ИЗМЕНЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ И СОСТАВА ВАКУУМНОГО ГАЗОЙЛЯ В ПРОЦЕССЕ ГИДРООЧИСТКИ

Е. Ф. Гриценко, С. Б. Аркенова, Г. Ю. Назарова Научный руководитель – д.т.н., профессор Е. Н. Ивашкина

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, проспект Ленина, дом 30, Efg2@tpu.ru

Основной целью гидрогенизационного облагораживания сырья каталитического крекинга является удаление сернистых, азотистых и кислородсодержащих соединений, а также насыщение ароматических соединений. Это позволяет значительно улучшить свойства сырья, снизить выбросы вредных веществ и увеличить срок службы катализаторов каталитического крекинга. Для технико-технологических расчетов оборудования установки необходимы данные о физико-химических характеристиках сырья и его составе. Причиной этого является зависимость технологических условий переработки от типа сырья и требуемой степени обессеривания нефтяных фракций [1].

Цель данной работы состояла в определении физико-химических свойств и состава вакуумного газойля до и после процесса гидроочистки.

Для проведения исследований были использованы следующие методы: энергодисперсионная рентгенофлуоресцентная спектрометрия

с использованием анализатора «СПЕКТРО-СКАН S», рефрактометричекий метод с использованием оптического рефрактометра «Аббе», осцилляционный метод с использованием вискозиметра-плотномера Штабингера, n-d-М метод для определения структурно-группового состава фракции.

Молекулярная масса фракции рассчитана по формуле Херша-Фенске [2]:

$$\log_{10} M = 1,939436 + 0,0019764 \bullet t_{\text{кип}} + \\ + \log_{10}(2,1500 - n_D^{20})$$
 (1)

$$t_{\text{кип}} = \frac{t_{\text{кип}}^{10\%} + t_{\text{кип}}^{50\%} + t_{\text{кип}}^{90\%}}{3}$$
 (2)

где $t_{\text{кип}}$ — средняя температура кипения фракции по объёму, °C; n_D^{20} — показатель преломления фракции при 20 °C.

Согласно полученным результатам (таблица 1), можно сделать вывод о том, что в результате гидроочистки степень извлечения общей серы

Таблица 1. Физико-химические показатели вакуумного газойля с установки гидроочистки

Показатели	Сырье № 1	Сырье № 2	Продукт № 1	Продукт № 2
Массовая доля серы, % мас	1,797	1,794	0,121	0,121
Молекулярная масса, г/моль	344,8	343,8	398,5	385,2
Средняя температура ки- пения по объёму, °C	400,83	399,83	414,3	421,33
Показатель преломления при 20 °C	1,5104	1,5094	1,4982	1,4949
Плотность при 20 °C, г/см ³	0,9110	0,9099	0,8938	0,8931

Таблица 2. Структурно-групповой состав вакуумного газойля с установки гидроочистки

Показатели	Сырье № 1	Сырье № 2	Продукт № 1	Продукт № 2
Содержание углерода в ароматических структурах, %	23,022	22,448	15,813	17,322
Содержание углерода в нафтеновых структурах, %	17,569	18,247	22,877	20,907
Содержание углерода в алкильных заместителях, %	59,409	59,305	61,310	61,771
Среднее число ареновых колец в молекуле	0,937	0,912	0,748	0,790
Среднее число нафтено- вых колец в молекуле	0,983	1,008	1,540	1,372

составила 92–93 %. В связи с насыщением смолистых и ароматических соединений водородом наблюдается снижение показателя преломления и уменьшение плотности вакуумного газойля.

На основе полученных данных был определен структурно-групповой состав вакуумного газойля. Результаты расчетов приведены в таблице 2.

Установлено, что при гидроочистке состав вакуумного газойля изменяется в сторону увеличения содержания углерода в алкановых и циклоалкановых структурах, доля углерода в ароматических структурах при этом снижается, что связано с протеканием реакций насыщения олефинов и бензольных колец водородом. Среднее число ареновых колец во фракции снижается, а нафтеновых наоборот увеличивается. Полученные результаты будут использованы в дальнейшем при разработке математической модели процесса гидроочистки вакуумного газойля.

Список литературы

- 1. Солодова Н. Л., Терентьева Н. А. Гидроочистка топлив: учеб.-метод. пособие. Казань: Каз. гос. технолог. ун-т, 2008. 63 с.
- 2. Абрютина Н. Н., Абушаева В. В. и др. Современные методы исследования нефтей. – М.: Недра, 1984. – 431 с.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ПИРОЛИЗА НА ОСНОВЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Д. А. Дмитриева, И. Ю. Шевченко (Зеленко) Научный руководитель – к.т.н., доцент И. Ю. Шевченко (Зеленко)

Алтайский государственный аграрный университет 656049, г. Барнаул, просп. Красноармейский, 98, alfarr64@mail.ru

Представляемая работа посвящена математическому моделированию промышленного производства термического процесса пиролиза различного углеводородного сырья.

Процесс пиролиза является одним из главных поставщиков сырья для производства разнообразной нефтехимической продукции, используемой в промышленности, сельском хозяйстве и других отраслях.

Целью данной работы является продолжение разработки компьютерной информационно-моделирующей системы (ИМС) процесса пиролиза углеводородов.

Информационно-моделирующая система основного узла процесса пиролиза углеводородов (УВ) основана на детерминированных математических моделях пиролизных печей с разной конструкцией. Модели печей учитывают механизм химических реакций, физико-химические закономерности протекающих явлений (кинетику процесса) и покомпонентный состав сырья и продуктов, а так же технологические параметры процесса [1, 2].

Выход продуктов (концентраций компонентов) рассчитывается с помощью моделей кинетики для газообразного и жидкого сырья. Модели представляют собой системы из N диф-

ференциальных уравнений (N – количество участвующих в процессе компонентов исходного сырья и продуктов) и подробно описаны в [2].

Совершенствование разработанной ранее ИМС процесса пиролиза углеводородов проводится в нескольких направлениях: создание математических моделей других узлов; доработка моделей пиролизных печей для более современных змеевиков типа SRT; разработка экономико-математической модели (ЭММ) производства.

Для формализации экономико-математической модели за основу взята теория оптимального программирования. Программирование нужно понимать как планирование, т. е. составление планов производства. Ученые предлагают [3] рассматривать большинство оптимизационных производственных задач, как задачи линейного программирования (ЗЛП) или линейной оптимизации, когда все параметры и характеристики описаны выражениями линейного вида. Для ЭММ пиролиза [4] взята модель ЗЛП, которую можно описать следующим образом (2): решением [3] является вектор Х (т. е. значения неизвестных переменных x_1, x_2, \ldots, x_i), которое обеспечивает экстремальное значение критерия оптимальности, выраженного линейной функ-