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Abstract: Searches for CP violation in the two-body decaysD+
(s) → h+π0 andD+

(s) → h+η

(where h+ denotes a π+ or K+ meson) are performed using pp collision data collected by
the LHCb experiment corresponding to either 9 fb−1 or 6 fb−1 of integrated luminosity.
The π0 and η mesons are reconstructed using the e+e−γ final state, which can proceed
as three-body decays π0 → e+e−γ and η → e+e−γ, or via the two-body decays π0 → γγ

and η → γγ followed by a photon conversion. The measurements are made relative to the
control modes D+

(s) → K0
Sh

+ to cancel the production and detection asymmetries. The CP
asymmetries are measured to be

ACP (D+ → π+π0) = (−1.3± 0.9± 0.6)%,
ACP (D+ → K+π0) = (−3.2± 4.7± 2.1)%,
ACP (D+ → π+η) = (−0.2± 0.8± 0.4)%,
ACP (D+ → K+η) = (−6 ± 10 ± 4 )%,
ACP (D+

s → K+π0) = (−0.8± 3.9± 1.2)%,
ACP (D+

s → π+η) = ( 0.8± 0.7± 0.5)%,
ACP (D+

s → K+η) = ( 0.9± 3.7± 1.1)%,

where the first uncertainties are statistical and the second systematic. These results are
consistent with no CP violation and mostly constitute the most precise measurements of
ACP in these decay modes to date.
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1 Introduction

The observation of Charge-Parity (CP ) violation in two-body decays of neutral D

mesons [1] motivates searches for similar effects in charged D meson decays. The two-
body D+

(s)→ h+π0 and D+
(s) → h+η decays, where h+ denotes a π+ or K+ meson,1 are

mediated by Cabibbo favoured (CF), singly Cabibbo suppressed (SCS) or doubly Cabibbo
suppressed (DCS) processes. The contributing decay topologies are shown in figure 1. The
SCS modes D+

s → K+π0, D+→ π+η and D+
s → K+η receive contributions from two dif-

ferent weak phases, proportional to the products of the CKM matrix elements VcdV ∗ud and
VcsV

∗
us, allowing CP violation at tree-level. In the Standard Model (SM), the CP asymme-

tries are expected to be of the order 10−4–10−3 [2–7]. The CF mode D+
s → π+η and the

DCS modes D+→ K+π0 and D+→ K+η receive contributions from only one weak phase
at tree-level. The D+

s → π+π0 mode proceeds via an annihilation topology decay and is
therefore highly suppressed.

The SCS D+→ π+π0 mode is of particular interest as the CP asymmetry in the SM
is expected to be zero as a result of isospin constraints [3–6]. The CP asymmetries of the
signal decays are defined to be

ACP (D+
(s)→ h+h0) ≡

Γ(D+
(s)→ h+h0)− Γ(D−(s)→ h−h0)

Γ(D+
(s)→ h+h0) + Γ(D−(s)→ h−h0)

, (1.1)

1Inclusion of charge conjugated processes is implied throughout, except when discussing asymmetry
definitions.
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ū

u

W+

u

d̄, s̄

D+
(s)

π+,K+

π0, η
c

d̄, s̄

u

d̄, s̄

W+

g
ū
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Figure 1. Processes that contribute to the studied decays at tree-level include (top left) colour-
favoured, (top right) colour-suppressed and (bottom left) annihilation topology decays. Contribu-
tions can also be received at loop-level from processes such as (bottom right) penguin topology
decays.

where Γ is the partial decay rate and h0 denotes either a π0 or an η meson. A non-zero
value of ACP (D+→ π+π0), coupled with a verification that the isospin sum rule

R = ACP (D0→ π+π−)
1 + τD0

B+−

(
B00
τD0

+ 2
3
B+0
τD+

) + ACP (D0→ π0π0)
1 + τD0

B00

(
B+−
τD0

+ 2
3
B+0
τD+

) − ACP (D+→ π+π0)
1 + 3

2
τD+
B+0

(
B00
τD0

+ B+−
τD0

) (1.2)

is consistent with zero, would be an indication of physics beyond the SM [7–10]. Here,
τD+ and τD0 represent the D+ and D0 lifetimes and B+−, B00 and B+0 represent the
branching fractions of D0 → π+π−, D0 → π0π0 and D+ → π+π0 decays, respectively.
A recent measurement from the Belle collaboration determined the CP asymmetry to be
ACP (D+→ π+π0) = (2.31± 1.24± 0.23)% [10], where the first uncertainty is statistical
and the second is systematic, corresponding to a value of R = (−2.2± 2.7)× 10−3.

