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Abstract: In this study, the zonality method has been used to separate geochemical anomalies and
to calculate erosional levels in the regional scale for porphyry-Cu deposit, Abrisham-Rud (Semnan
province, East of Iran). In geochemical maps of multiplicative haloes, the co-existence of both the
supra-ore elements and sub-ore elements local maxima implied blind mineralization in the northwest
of the study area. Moreover, considering the calculated zonality indices and two previously presented
geochemical models, E and NW of the study have been introduced as ZDM and BM, respectively. For
comparison, the geological layer has been created by combining rock units, faults, and alterations
utilizing the K-nearest neighbor (KNN) algorithm. The rock units and faults have been identified from
the geological map; moreover, alterations have been detected by using remote sensing and ASTER
images. In the geological layer map related to E of the study area, many parts have been detected as
high potential areas; in addition, both geochemical and geological layer maps only confirmed each
other at the south of this area and suggested this part as high potential mineralization. Therefore,
high potential areas in the geological layer map could be related to the mineralization or not. Due to
the incapability of the geological layer in identifying erosional levels, mineralogy investigation could
be used to recognize this level; however, because of the high cost, mineralogy is not recommended for
application on a regional scale. The findings demonstrated that the zonality method has successfully
distinguished geochemical anomalies including BM and ZDM without dependent on alteration and
was able to predict erosional levels. Therefore, this method is more powerful than the geological layer.

Keywords: zonality method; remote sensing; vertical zonality index; geological layer; alteration;
K-nearest neighbor; porphyry-Cu deposit

1. Introduction

The utilization of geochemical methods for ore deposit exploration dates back to
1930. Fersman (1939) carried out the first survey of such an exploration [1]. Since then,
further studies on the theory and application of geochemical exploration methods have
been carried out, and these techniques have been increasingly modified and improved.
Mining geochemistry is a branch of applied geochemistry, which is based on the utilization
of geochemical methods that helps increase the ore reserves of known mines by assessing
the ore potential of deep horizons. In other words, local and mine scale exploration
models for anomaly recognition are created and developed by using mining geochemistry.
Recent experiences in the application of mining geochemistry illustrate its efficiency in
the discovery of blind and zone-dispersed mineralization (BM and ZDM) within areas of
active and abandoned mines. Due to increasing ore reserves and mining income, this trend
in geochemical exploration is very important [2]. The recognition of various alteration
zones is a qualitative method that cannot help geochemists in separating BM from ZDM

Minerals 2022, 12, 103. https://doi.org/10.3390/min12010103 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12010103
https://doi.org/10.3390/min12010103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-8113-3555
https://orcid.org/0000-0003-4969-9177
https://doi.org/10.3390/min12010103
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12010103?type=check_update&version=2


Minerals 2022, 12, 103 2 of 24

at a local scale. In mining geochemistry, the alteration has no basic role in separating
anomalies at a local scale [3,4]. Optimal drilling points were determined by using mining
geochemistry as a quantitative method without being time consuming and inducing high
costs. In the past decades, several models and methods based on geochemistry have
been developed for predicting geochemical anomalies as well as the locations of hidden
orebodies [2,5–7]. Most of these models and methods are focused on the identification
of geochemical anomalies reflecting the presence of hidden orebodies and the prediction
of horizons of erosional surfaces [8]. In active mines, vertical geochemical zonality is the
most important feature of primary halos because of the relation to the direction of the
ore-bearing fluid [9–11]. Beus and Grigorian (1977) used vertical geochemical zonality
to predict hidden mineralization at the mine scale [12]. Grigorian (1985, 1992) presented
a zonality model to identify BM from ZDM [5,6]. Since then, the zonality method has
been used in many studies [2–4,13–21]. Solovov (1987) used metallometric methods for
the identification of geochemical anomaly (IGA) and the quantitative evaluation of ore
reserves [22]. Baranov (1987) introduced a model in which horizons of the erosional surface
were computed for geochemical associations [23]. Solovov (1990) introduced different
relations to predict hidden orebodies by using metallometric exploration [24]. Liu and
Peng (2004) presented a model to predict hidden orebodies by the synthesis of geological,
geophysical, and geochemical information based on a dynamic approach [25].

In most mineral exploration methods (e.g., porphyry-Cu), a mineral potential map is
obtained by using one layer or a combination of different layers [26–31], which includes
field geological surveys, geochemical surveys, field geophysical surveys, and remote sens-
ing [32–34]. This map consists of shallow to the deep layers, which poses a problem when
these layers are not associated with mineralization. Each of these layers has a value for
mapping the areas with the potential of mineralization, and a number of these layers are
generally surficial and cannot be useful for identifying BM. Hydrothermally altered rocks
result from chemical attacks of pre-existing rocks by hydrothermal fluids. The spatial
distribution of hydrothermally altered rocks is a key to locating the main outflow zones of
hydrothermal systems, which may result in the recognition of mineral deposits [35]. Miner-
als associated with alteration can be detected by remote sensing. These tasks are achieved
by using the analysis of the spectral signatures recorded in the visible-near infrared (VNIR),
short wave infrared (SWIR), and thermal infrared (TIR) regions of the electromagnetic
spectrum with this spectral signature constituting the key mineral identification crite-
rion [36]. Furthermore, the mineral deposits are spatially and genetically associated with
the various types of geological structures including faults or fractures [37]. Faults and
fractures, which transport magmatic, meteoric, and metal carrying hydrothermal fluids,
subsequently deposit metals [38]. Zarasvandi et al. (2005); Sillitoe (2010); Mirzaie et al.
(2015); Habibkhah et al. (2020); and Yumul Jr. et al. (2020) have investigated the im-
portance of the role of faults/fractures in porphyry-Cu [38–42]. The strong advance in
remote sensing allows exploiting a variety of sources and methods in the characterization
of lineaments [43]. Remote sensing is a valuable technical resource for mineral exploration
when it is properly employed [44–53].

