния параметров дуговой стадии разряда на свойства получаемых порошков. Установлено, что дуговая стадия разряда, являясь дополнительным источником тепла и ударной волны, способствует уменьшению среднеповерхностного диаметра получаемых нанопорошков Al и Fe. Увеличение энергии, выделяемой в дуговой стадии разряда, до $3e_c$ при ЭВП Al приводит к уменьшению среднеповерхностного диаметра частиц на 15 %, при ЭВП Fe – на 50 %.

8. Добавление кислорода в атмосферу аргона до 0,04 Γ_{02}/Γ_{A1} при ЭВП А1 и $0.03 \Gamma_{0.02}/\Gamma_{Fe}$ при ЭВП Fe, или углекислого газа до $0.08 \Gamma_{C.0.2}/\Gamma_{A1}$ и $0.06 \Gamma_{C.0.2}/\Gamma_{Fe}$, приводит к формированию защитной оксидной пленки на поверхности частиц, металлических ЧТО позволяет существенно замедлить процесс окисления нанопорошков при их контакте с воздухом в процессе хранения и при использовании. При этом физико-химические свойства полученных нанопорошков практически не отличаются от свойств порошков, полученных в атмосфере аргона и затем пассивированных на воздухе, что позволяет увеличить производительность электровзрывного метода получения нанопорошков.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи в журналах, рекомендованных ВАК

1. Пустовалов, А.В. Исследование адсорбции азота на порошках алюминия, полученных методом электрического взрыва проводников / Г.Л. Лобанова, С.П. Журавков, А.В. Пустовалов // Изв. вузов. Физика. – 2011. – №11/3. – С. 168-171

2. Пустовалов, А.В. Сравнительный анализ диэлектрических свойств наноразмерных порошков алюминия, железа и углерода в микроволновом диапазоне / А.Н. Романов, Н.А. Романова, Н.А. Яворовский, С.П. Журавков, А.В Пустовалов // Изв. вузов. Физика. – 2012. – № 6/2. –С. 225-230

3. Пустовалов, А.В. Исследование свойств порошков алюминия, полученных в аргоне с добавками кислорода / Н.А. Яворовский, А.В. Пустовалов, Г.Л. Лобанова, С.П. Журавков // Изв. вузов. Физика. – 2012. – № 6/2. – С. 236-243

4. Пустовалов, А.В. Выбор параметров электрического взрыва алюминиевых и железных проводников в атмосфере аргона / Н. А. Яворовский, А. В. Пустовалов // Изв. вузов. Физика. – 2013 – Т. 56 – №. 7/2. – С. 164-169

5. Pustovalov, A.V. Study of Products of Electrical Explosion of Iron Wires in Argon-Oxygen Mixture / A.V. Pustovalov // Advanced Materials Research. – 2013 – V. 872. – p. 206-213

6. Pustovalov, A. V. The oxidation kinetics study of ultrafine iron powders by thermogravimetric analysis / E. N. Lysenko, A. P. Surzhikov, S. P. Zhuravkov, V. A. Vlasov, A. V. Pustovalov, N. A. Yavorovsky // J. Therm. Anal. Calorim. – 2014. – V.115. – \mathbb{N} 2. – P. 1447-1452.

Статьи в сборниках научных трудов, другие публикации

1. Пустовалов, А.В. Способы получения наноразмерных частиц / А.В. Пустовалов // Проблемы теоретической и экспериментальной химии. Тр. XVIII Российской молодежной науч. конф. студентов и молодых ученых. – Россия. – Екатеринбург. – 22-25 апреля 2008. – С. 210-211.

2. Пустовалов, А.В. Получение нанопорошков алюминия методом электрического взрыва проводников / А.В. Пустовалов // Современные техника и технологии. Тр. XV междунар. научно-практ. конф. студентов и молодых ученых. – Россия. – Томск. – 4-8 мая 2009. – Т.3. – С. 525-527.

3. Pustovalov, A.V. Fabrication of silver nanopowders by the method of electrical explosion of wires / N.A. Yavorovski, A.V. Pustovalov, S.P. Zhuravkov // IV Int. Seminar "Nanotechnology, energy, plasma, lasers (NEPL-2010)". – Russia. – Tomsk. – 25-31 October 2010. – P. 43-44.

4. Пустовалов, А.В. Электрический взрыв железных проводников в атмосфере воздуха, Аг, СО и СО2/ А.В. Пустовалов, С.П. Журавков // Современные техника и технологии. Тр. XVII междунар. научно-практ. конф. студентов и молодых ученых. – Россия. – Томск. – 18-22 апреля 2011. – Т.3. – С. 433-434.

5. Пустовалов, А.В. Определение содержания металла в нанопорошке алюминия, полученного методом электрического взрыва проводников / Р.У. Камалов, А.В. Пустовалов // Перспективы развития фундаментальных наук. Сб. науч. тр. VIII междунар. конф. студентов и молодых ученых. – Россия. – Томск. – 26-29 апреля 2011. – С. 98-100.

6. Пустовалов, А.В. Окисление алюминия в условиях ЭВП и свойства получаемых продуктов // Н.А. Яворовский, С.П. Журавков, А.В. Пустовалов // XIX Менделеевский съезд по общей и прикладной химии. Т.2. Химия и технология материалов, включая наноматериалы. – Россия. – Волгоград. – 25-30 сентября 2011. – С. 517.

7. Пустовалов, А.В. Изучение свойств нанопорошков железа полученных методом электрического взрыва проводника // С.С. Диденко, А.В. Пустовалов // Современные техника и технологии. Тр. XVIII междунар. научно-практ. конф. студентов и молодых ученых. – Россия. – Томск. – 9-13 апреля 2012. – Т.3. – С. 351-352.

8. Pustovalov, A.V. Investigation of the characteristics of aluminum powder obtained in argon with addition of oxygen / N. A. Yavorovski, A.V. Pustovalov, G. L. Lobanova, S. P. Zhuravkov // 7th Int. Forum on Strategic Technology IFOST 2012. – Russia. – Tomsk. – 17-21 September 2012. – P. 1-5.

Автор выражает особую благодарность заведующему лабораторией № 12 ТПУ, кандидату технических наук Яворовскому Николаю Александровичу за помощь в постановке цели и задач исследования, выборе методик исследований и анализе полученных результатов.