In this article measurements of CP asymmetries of seven D+
(s)→ h+π0 and D+

(s)→ h+η

modes are performed, using samples corresponding to either 9 fb−1 or 6 fb−1 of integrated
luminosity, respectively, collected by the LHCb experiment in proton-proton (pp) collisions
at the LHC. The 6 fb−1 data set comprises data collected during 2015–2018 (Run 2) at
a centre-of-mass energy of 13TeV, whilst the 9 fb−1 data set additionally includes data
collected during 2011–2012 (Run 1) at centre-of-mass energies of 7TeV and 8TeV. The
neutral π0 and η mesons are reconstructed via decays to the e+e−γ final state. The
reconstruction of electron and positron tracks, in addition to the charged hadron track from
the D+

(s) meson decay, enables the determination of the displaced D+
(s) meson decay vertex

and suppresses background from particles originating from the primary pp interaction. The
signal receives contributions from the suppressed three-body Dalitz decays π0→ e+e−γ and
η→ e+e−γ with branching fractions (1.174±0.035)% and (6.9±0.4)×10−3, respectively [11],
as well as the more common π0→ γγ and η→ γγ decays with branching fractions (98.823±
0.034)% and (39.41 ± 0.20)% [11], where one of the photons subsequently interacts with
the detector material and is converted to an e+e− pair. Converted photons have been
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previously exploited at LHCb [12–16], but this is the first measurement to use converted
photons to reconstruct π0 and η mesons.

Experimentally, the raw asymmetry of each signal mode is measured, which is defined
to be

ARaw
(
D+

(s)→ h+h0
)
≡
N

(
D+

(s)→ h+h0
)
−N

(
D−(s)→ h−h0

)
N

(
D+

(s)→ h+h0
)

+N
(
D−(s)→ h−h0

) , (1.3)

where N is the signal yield. This can be approximated by

ARaw
(
D+

(s)→ h+h0
)
≈ ACP

(
D+

(s)→ h+h0
)

+AProd
(
D+

(s)

)
+ADet(h+), (1.4)

where AProd(D+
(s)) and ADet(h+) represent the production and detection asymmetries of

the corresponding hadrons. In order to cancel the production and detection asymmetries,
the raw asymmetry of D+

(s)→ K0
Sh

+ control decays is subtracted, approximated by

ARaw
(
D+

(s)→K0
Sh

+
)
≈ACP

(
D+

(s)→K0
Sh

+
)

+AProd
(
D+

(s)

)
+ADet(h+)+AMix(K0), (1.5)

where the extra term AMix(K0) arises due to the CP asymmetry induced by mixing and
decay of the neutral K0

S meson [17]. As the nuisance asymmetries are known to be kine-
matically dependent, the D+

(s) → K0
Sh

+ samples are weighted to match the kinematic
distributions of the signal candidates to optimally reduce the impact of the production and
detection asymmetries. The CP asymmetry for the signal modes can then be determined as

ACP
(
D+

(s)→ h+h0
)

= ARaw
(
D+

(s)→ h+h0
)
−Aw

Raw

(
D+

(s)→ K0
Sh

+
)

+ACP
(
D+

(s)→ K0
Sh

+
)

+AMix(K0),
(1.6)

where Aw
Raw represents the raw asymmetry determined from weighted samples, the values of

ACP (D+
(s)→ K0

Sh
+) are accounted for using external inputs with sub-percent precision [18],

and AMix(K0) is calculated using a description of the detector material and the distribution
of K0

S decay times and momentum in the selected data, as detailed in refs. [18, 19].
This article is structured as follows: the LHCb experiment is described in section 2; the

requirements used to reconstruct the signal samples are given in section 3; a description of
the fits to the invariant mass distributions can be found in section 4; the treatment of the
D+

(s)→ K0
Sh

+ control modes is given in section 5; the sources of systematic uncertainty are
detailed in section 6; and finally the results and conclusions are summarised in section 7.