In this study, the results of the zonality method were compared with the geological
layer including rock units, faults, and alterations. For this goal, a part of the 1:100,000 scale
map of Abrisham-Rud (Semnan province, East of Iran) was examined. This area is a part of
the Troud Range in the Khorasan porphyry tract, which few studies on porphyry mineral-
ization have been conducted [54]. Orojnia (2003) studied the lithology and provenance of
Eocene volcanic rocks in this area, which suggested identifying the economic potential of
Cu [55]. Mars (2014) suggested the potential of hydrothermal alteration in the Torud Range
that could be associated with an unidentified porphyry system [56]. Thus, study data are
concentrated in the province of Abrisham-Rud, where it has high propects for porphyry
copper mineralization.
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2. Geological Setting of the Study Area

The study area is a part of the 1:100,000 scale map of Abrisham-Rud (Semnan province,
East of Iran), which is located in the north of the Central Iran zone [57], and it is a part
of Troud Range in Khorasan porphyry tract (Figure 1a). Khorasan porphyry tracts are
delimited by permissive units of island arc setting of Late Cretaceous to Early Miocene
age [58]. This tract includes four main ranges: Taknar-Kashmar, Kuh Mish, Sabzevar, and
Torud [54]. Igneous units of this tract are shown in Figure 1a, along with the location of
known porphyry-related mineral occurrences and other geologic features mentioned in
this section. In the Torud Range (west of Khorasan porphyry tract), middle Eocene volcano-
sedimentary rocks are overlain by Eocene–Oligocene calc-alkaline and alkaline volcanic
rocks, which are interlayered with shallow marine, lacustrine, and subaerial sedimentary
successions. These successions are intruded by basic tholeiitic dikes and calc-alkaline
quartz monzodioritic to granodioritic stocks [59,60]. The aluminum content of hornblendes
indicates shallow emplacement depths [61]. In this range, Chah Shirin and Chah Mussa
have been introduced as porphyry/porphyry-related deposits [58].

Figure 1. (a) Location of the study area in Troud Range (modified after Reference [54]); (b) lithological
map of the study area (modified after Reference [62]).
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The study area has a dry climate, mountainous topography, and poor vegetation
cover. The oldest geological units are metamorphic rocks for which its bedrock was
metamorphosed in the Late Triassic. The latest units are associated with a quaternary that
consists of gravel fan, terrace, clay and salt deposits, and channel deposits (Figure 1b).
Most volcanic activity occurred in semi-arid settings in the form of lava. The middle-
upper Eocene rock units are the most extended in the study area and mostly include
volcanic breccia-agglomerates and tuffs, intermediate lavas, basic and acidic rocks, and
pyroclastic-sedimentary rocks. These units have outcrops and are sometimes dispersed or
indistinguishable, and there are many faults in them. The volcanic breccia–agglomerate
units that sometimes had intermediate lavas observed in red-brown and sometimes had
dusty colors (argillic alteration), as well as the presence of green minerals (chlorite, epidote)
in the volcanic fragments of this breccia, indicate lava explosive eruption in a semi-arid
and shallow setting with the effect of water on alterations [55].

3. Material
3.1. Geological Data

The 1:100,000 scale map of Abrisham-Rud was purchased from the Geological Survey
of Iran (GSI). As shown in Figure 1b, a part of this geological map was selected.

3.2. Geochemical Data

The geochemical database of the 1:100,000 scale map of Abrisham-Rud was also
purchased from GSI. The 364 samples have been surveyed in a systematic network with
intervals of 1400 × 1400 m2 (Figure 2), and these soil samples have been analyzed using the
ICP-MS method. The concentrations of Cu, Mo, Pb, and Zn were considered for this study.

Figure 2. Geochemical sampling network in the study area (the false-color composites of Sentinel-2
MSI; band 12 in red, band 8 in green, and band 2 in blue).
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3.3. Remote Sensing Data

In this study, Sentinel-2 MSI-Level 1C and ASTER-Level 1T images were downloaded
from the USGS Earth Explorer website (earthexplorer.usgs.gov, accessed on 22 December 2021;
Sentinel 2 File: T40SDE_20181118T07015, 20181118-Date of Acquisition (YYYYMMDD);
Aster File: AST_L1T_00303282005071248_20150508204820_5306, 03282005-Date of Ac-
quisition (MMDDYYYY), 20150508-Date of Processing (YYYYMMDD)).

3.3.1. Sentinel-2 MSI Data

The Sentinel-2 multi-spectral instrument (MSI) satellite carried a high-resolution
multispectral imager with 13 bands spanning VNIR through SWIR regions. Sentinel-2 MSI
includes 4 spectral bands (bands 2, 3, 4 and 8) at 10 m, 6 bands (bands 5, 6, 7, 8a, 11 and 12) at
20 m, and 3 bands (bands 1, 9, and 10) at 60 m. Sentinel-2 MSI measures reflected radiation
in ten bands between 0.433 and 0.955 µm (VNIR) and three bands between 1.36 and 2.28 µm
(SWIR) [63–65]. In this study, a Sentinel-2 MSI-Level 1C image was used, which is produced
from the Sentinel-2 MSI-Level 1B product by radiometric and geometric corrections.

