ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ ВИРТУАЛЬНОГО ТРЕНАЖЕРА ДЛЯ ОТРАБОТКИ ПРИЕМОВ ПРОВЕДЕНИЯ СЕРДЕЧНО-ЛЕГОЧНОЙ РЕАНИМАЦИИ (СЛР)

В.В. Архипенко, студент гр. 8ИМ01, Научный руководитель: В.А.Коровкин, ассистент, Томский политехнический университет E-mail: vva36@tpu.ru

Введение

Остановка сердца является ведущей причиной смерти во всем мире, которую можно предотвратить при своевременном применении сердечно-легочной реанимации (СЛР) [1].

Актуальность рассматриваемой темы, которая выбрана в качестве темы обосновывается необходимостью знания правильного алгоритма для оказания первой помощи, чтобы не навредить пострадавшему. Виртуальная реальность предоставляет возможность отработки алгоритма действий не подвергая жизнь человека опасности.

Анализ существующих программных продуктов необходимых для разработки приложений виртуальной реальности

A. Unreal Engine

Unreal Engine — игровой движок, разрабатываемый и поддерживаемый компанией Epic Games. Unreal Engine - самый открытый и продвинутый инструмент для создания 3D в реальном времени [2].

B. Unity

Unity — кроссплатформенная среда разработки компьютерных игр, позволяющая создавать приложения, работающие на более чем 25 различных платформах [3].

В качестве средства разработки был выбран Unreal Engine, по причине:

- присутствует широкий спектр инструментов для работы с графикой;
- наличие стартовой сцены VR для разработки в UE4;
- легкий порог вхождения в визуальное программирование (blueprint).

Проектирование

В качестве чрезвычайную ситуацию было принято решение о воссоздании обрушившегося здания, при которой человек оказался под завалами. Задача пользователя - правильно выбрать последовательность действий и спасти пострадавшего, используя правила первой медицинской помоши.

Для VR приложения были спроектированы UML диаграммы и диаграмма сценариев, помогающие декомпозировать разрабатываемое приложение. Диаграмма сценариев использования показывает действия, которые может совершить пользователь (рисунок 1).

На рисунке 2 отображен алгоритм правильной последовательности действий в сложившейся ситуации.

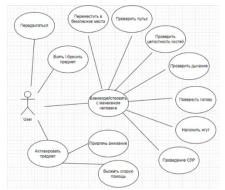


Рис. 1. Диаграмма сценариев использования

Рис. 2. Правильный алгоритм действий

Результат

В результате работы над проектом была создана локация с разрушенным зданием и окружающей его территорией. Сцена воссоздает аварийную ситуацию рухнувшего здания, в котором под завалами оказался человек. Задача пользователя выбрать правильную последовательность действий и спасти пострадавшего, оказав первую помощь (рисунок 3 и 4).

У пользователя имеется инвентарь с набором предметов. Были разработаны интерактивные объекты: свисток предназначен для привлечения внимания, телефон – для звонка в скорую помощь, ремень – для наложения жгута, кислородная маска, камни и рычаг – отключение электропитания (пострадавшего окружают оголенные провода).

Основным объектом на сцене является пострадавший человек. С ним связанно основное взаимодействие данного тренажера. В данном объекте реализованы алгоритмы: учет камней, проверки пульса и дыхания, проверка целостности костей, поворот головы и проведение СЛР.

Рис. 3. Локация

Рис. 4. Проведение СЛР

Заключение

В результате выполнения работы был реализован прототип (MVP) тренажера VR. В дальнейшем планируется добавить систему обучения, улучшить механики взаимодействия с кислородной маской с учетом физической обратной связи. Тестирование MVP тренажера также показала необходимость в оптимизации архитектуры приложения, в реализации на C++ основных интерактивных объектов и их взаимодействий с пользователем для стабилизации частоты кадров и общей стабильности работы тренажера в целом.

Список использованных источников

- 1. Virtual Reality and Haptic Cardiopulmonary Resuscitation Training Approaches: A Review. [Electronic resource] URL: https://ieeexplore.ieee.org/document/9330756
- 2. Unreal Engine Documentation [Electronic resource] URL: https://docs.unrealengine.com/4.27/en-US/V.E.
- 3. Unity Documentation [Electronic resource] URL: https://docs.unity3d.com/ru/2019.4/Manual/UnityManual.html
- 4. Booch Graddy Object Oriented Analysis and Design with Sample Applications, 3rd ed. / Booch Graddy, Maksimchuk Robert A., Angle Michael W., Young Bobby J., Conallen Jim, Houston Kelly A.: Transl from English. M.: OOO "I.D. Williams", 2010. 720 p.
- 5. Mitch McCaffrey Unreal Engine VR Cookbook: 2019 256 p.
- 6. How to make VR GUN [Electronic resource] URL: https://www.youtube.com/watch?v=4bb7gSNamZg&t=180s&ab_channel=Sir_FansiGamedev