2 Detector

The LHCb detector [20,21] is a single-arm forward spectrometer covering the pseudorapidity
range between 2 and 5, designed for the study of particles containing b or c quarks. The
detector includes a high-precision tracking system consisting of a silicon-strip vertex de-
tector surrounding the pp interaction region (VELO), a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power of about 4 Tm, and three sta-
tions of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The
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tracking system provides a measurement of the momentum, p, of charged particles with a
relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200GeV/c. The
minimum distance of a track to a primary pp collision vertex (PV), the impact parameter
(IP), is measured with a resolution of (15 + 29/pT)µm, where pT is the component of
the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors. Photons, elec-
trons and hadrons are identified by a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified
by a system composed of alternating layers of iron and multiwire proportional chambers.
The online event selection is performed by a trigger, which consists of a hardware stage,
based on information from the calorimeter and muon systems, followed by a software stage,
which applies a full event reconstruction.

Simulation is required to determine the invariant-mass distributions of the signal de-
cays, develop the selection and constrain the yields of background from other particles
misidentified as the signal-decay products. In the simulation, pp collisions are generated
using Pythia [22] with a specific LHCb configuration [23]. Decays of unstable particles are
described by EvtGen [24], in which final-state radiation is generated using Photos [25].
The interaction of the generated particles with the detector, and its response, are imple-
mented using the Geant4 toolkit [26, 27] as described in ref. [28]. The underlying pp inter-
action is reused multiple times, with an independently generated signal decay for each [29].

3 Event selection

To reconstruct the D+
(s) meson candidate a well-identified kaon or pion track is combined

with a neutral meson to form a secondary decay vertex displaced from any PV. The neutral
π0 and η candidates are formed from two oppositely charged electron tracks that are com-
bined with a photon candidate to create a neutral-meson decay vertex. A bremsstrahlung-
recovery algorithm associates additional deposits from soft photons to those produced by
the electrons in the electromagnetic calorimeter. To improve the resolution, the electron
tracks must include a track segment within the VELO.

At the hardware trigger level, candidates are selected by either directly identifying
high transverse-momentum deposits from the signal in the electromagnetic or hadronic
calorimeters, or by independently identifying another energetic particle produced in the
pp collision. Inclusive multivariate (MVA) software triggers ensure the presence of well-
reconstructed tracks that are inconsistent with originating from any PV. A second high-
level software trigger performs a full event reconstruction to form the D+

(s) candidates. In
Run 1, no dedicated exclusive triggers for the signal modes were implemented, but small
samples of D+

(s) → h+π0 candidates are reconstructable as a result of the overlap with
existing exclusive two- and three-body D-meson-decay triggers. No attempt is made to
reconstruct D+

(s)→ h+η candidates using the Run 1 data set. In Run 2, dedicated exclusive
software triggers were added to form both D+

(s)→ h+π0 and D+
(s)→ h+η signal candidates.

These require the presence of a photon and three well-reconstructed tracks, inconsistent
with originating from any PV. The invariant masses of the π0 (η) meson candidates are
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required to be in the range 70 < m(e+e−γ) < 210MeV/c2 (450 < m(e+e−γ) < 650MeV/c2)
with pT > 200MeV/c (500MeV/c). The D+

(s) candidate is required to have a transverse
momentum pT > 3000MeV/c and a good quality vertex with an associated p-value of
greater than 0.0018, created by first combining the e+e− candidates to form the photon
conversion or h0 Dalitz decay vertex, which is then further combined with a photon and
charged hadron to create the D+

(s) decay vertex.
Offline, the D+

(s) candidate selection is refined by requiring that the momentum of the
tracks is in the range 3 < p < 100GeV/c and their pseudorapidity is between 1.5 and
5.0. The D+