3.3.2. ASTER Data

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors
are one of the multi-spectral sensors that have been installed on the Terra satellite. ASTER
measures reflected radiation in three bands between 0.52 and 0.86 µm (VNIR) and in six
bands between 1.60 and 2.43 µm (SWIR) and five bands of emitted radiation in the 8.125 µm
to 11.65 µm (TIR) region with 15 m, 30 m, and 90 m resolution, respectively [66–68]. In this
study, an ASTER-Level 1T image was utilized. ASTER-Level 1T data contain calibrated
at-sensor radiance, which corresponds with ASTER-Level 1B that has been geometrically
corrected and rotated to the north up UTM projection.

3.3.3. Data Preparation

Atmospheric correction was used to minimize influences of atmospheric factors in
multispectral data. The Internal Average Relative Reflection (IARR) method was applied to
Sentinel-2 and ASTER data. The IARR technique for mineral mapping requires no prior
knowledge of geological features [69]. The average radiance for each band of the image
was calculated; therefore, an average spectrum was created, and this average spectrum
was divided into actual radiance for each band of each pixel to create an image of apparent
reflectance. It has been suggested as the best method for arid areas with no vegetation
cover [70].

4. Methodology
4.1. Zonality Method

A zonation of a geochemical halo has a spatial nature and vectorial context that can
be defined by the three parameters of dimension (space), direction, and element con-
centration [4]. Recognition of zonality of geochemical halos associated with BM can be
achieved using four cases of complementary analyses [2]: (1) analysis of element associa-
tions representing supra-ore and sub-ore halos of mineral deposits; (2) analysis of a single
component, implying false anomaly; (3) analysis of mean values of indicator elements
outside significant geochemical anomalies to eliminate background noise in data analysis;
and (4) mapping of multiplicative geochemical anomalies.

One of the most important indices in porphyry-Cu deposits is the ratio of Pb and Zn
to Cu and Mo, which is often defined as a zonality index [2,12,71]. This index represents
different exhumation levels of mineral deposits [6]. Input variables can be subdivided into
the following: supra-ore, upper-ore, ore, lower-ore, and sub-ore [24]. Ziaii et al. (2012) and
Ziaii et al. (2009) showed that these groups provide the necessary information to separate
BM from ZDM in porphyry-Cu mineralization [2,3].

earthexplorer.usgs.gov
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4.1.1. Anomaly Separation

For mapping the multiplicative index of supra-ore (Pb × Zn) and sub-ore (Cu ×Mo)
elements and calculating the zonality index, the threshold value is calculated by using
Equation (1) for each element:

CA = Cx ε
t, (1)

where CA is the anomaly value, and Cx = Co is the geometric mean of the elements contained
within the background area, which is calculated by using Equation (2):

C̃x = ant log(
1
N∑N

i=1 log Ci), (2)

ε = ant log(

√
∑N

i=1 (log Ci − log C̃x)
2

N− 1
), (3)

where Ci is the element concentration of samples, N is the number of samples, and ε is
generally called a standard factor, which is calculated from Equation (3). Due to the above
consideration as to the selection of the value of t, the lowest anomalous content, when
trying to detect weak anomalies determined from one sampling point, in geochemical
prospecting it is taken equal to CAl ≥ Coε

3. This relationship corresponds to a “three
standard deviations” criterion extensively used in many engineering disciplines to de-
termine quantities falling outside the probable values of a random anomaly distributed
quantity. Thus, weak anomalies formed by a sequence of adjacent sampling points with
increased pathfinder elements below CAl can be detected, and it is conventional to lower
the threshold value according to the criterion CAm≥ Coε

3/
√

m, where m = 2, 3, 4 . . . 9 is the
number points that may be joined, which can show a common anomaly in the geochemical
map [22].

4.1.2. Erosional Surface

In order to predict the erosional level, Solovov (1987) suggested using areal produc-
tivity, and Beus and Grigorian (1977) suggested using the coefficient of mineralization to
eliminate the syngenetic parameters of the halos, which increase anomaly detection [12,22].
It should be noted that both the areal productivity and mineralization coefficients are used
to calculate the vertical geochemical zonality index.

In the systematic sampling network, linear productivity is calculated according to
Equation (4):

M = ∆x(∑n
x=1 Cx − nC◦), (4)

where M is the linear productivity, ∆x is the distance between the samples in each profile,
Cx is the values greater than the anomaly concentration, and n is the number of anomal
samples. If the values of Mi are preliminarily estimated in each of m profiles across the
anomaly, P is determined according to Equation (5) [22]:

P = 2l(∑m
i=1 Mi), (5)

where 2l is the distance between profiles. Therefore, the zonality index introduced by
Solovov (1987) is calculated for zones I and II by using Equation (6) [22].

KS =
P(Pb)× P(Zn)
P(Cu)× P(Mo)

, (6)

The zonality index introduced by Beus and Grigorian (1977) is calculated for each
zone by using Equation (7) [12]:

KG =
η(α)Pb ×CAPb × η(α)Zn ×CAZn

η(α)Cu ×CACu × η(α)Mo ×CAMo
, (7)
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where CA is the arithmetic mean of element contents, and η(α) is the coefficient of mineral-
ization calculated for each element by using Equation (8):

η(α) =
ηA(α)ore
ηA(α)

, (8)

where η(α)ore is the number of anomalous samples, and ηA(α) is the total number of
samples in each zone [12].

4.2. Remote Sensing
4.2.1. Lineaments Extraction

O’Leary et al. (1976) defined the term “lineaments” as a simple or composite linear
feature of a surface for which its parts are aligned in a rectilinear or slightly curvilinear
relationship and differs from the pattern of adjacent features and probably reflects some sub-
surface phenomena [72]. Faults, fractures, and large crush zones are formed by extension or
compression processes and are considerable and fundamental factors on ore mineral deposi-
tion. Areas with concentrations or intersections of these structures could be suitable for the
penetration of magma, ore-forming solutions, and, afterward, mineralization [73]. In other
words, a detailed geological study imperatively means acquiring knowledge of present
structural information, principally the lineaments [74]. The significance of lineaments is
also manifested by their localization often close to several mineralogical deposits [75].

Several studies have been based on Sentinel-2 MSI for the detection of lineaments [76–79].
According to Bentahar et al. (2020), Sentinel-2 MSI allows extracting more lineaments and
extraction of the smallest structural lineaments [79].

Lineament extraction methods can be conducted by using manual photointerpretation
by an expert, semi-automatic detection using computer vision techniques, and automatic
methods. Automatic methods have resulted in a more efficient lineament extraction pro-
cess [43,80–83]. The main steps of lineaments extraction are mentioned below:

• Applying principal component analysis (PCA) and choosing PC1 to recognize lines;
• Filter operations using Directional filter with azimuths of 0◦, 45◦, 90◦, and 135◦;
• Automatic lineaments extraction using LINE module in the PCI Geomatica software;
• Merging lineaments obtained from azimuths of 0◦, 45◦, 90◦, and 135◦;
• Lineament mapping.

Principal Component Analysis

PCA (Pearson, 1901) is a statistical method that has the advantage of compressing infor-
mation contained in initial bands into new bands called principal components (PCs) [84–86].
This method has been commonly used in lithological mapping and lineament extraction [79].
The PCA method can reduce redundancy in different bands, which can obtain aimed di-
mension reduction [87], isolation of noise, and enhancement of the targeted information in
the image [88]. Each PC can reflect the maximum information of the original variable, and
the information contained therein is not repeated.

Filter Operations

Filter operations were used to emphasize or de-emphasize spatial frequency in the
image. This frequency can be attributed to the presence of the lineaments in the area. In
other words, the filtering operator can sharpen the boundary that exists between adjacent
units. A directional filter is a first-order derivative edge enhancement filter that selectively
enhances image features possessing specific direction components (gradients) [89]. Direc-
tional filters are used strictly for the structural analysis. These filters improve the perception
of lineaments, causing an optical effect of shade worn on the image as if it was illuminated
by light grazing [78].
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PCI Geomatica Software

The automatic extraction of the lineaments was carried out by algorithm LINE EX-
TRACTION of the PCI Geomatica software [80], which is a widely used module for auto-
matic lineament extraction. The LINE module of PCI Geomatica software extracts linear
features from an image and records polylines in vector segments by two main steps, namely
edge detection and line detection, and using six parameters [43]:

Edge detection

• RADI (filter radius) (in pixels): The radius of the filter that is used in contours detection.
Values between 3 and 8 are recommended in order to avoid introducing noise;

• GTHR (Edge Gradient Threshold): The value of the gradient to be taken as the thresh-
old in contour detection (between 0 and 255). Values between 10 and 70 are acceptable;

• Line detection;
• LTHR (Curve Length Threshold) (in pixels): The minimum length of a curve to be

taken as the lineament (a value of 10 is suitable);
• FTHR (Line Fitting Threshold) (In pixels): The tolerance allowed in the curve fitting

(results of the previous parameter) to form a polyline. Values between 2 and 5 are
recommended;

• ATHR (Angular Difference Threshold) (In degree): Defines the angle not to be exceeded
between two polylines to be linked. Values between 3 and 20 are suitable;

• DTHR (Linking Distance Threshold) (In pixels): The maximum distance between
two polylines to be linked. Values between 10 and 45 are acceptable.

4.2.2. Iron Mineralization and Alteration Detection

Lowell and Guilbert (1970) described the San Manuel-Kalamazoo deposit and com-
pared the results with 27 other porphyry-Cu deposits. According to this model, four
alteration zones were introduced, which are often used for porphyry-Cu exploration. As
shown in Figure 3, the zones in this model from the center to the outside are potassic,
phyllic, argillic, and propylitic zones [90,91].

Figure 3. Alteration zones associated with porphyry-Cu deposit (modified after Reference [90]):
(a) schematic cross section of alteration zones; (b) schematic cross section of ores associated with each
alteration zone.
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After presenting the Lowell–Guilbert model, some porphyry-Cu deposits were recog-
nized to be associated with intrusive rocks posessing low silica. Hollister (1975) introduced
this model and called it the diorite model, although the host pluton may be syenite, mon-
zonite, and diorite [92].

Diorite’s model differs from the Lowell–Guilbert model. In the Diorite model, sulfur
concentrations were relatively low in mineralizing fluids. As a result, not all the iron oxides
in the host rocks were converted to pyrite, and there are many iron remains in chlorites
and biotites. Excess iron tends to occur as magnetite, which may be present in all alteration
zones. Therefore, phyllic and argillic alteration zones are usually absent so that the potassic
zone is surrounded by the propylitic zone [93,94].

Band Ratio

Band ratios are a very useful method for highlighting certain features or materials that
cannot be seen in raw bands [95]. This method was applied to the Sentinel-2 MSI image to
detect iron mineralization.

Color Composite

Colors provide more visual and conceptual information of the image. The combination
of three black and white images creates a new image that can provide a better interpretation
of surface features [96]. This method was used in the ASTER image for better visual
interpretation of the alteration areas.