(s) candidates are required to have a mass in the range 1600 < m(D+
(s)) <

2200MeV/c2, be consistent with originating at a primary interaction and have a proper
decay time of t > 0.15 ps (0.25 ps) for D+

(s)→ h+π0 (D+
(s)→ h+η) candidates. Additionally,

the angle between the momentum direction and the vector joining the PV and D+
(s) decay

vertex, referred to as the direction angle, must be smaller than 10mrad.
Fiducial requirements are placed on the charged-hadron tracks to remove regions of

large detection asymmetries, for example regions where a track of one charge would be bent
out of the acceptance by the magnetic field whilst the opposite charge would be detected;
the same criteria are used as in the previous measurements of the control modes [18].

Particle identification (PID) requirements are applied using MVA-based PID vari-
ables for the charged particles and the photon to reduce the amount of combinatorial and
misidentification background [30, 31]. Loose PID requirements are applied to the pion and
electron tracks. Tighter requirements are applied to kaon candidates to reduce the rate of
π+→ K+ misidentification from the more abundant pion modes into the suppressed kaon
modes. When reconstructing π0 mesons, a loose requirement is placed on an MVA-based
photon-quality variable [32], whilst for η mesons, a tighter condition is required to reduce
the level of combinatorial background. Requirements are placed on electron bremsstrahlung
PID variables that match the bremsstrahlung calorimeter deposit to the electron track be-
fore passing through the magnetic field to ensure that the correct photon deposits are
recovered. Decays with a total of either zero or one bremsstrahlung photon per e+e− pair
are used in this analysis. For D+→ h+π0 (D+→ h+η) decays this corresponds to 62%
and 38% (31% and 48%) of the reconstructed candidates, respectively. Decays with two
or more bremsstrahlung photons per e+e− pair are removed as they result in a poor D+

(s)
invariant mass resolution and high background level.

The same offline selection requirements are used for candidates selected with differ-
ent numbers of bremsstrahlung photons, and also between candidates decaying via photon
conversions or three-body h0→ e+e−γ decays. The requirements give a reasonable com-
promise between the efficiency of each type of decay with efficiencies of the order O(10−6)
in Run 1 and O(10−5) in Run 2.

After the full selection has been applied, approximately 3% (2%) of events are found
to have multiple D+

(s)→ h+π0 (D+
(s)→ h+η) candidates predominately due to combinations

with alternative photon candidates, of which all are retained. The signal decays are found
to be dominated by π0→ γγ and η→ γγ decays followed by a photon conversion, rather
than the three-body Dalitz decays π0→ e+e−γ and η→ e+e−γ, with approximately 86%
of the candidates resulting from photon conversions.
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Figure 2. Distribution of the (left)m(h+π0) and (right)m(e+e−γ) mass for (top)D+
(s)→ π+π0 and

(bottom) D+
(s)→ K+π0 candidates, summed over all categories of the simultaneous fit. Projections

of the total fit result and individual fit components are overlaid. This includes D+→ h+π0 decays
in dashed red, D+

s → h+π0 decays in solid grey, pure combinatorial decays in dashed black and
real-π0 combinatorial background in dotted green. The misidentification background is too small
to be seen in these distributions.

4 Signal modes and fit model

The raw asymmetries of the signal modes are measured using two-dimensional extended
simultaneous unbinned maximum-likelihood fits to the invariant mass m(e+e−γ) and
the invariant mass difference m(h+h0) ≡ m(h+e+e−γ) − m(e+e−γ) + M(h0)PDG, where
M(h0)PDG corresponds to the known π0 and η masses [11]. The quantity m(h+h0) is
constructed to reduce the correlations between the two dimensions, and is referred to
as the D+

(s) candidate mass henceforth. The m(h+h0) and m(e+e−γ) mass distributions
are shown for D+