Logical Operator Algorithm

Mars and Rowan (2006) developed two logical operator algorithms based on ASTER-
defined band ratios for regional mappings of argillic and phyllic-altered rocks in the
Zagros magmatic arc, Iran [97]. Mars (2013) used thermal images in-band ratios to map
hydrothermal alterations [98]. The logical operator algorithm presented by Mars (2013) can
be the best suited for hydrothermal alteration associated with porphyry-Cu mineralization
on a regional scale. The logical operator algorithm performs a series of band ratios for each
pixel. Each logical operator determines a true (one) or false (zero) value for each ratio by
comparing the band ratio to a predetermined range of threshold values. All of the ratios in
the algorithm have to be true for a value of one to be assigned to the byte image; otherwise,
a zero value is produced. Thus, a byte image consisting of zeros and ones is produced with
each algorithm [97]. Due to the geological settings in the study area, the logical operator
algorithm was applied to the Aster image to map alterations.

4.2.3. Generation of The Geological Layer

The geological layer is created by combining rock units, faults, and alterations using
the K-nearest neighbor (KNN) algorithm. The 1:100,000 scale map of Abrisham-Rud has
complex and multistage geological settings, and some units may not have outcrop, whereas
this scale does not pose a problem for this study. The layer of rock units was created by
using the high value for intrusive rock and intermediate to base units, as well as the low
value for other units. In the study area, faults are dense and intersect in different directions.
Fault layers were created by buffers at 100 to 500 at 100 m intervals. The alteration layers
for each argillic, phyllic, and propylitic (epidote-chlorite) alteration were created by buffers
at 100 to 300 at 100 m intervals around the alteration.

K-Nearest Neighbor Algorithm

KNN is a non-parametrically supervised algorithm designed to solve regression
and classification problems [99]. KNN is the fundamental and the simplest classification
technique when there is little or no prior knowledge about the distribution of data [100].
This algorithm is quite successful when a large training data set [101] and many geological
studies are provided [102–106].
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KNN classifies objects based on the closest training examples in the feature space [107,108].
In order to classify or predict a new case, KNN relies on finding similar cases in training
data. These cases are classified by voting for neighbor classes [109]. The optimal choice of
the number of neighbors “K” depends on the metrics used for classification and regression
purposes [109]. Thus, KNN algorithm predicts the target class through three steps [101,110]:
(1) preparing the dataset consists of training, test, and feature; (2) measuring the distances
between each test data and all training data depending on the weight values of each indi-
vidual; and (3) finding “K” the neighbors nearest to the test data from training data based
on distance and weight measurements.

The most common and simple distance metrics are Euclidean, Manhattan, and Minkowski.
The Minkowski distance is generally a more complete form of distance metrics and is calcu-
lated based on Equation (9):

Minkowski Distance =
λ

√
∑k

i=1|xi − yi|
λ, (9)

where x and y are points to calculate the distance, k is the number of neighbors, and λ is
the order of the Minkowski distance, which contains values greater than zero. Thus, where
λ = 2, the Minkowski distance is equivalent to the Manhattan distance, and where λ = 1,
it is equivalent to the Euclidean distance. The Manhattan distance is usually preferred
over the more common Euclidean distance when there is high dimensionality in the data
set [111].

In this study, the Manhattan distance was used as the nearest neighbor classifier, and
weights were calculated on Equation (10) based on the distance from the target to predict
in a neighborhood:

weighted Manhattan Distance = ∑k
i=1 Wi|xi − yi|, (10)

where W is the weights for each nearest neighbor, 0 < Wi < 1 and ∑k
i=1 Wwi = 1.

5. Result and Discussion
5.1. Zonality Method

Table 1 shows the calculation of background and threshold values, as well as the Clark
values for supra-ore (Pb and Zn) and sub-ore (Cu and Mo) elements in the study area.

Table 1. Background, threshold, and Clarke values for supra-ore (Pb and Zn) and sub-ore (Cu and
Mo) elements in the study area.

Values Pb (ppm) Zn (ppm) Cu (ppm) Mo (ppm)

Background 13.5 62 43.3 0.58
Threshold 19.6 90.6 78.1 0.88

Clarke (Beus and Grigorian, 1977) [12] 12 75 40 1.1

Figure 4 shows the anomaly map of multiplicative geochemical halos of the supra-ore
and sub-ore (Cu×Mo) elements. As shown in Figure 4, zones I and II have been considered
to predict erosional levels, and they create the geological layer. As shown in Figure 4, zone I
mostly implied sub-ore (Cu and Mo) elements, and zone II included both supra-ore (Pb
and Zn) and sub-ore (Cu and Mo) elements. The co-existence of both supra-ore and sub-ore
elements’ local maxima implies blind mineralization [20].

The geochemical and geometrical similarity of genetically similar orebodies, the unifor-
mity of ore and halo, and the tentative nature of geological and economic boundaries are all
crucial for considering mining geochemical models. In addition, the vertical geochemical
zonality index and their spatial associations with particular geological and geochemical
factors are important aspects of mineral distributions for exploration and insight into ore
geometry. The vertical geochemical zonality index could be used to estimate the erosional
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level of porphyry-Cu deposits [2,3]. In order to identify the erosional level in zones I and II,
the presented models by Ziaii (1996) and Ziaii et al. (2009) were used [2,67].

Ziaii (1996) introduced the vertical zonality model for porphyry-Cu deposits using
areal productivity and the zonality index (Equation (6)) based on porphyry-Cu deposits
in Kazakhstan, Bulgaria, Armenia, and Iran (Figure 5a). The vertical variations in three
zonality indices associated with porphyry-Cu deposits in areas of the same landscape-
geochemical conditions in different countries are shown in Figure 5a. Values of each
zonality index decrease downward uniformly despite considerable differences in local
geological settings of individual porphyry-Cu deposits, suggesting the existence of uniform
vertical zonality in primary halos of porphyry-Cu deposits [2,6,71]. Therefore, vertical
variations in the indices allow the distinction of mineralization levels and their primary
halos (supra ore, upper-ore, ore, lower-ore, and sub-ore) [6,22,24].

Figure 4. Geochemical maps of (a) supra-ore and (b) sub-ore elements, zones I and II, in the study area.
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Figure 5. (a) Vertical geochemical zonality models for porphyry-Cu deposits based on typical
standard porphyry-Cu deposits in Kazakhstan, Bulgaria, Armenia, and Iran (modified after Ref-
erence [71]); (b) geochemical model for porphyry-Cu deposit based on the porphyry Cu deposits
database comprising Aktogy (Kazakhstan), Asarel (Bulgaria), Tekhut (Armenia), and Sungun (Iran)
(modified after Reference [2]).

Moreover, it can be deduced from Figure 5a that similar values of the zonality index
imply similar depths of mineralization and primary halos within an ore field. Thus,
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primary halos of mineral deposits at different depths are characterized by specific values
of the zonality index. The practical exploration significance of the zonality index is for
the recognition of erosional surfaces representing vertical levels of geochemical anomalies.
Concerning the present erosional level, high values of the zonality index imply the presence
of sub-cropping to BM, whereas low values of the index imply outcropping or already
eroded deposits [14].

The values of areal productivity, mineralization coefficient, and zonality indices were
introduced by Solovov (KS) and Grigorian (KG) in two zones (Table 2). The values of (Ks)
in zones I and II are equal to 0.18 and 26.57, respectively. Considering the presented model
by Ziaii (1996) [71], zones I and II are ZDM and BM, respectively (Figure 5a).

Table 2. Areal productivity, mineralization coefficient, and zonality index introduced by Solovov and
zonality index introduced by Grigorian for Cu, Mo, Pb, and Zn elements in zones I and II.

Zone Elements P, m2% η(α) KS KG

Zone I

Cu 1,430,818,851 19.62

0.18 0.71
Mo 6,626,021 0.0735
Pb 12,649,676 0.3564
Zn 133,323,564 2.856

Zone II

Cu 1,094,297,325 8.6

26.57 28.23
Mo 32,266,712 0.275
Pb 552,971,529 4.2
Zn 1,696,662,825 16

Ziaii et al. (2009) introduced the geochemical model for porphyry-Cu deposits in
Aktogy (Kazakhstan), Asarel (Bulgaria), Tekhut (Armenia), and Sungun (Iran) using min-
eralization coefficient and zonality index (Figure 5b) [2]. This plot shows the depth of
mineralization versus the zonality index (KG). Despite considerable differences in geo-
logical settings, the linear relationship suggests the existence of a quantitatively uniform
vertical geochemical zonality in the structure of primary halos of the deposits.

In this study, the values of (KG) in zones I and II are equal to 0.71 and 28.23, respectively
(Table 2). According to the presented model by Ziaii et al. (2009), erosional levels in zone I
and II are nearly similar to Astamal and Songun 2 areas, respectively (Figure 5b). Based on
the previous studies, Sungun 2 and Astamal areas have been recognized as BM and ZDM,
respectively [2].

Therefore, the results of the introduced models by Ziaii (1996) and Ziaii et al. (2009)
confirm each other in identifying the erosional level in each zone [2,71].

5.2. Remote Sensing
Lineaments Extraction

The procedure of lineament extraction was accomplished in this manner: the PCA
image of six Sentinel-2 MSI bands (bands 2, 3, 4, 8, 11, and 12), as shown in Figure 6a. PC1
explains the largest amount of eigenvalue among six bands. PC1 with the loading of the
same signs represents overall brightness in all bands [14], and it shows that the albedo is
related largely to the topographic features [76] (Figure 6b). Then, a directional filter was
applied using 3 × 3 kernels in four directions with azimuths of 0◦, 45◦, 90◦, and 135◦. By
using these azimuths, this filter visually enhances edges striking N-S, NE-SW, E-W, and
NW-SE, respectively.

The sum of the directional filter kernel arrays is zero. The result is that areas with
uniform pixel values are zeroed in the output image, while those with variable pixel
values are presented as bright edges. In PCI Geomatica software, differences in the values
of six parameters of edge and line detection indicate the differences of opinion among
researchers. The values proposed by Adiri et al. (2017) were used [43]. Finally, the
lineaments obtained from azimuths of 0◦, 45◦, 90◦, and 135◦ were merged, and the repetitive
segments and non-geological lineaments (river, road, etc.) were deleted.
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Lineaments and lineaments density maps in two zones were demonstrated in Figure 7.
Lineament density was used to find the correlation between the concentration of lineaments
and the distribution of existing faults in the study area (Figure 7). In two zones, this
comparison proved that the fault is well related to lineament density in most areas. These
areas were generally recognized in the middle-upper Eocene units and intrusive rocks.

Figure 6. (a) PC1 image in the study area; (b) eigenvector obtained from PCA of six Sentinel-2 MSI
bands (bands 2, 3, 4, 8, 11 and 12).

Lineament orientation allows identifying the most frequent directions of lineaments,
and they can be compared with directions related to the existing faults [43]. As shown in
Figure 8, in zones I and II, the directions of the lineaments correspond to existing faults.