(s) → h+π0 and D+
(s) → h+η candidates in figures 2 and 3. The fits

are performed for D+
(s)→ h+π0 candidates in the ranges 1750 < m(h+h0) < 2100MeV/c2

and 90 < m(e+e−γ) < 180MeV/c2, and for D+
(s) → h+η candidates in the ranges

1775 < m(h+h0) < 2100MeV/c2 and 470 < m(e+e−γ) < 640MeV/c2.
The fits are performed simultaneously on candidates in categories that depend on the

running period, the presence of bremsstrahlung photons, charged-hadron type (pion or
kaon) and the candidate charge. All D+

(s)→ h+η candidates were collected during Run 2.
The D+

(s)→ h+π0 candidates are split into three running period categories, 2011, 2012 and
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Figure 3. Distribution of the (left) m(h+η) and (right) m(e+e−γ) mass for (top) D+
(s)→ π+η and

(bottom) D+
(s)→ K+η candidates, summed over all categories of the simultaneous fit. Projections

of the total fit result and individual fit components are overlaid. This includes D+→ h+η decays in
dashed red, D+

s → h+η decays in solid grey, pure combinatorial decays in dashed black and partially
reconstructed background in dotted magenta. The misidentification background is too small to be
seen in these distributions.

Run 2, where the centre-of-mass energies were 7, 8, and 13TeV, respectively. Candidates
with either zero or one bremsstrahlung photon per e+e− pair are split into two categories
as they have different mass resolutions. The fits are performed on candidates with π+ and
K+ mesons simultaneously to allow the signal yields in either category to determine the
misidentification-background yields in the corresponding category.

Two-dimensional probability density functions (PDFs) are used to model different con-
tributions within the mass windows. These contributions can be categorised as signal
decays, misidentification background, partially reconstructed low-mass background and
combinatorial background. The sum of positively- and negatively-charged candidate yields
and raw asymmetry of all signal and background components are free to vary in the fits.
A component for D+

s → π+π0 signal is included in the fit, but due to the insignificant yield
no corresponding raw asymmetry is measured. The PDFs are assumed to be the same for
positively and negatively charged candidates, but otherwise allowed to differ for the other
categories of the simultaneous fit. In the fit to D+

(s) → h+π0 candidates the same raw
asymmetries are shared between different running periods.
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The signal modes are modelled by the sum of a two-dimensional Gaussian function and
two two-dimensional Crystal Ball functions [33]. The shape parameters and fraction of each
function are determined from fits to simulated decays passing the full selection. To account
for residual correlations between m(h+h0) and m(e+e−γ) resulting in part from radiative
tails, the mean h0 (D+

(s)) mass is allowed to vary quadratically as a function of the D+
(s) (h

0)
mass in the fits to D+

(s)→ h+π0 (D+
(s)→ h+η) candidates. When performing fits to data,

freely varying scaling factors are applied to the widths of the PDFs, and freely varying
offsets are added to the mean positions and quadratic correlation coefficients to account
for differences between data and simulation. Different parameters are introduced for each
running period and bremsstrahlung category. When determining PDFs from simulated
decays, the candidates are weighted to account for the PID requirements using input from
calibration samples [31].

The fit model accounts for misidentified signal decays, where a π+ track has been in-
correctly assigned the K+ mass hypothesis, or vice versa, using the same two-dimensional
parameterisation as the signal shapes. The PDF parameters are determined from fits to
the corresponding simulated signal decays passing the full selection for the charged hadron
with the wrong mass hypothesis, including weights to account for the misidentification
probabilities. When performing the fits to data, the yield of the misidentification back-
ground is constrained to the yield of signal in the other charged-hadron category multiplied
by the relevant ratio of efficiencies determined from simulated decays and PID calibration
samples. The yields of misidentification background contributions are below approximately
3% of the corresponding signal yields.