Lineaments may be formed, for example, by structural alignment, geomorphologic
consequences, structural weaknesses, faults, valleys, rivers, the boundaries between the
different lithological units, vegetation cover, and artificial objects (road, bridge, etc.) [43].
In this study, due to the importance of faults in porphyry-Cu mineralization [6], the faults
obtained from the geological map were used to create a geological layer.

5.3. Iron Mineralization and Alteration Detection

The results of the band ratio applied to Sentinel-2 MSI were shown in Figure 9. Ac-
cording to the rock units in the studied zones and Porphyry-Cu alterations zones, iron
mineralization is dispersed and dense in two zones (Figure 9), which is well identified in ar-
eas containing volcanic and intrusive rocks. In the south of zone I, which includes intrusive
rock consisting of monzodiorite and monzogabbro, iron mineralization is well recognized.

In ASTER, false-color composites of SWIR bands were used for better visual inter-
pretation of the alteration areas. Empirical combinations have shown that an image with
a false-color composite (band 4 in red, band 6 in green, and band 8 in blue) is the most
suitable color composite for identifying alteration areas in porphyry-Cu deposits. As shown
in Figure 10, areas with the propylitic alteration are shown in green to dark green based on
the alteration intensity, and areas with the argillic and phyllic alteration are shown in white
and pink to red. This is due to the high reflectivity of alunite, kaolinite, and muscovite
minerals in band 4 compared to bands 6 and 8.

Geological settings in the study area have made it difficult to identify some alterations,
especially in zone II. Rocks containing hydrous quartz, chalcedony, opal, and amorphous
silica (hydrothermal silica-rich rocks); calcite-dolomite and epidote-chlorite (propylitic);
alunite-pyrophyllite-kaolinite (argillic); and sericite-muscovite (phyllic) were mapped using
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ASTER and logical operator algorithms (Figure 11). It is observed that Mars (2013) used
images that have to differ in correction levels from the images used in this paper. Mars
(2013) used “and (b4 gt 260)” to remove the black pixel [94], but in the images that have
been used in this paper, the pixel has no value higher than 260. Thus, “and” in the algorithm
causes the result to be zero (Table 3).

Figure 7. Maps of lineaments: (a) zone I and (d) zone II; lineaments density for (b) zone I and
(e) zone II; existing faults for (c) zone I and (f) zone II.

Although not all alterations are associated with ore bodies and not all ore bodies are
accompanied by alteration, the presence of altered rocks is a valuable indicator of possible
deposits [112]. Kaolinite is mostly related to weathering feldspars, and epidote can be
related to regional metamorphism. Kaolinite and epidote anomalies can have genesis
related to deposit when they have a close relationship with muscovite anomalies [65].

Due to intrusive rocks, there is a possibility of the diorite model in the south of zone I.
In this area, propylitic alteration (epidote–chlorite) was identified less than other parts of
zone I, and argillic and phyllic alterations are well-identified around these intrusive rocks.
It should be noted that all intrusive rocks have not shown alterations, which could be due
to erosion or geological settings. Furthermore, alterations have been identified in other
areas of zone I, which could imply mineralization areas or presence of minerals associated
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with alterations. In zone II, propylitic alteration (epidote–chlorite) was not identified, but
argillic and phyllic alterations were detected in part of the studied area. Therefore, because
of the absence of the alterations, it is not reasonable to create a geological layer in this zone.

5.4. Geological Layer

Rock units, faults, and alterations layers were combined by using the KNN algorithm
and the geological layer, as shown in Figure 12. In this procedure, faults and alterations
have an important role in mapping high potential areas. The density and intersection of
faults and the extent of alterations represent these areas. Considering the geological layer,
the detected areas as high potential could be related to mineralization or not. These areas
can be compared to anomalous areas obtained by using the zonality method. As a result,
more parts of the geological layer map were detected as high potential in comparison to
the zonality method. However, the results of both methods confirm each other in the south
of zone I. The geological layer and mineralogical investigation cannot identify erosional
levels. In addition, mineralogy is not economical for application on a regional scale. In the
study area, it is not recommended.

Figure 8. Orientations of lineaments of (a) zone I and (c) zone II compared to the faults of (b) zone I
and (d) zone II.
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Figure 9. Band ratios of Sentinel-2 MSI image for identifying ferric iron (band 4/band 3): (a) zone I
and (c) zone II; ferrous iron (band 12/band 8) + (band 3/band 4) in (b) zone I and (d) zone II on
band 8.
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Figure 10. False-color composites of ASTER (band 4 in red, band 6 in green, and band 8 in blue) in
(a) zone II and (b) zone I.

Table 3. The logical operator algorithms used with ASTER to map hydrothermally altered rocks in
zones I and II (modified after Reference [98]). (b: band; float: floating point; le: less than or equal to;
lt: less than; ge: greater than or equal to; gt: greater than.)

Zone Hydrothermal Alteration Algorithm

Zone I

Hydrothermal silica-rich (hydrous silica,
chalcedony, opal)

Propylitic (carbonate)
Propylitic (epidote–chlorite)
Argillic (alunite, kaolinite)

Phyllic (sericite–muscovite)

((float(b3)/b2) le 1.06) and ((float(b4)/b7) ge 1.06) and ((float(b13)/b12)
ge 1.016) and ((float(b12)/b11) lt 1.08)

((float(b3)/b2) le 1.06) and ((float(b6)/b8) gt 1.04) and (b5 gt b6) and (b7
gt b8) and (b9 gt b8) and ((float(b13)/b14) gt 1.005)

((float(b3)/b2) le 1.06) and ((float(b6)/b8) gt 1.04) and
((float(b5)/(float(b4)/b6)) gt 0.513) and (b5 gt b6) and (b6 gt b7) and (b7

gt b8) and (b9 gt b8) and ((float(b13)/b14) le 1.005)
((float(b3)/b2) le 1.06) and ((float(b4)/b6) gt 1.06) and ((float(b5)/b6)

le 1.04) and ((float(b7)/b6) ge 1.04)
((float(b3)/b2) le 1.06) and ((float(b4)/b6) gt 1.06) and ((float(b5)/b6)

gt 1.04) and ((float(b7)/b6) ge 1.04)

Zone II

Hydrothermal silica-rich (hydrous silica,
chalcedony, opal)

Propylitic (carbonate)
Propylitic (epidote–chlorite)
Argillic (alunite, kaolinite)

Phyllic (sericite–muscovite)

((float(b3)/b2) le 0.66) and ((float(b4)/b7) ge 1.03) and ((float(b13)/b12)
ge 1.156) and ((float(b12)/b11) lt 1.065)

((float(b3)/b2) le 0.66) and ((float(b6)/b8) gt 1.066) and (b5 gt b6) and (b7
gt b8) and (b9 gt b8) and ((float(b13)/b14) gt 0.91)

((float(b3)/b2) le 0.66) and ((float(b6)/b8) gt 1.066) and
((float(b5)/(float(b4)/b6)) gt 0.5) and (b5 gt b6) and (b6 gt b7) and (b7

gt b8) and (b9 gt b8) and ((float(b13)/b14) le 0.91)
((float(b3)/b2) le 0.66) and ((float(b4)/b6) gt 0.97) and ((float(b5)/b6)

le 1.04) and ((float(b7)/b6) ge 1.04)
((float(b3)/b2) le 0.66) and ((float(b4)/b6) gt 0.97) and ((float(b5)/b6)

gt 1.04) and ((float(b7)/b6) ge 1.04)
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Figure 11. Hydrothermal alteration obtained from ASTER using logical operator algorithms.
(a) Argillic and phyllic alteration in zone I; (b) hydrothermal silica-rich, propylitic alteration (car-
bonate), and propylitic alteration (epidote-chlorite) in zone I; (c) argillic, phyllic, and propylitic
(carbonate) alteration and hydrothermal silica-rich in zone II.

Unlike the geological layer, the application of the zonality method in mineral prospect-
ing allows further interpretation about whether delineated desirable areas are attractive for
the exploration of ZDM or BM deposits.
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This comparison demonstrates that the zonality method for detecting anomalous areas
is more powerful than the geological layer.

Figure 12. Geological layer map obtained by combining rock units, faults, and alterations layers by
using the KNN algorithm in zone I.

6. Conclusions

The traditional zonality method has been used in the exploration of porphyry-Cu
deposits for many years and is an effective method for the distinction between sub-ore and
supra-ore halos, prediction of the erosional level of mineralization, and exploration of blind
mineral deposits.

Utilizing the zonality method, the geochemical maps of multiplicative haloes were
mapped. In the east of the study area, multiplicative haloes of sub-ore elements (Cu and
Mo) were observed, and these represent zone dispersed mineralization. In the northwest,
both multiplicative supra-ore (Pb and Zn) and sub-ore (Cu and Mo) element haloes existed,
and these imply blind mineralization. Thus, zones I and II, which are located in the east
and northwest of the study area, were selected for calculating erosional levels and for
creating the geological map. Zonality indices introduced by Solovov (1987) (Ks) and Beus
and Grigorian (1977) (KG) were calculated in zones I and II [12,22]. The (Ks) values were
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equal to 0.18 and 26.57 in zones I and II, respectively; moreover, (KG) values in zones I and
II were equal to 0.71 and 28.23, respectively. Then, the presented models by Ziaii (1996) and
Ziaii et al. (2009) were considered for identifying erosional levels in these zones [2,67]. Due
to these models, zones I and II were recognized as ZDM and BM, respectively. Therefore,
the zonality method was successfully applied in the identification of anomalous areas,
separate BM from ZDM, and predicted erosional levels.

The results of the zonality method were compared to the geological layer, which was
created by rock units, faults, and alterations by using the KNN algorithm. Each of these
layers plays an important role in prospecting and exploring mineral deposits. Thus, high
potential areas can be identified by combining these layers. For zones I and II, rock units
and faults were identified from the geological map, and the alterations were detected using
ASTER images and logical operator algorithms. It was observed that the alterations layers
had a significant contribution in constructing the geological layer. The alteration zones
of porphyry-Cu deposits include propylitic (chlorite and epidote), argillic (alunite and
kaolinite), and phyllic (sericite and muscovite), and they are important for identifying
possible areas associated with porphyry-Cu systems. These alterations were detected in
zone I, especially around the intrusive rocks in the S of this zone. In zone II, only argillic and
phyllic alterations were identified in part of the studied area. Due to the lack of alteration
in zone II, the geological layer was created only in zone I. Comparing the results of the
two methods showed that more parts of the geological layer map were highlighted as
having high potential. These high potential areas could be related to mineralization or not;
in other words, the geological layer cannot separate BM from ZDM. However, the results of
both methods correspond to each other in the south of zone I. In other, the geological layer
is unable to recognize erosional levels. Therefore, mineralogy investigation is required,
which is not recommended to apply on a regional scale because of its high cost. It could be
concluded that the geological layer, which is based on alteration, cannot help geochemists
in separating BM from ZDM and in predicting erosional levels.
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