Combinatorial background resulting from random combinations of tracks and photons
is modelled with an exponential function in the m(h+h0) dimension and a second-order
Chebychev polynomial function in the m(e+e−γ) dimension. The exponential coefficient
and Chebychev polynomial coefficients freely vary in the fit. In the fit to D+

(s)→ h+π0 can-
didates, it is found necessary to include a combinatorial component comprising a real π0

meson combined with an unrelated track. The PDF is constructed from a peaking distri-
bution in the m(e+e−γ) dimension and an exponential function in the m(h+h0) dimension.
The peaking distribution is constructed from the sum of two Crystal Ball functions, whose
shape is determined from one-dimensional fits to the simulated signal decays. However,
when fitting data a freely varying mass offset and resolution scaling factor are included
to allow the π0 mass distribution to differ from that of the signal decays. No significant
contribution from combinatorial decays with a real η meson and an unrelated track is found
when fitting D+

(s)→ h+η decays, therefore no corresponding component is included.

Decays of charm mesons to h+h0X final states, where X is at least one unreconstructed
particle, appear as partially reconstructed background below the D+

(s) meson masses. Us-
ing external input on branching fractions and charm-meson production cross-section ra-
tios [11, 34] it is determined that only the decay D+

s → π+ηπ0 has a significant contribution
in the fit to D+

(s)→ π+η candidates. To account for this component, a shape comprising
an exponential function in the m(h+η) dimension with a freely varying coefficient and a
peaking m(e+e−γ) distribution constructed from two Crystal Ball functions is added.
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Mode Yield ARaw (%)
2011 2012 Run 2

D+→ π+π0 740± 60 2 240± 120 25 750± 430 −1.64± 0.93
D+
s → π+π0 20± 30 −50± 50 450± 120 -

D+→ K+π0 10± 13 90± 30 2 440± 110 −2.53± 4.75
D+
s → K+π0 54± 13 150± 30 2 580± 90 −0.25± 3.87
D+→ π+η - - 32 760± 380 −0.55± 0.76
D+
s → π+η - - 37 950± 340 0.75± 0.65

D+→ K+η - - 880± 70 −5.39± 10.40
D+
s → K+η - - 2 520± 70 1.28± 3.67

Table 1. Signal yields in each running period and corresponding raw asymmetries for D+
(s)→ h+π0

and D+
(s)→ h+η candidates. The uncertainties are statistical.

The fit to D+
(s) → h+π0 (D+

(s) → h+η) candidates includes 91 (54) freely varying
parameters. The models are validated using pseudo-experiments and no significant biases in
the values or statistical uncertainties of the raw asymmetries are observed. The projections
of the fits to D+

(s)→ h+π0 and D+
(s)→ h+η candidates, summed over all relevant categories,

are shown in figures 2 and 3, respectively. The pull distributions are examined for each
category of the fit in both projections and in two dimensions, and no significant biases
are seen. The goodness-of-fit is quantified by calculating the χ2 value for each projection
and category separately, and combining to determine χ2/Ndof = 0.90 and χ2/Ndof = 1.06
for the fits to D+

(s)→ h+π0 and D+
(s)→ h+η candidates, where Ndof is the total number

of degrees of freedom. The corresponding signal yields and raw asymmetries are listed in
table 1. The D+ and D+

s signal distributions overlap, leading to small correlations between
the measured raw asymmetries. The correlation coefficients are listed in table 2 and the
largest correlation is 10%.

5 Control modes

The impact of production and detection asymmetries of the signal modes is accounted
for using large samples of D+

(s)→ K0
Sh

+ decays. The samples are selected using similar
requirements to the signal modes, where possible. Candidates are built at the high-level
software trigger stage by first combining two well-reconstructed hadronic tracks that are
inconsistent with originating from any PV to create the K0

S decay vertex. Similar to the
electrons, these tracks must also have track segments within the VELO. The K0

S candidate
is combined with a hadronic track with either the pion or kaon mass hypothesis to form
the D+

(s) decay vertex. The same momentum, pseudorapidity and fiducial requirements
are placed on the tracks as used for the signal. The candidates are required to have
482 < m(π+π−) < 512MeV/c2 and 1800 < m(K0

Sh
+) < 2050MeV/c2, a proper decay time

of t > 0.25 ps, and the same direction angle and pT requirements as the signal. Tighter

– 9 –
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D+→ π+π0 D+→ K+π0 D+
s → K+π0

D+→ π+π0 1.00
D+→ K+π0 −0.01 1.00
D+
s → K+π0 −0.09 0.10 1.00

D+→ π+η D+→ K+η D+
s → π+η D+

s → K+η

D+→ π+η 1.00
D+→ K+η −0.00 1.00
D+
s → π+η 0.01 0.00 1.00

D+
s → K+η −0.06 0.10 −0.00 1.00

Table 2. Correlation coefficients between the raw asymmetries determined for D+
(s)→ h+π0 and

D+
(s)→ h+η decays.

PID requirements are placed on the control mode candidates than the signal to remove
larger contamination from misidentification background.

The kinematic distributions of the signal and control candidates are determined using
the sPlot technique [35] withm(K0

Sh
+) as the discriminating variable for the latter. Binned

maximum-likelihood fits are performed on the control-mode candidates using signal models
comprising a Gaussian function and Johnson SU function [36] as described in ref. [18]. The
results are shown in figure 4. The weighting procedure is performed separately for Run 1
and Run 2 to allow for differences in the signal selection during these periods. To ensure
the cancellation of the production and detection asymmetries, the relevant D+

(s) and h+

kinematics (p, azimuthal angle and pseudorapidity) are weighted to match those of the
signal. Due to the large correlation between the D+

(s) and h
+ kinematics the weights for each

variable are determined using a two-dimensional binning of the D+
(s) and h

+ distributions.
In addition to the kinematics, weights are determined for the trigger category and IP
distributions for the D+

(s) candidates. At the hardware trigger stage the candidates can
be split into exclusive categories according to the origin of the positive trigger decision:
the first category contains any candidate with a calorimeter deposit associated to the h0

or K0
S decay; the second category contains any remaining candidate with a deposit not

associated to any of the signal particles; and the third category contains candidates still
remaining with a high pT deposit associated to the charged pion or kaon. The control-mode
candidates are weighted to reproduce the populations of signal candidates in each of these
three categories.

The IP of the D+
(s) candidate is indicative of whether the meson was produced in the

primary interaction, or as a product of a b-hadron decay, and therefore with a significant IP
with respect to the PV, referred to as a secondary decay. In the latter case the production
asymmetry of the parent b-hadron could differ from that of the D+ or D+

s meson. The
signal and control mode selections require that the D+

(s) candidates are consistent with
originating at a PV, suppressing the fraction of candidates from secondary decays to less
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Figure 4. Distributions of the (left) m(K0
Sπ

+) and (right) m(K0
SK

+) mass of control mode
candidates in (top) Run 1 and (bottom) Run 2. The total PDF and individual fit components
are overlaid, including D+→ K0

Sh
+ decays in dashed red, D+

s → K0
Sh

+ decays in solid grey and
background decays in dashed black.

than 10%. If the fraction of D+
(s) candidates from the primary interaction and secondary

decays varies between the signal and control mode then the production asymmetries may
not exactly cancel, therefore the control sample is weighted to match the IP distribution
of the signal.

Binned maximum-likelihood fits are performed to the charge-split samples to determine
the raw asymmetries separately for Run 1 and Run 2. The signals are described using the
sum of a Gaussian function and Johnson SU function, using the same model as described
in ref. [18]. The fits are performed after the samples have been weighted to match the
kinematics of the signal modes, and the statistical uncertainty is calculated using the
weights to account for the loss of precision resulting from the weighting procedure.

6 Systematic uncertainties

The systematic uncertainty on the CP asymmetries receives contributions from a number
of sources, including the signal and background parameterisations, the control modes and
selection requirements. The assumptions used when creating the signal and background pa-
rameterisations are varied and the corresponding systematic uncertainty is quantified using
the resulting difference in the raw asymmetries in the fits to data. This includes using: al-
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ternative signal parameterisation comprising Johnson SU functions instead of Crystal Ball
functions; different pure-combinatorial m(h+h0) parameterisations of a constant plus ex-
ponential function; alternative pure-combinatorial m(e+e−γ) parameterisations of a third-
order Chebychev polynomial function; alternative real-π0 combinatorial parameterisation
of a double Johnson SU ; and different misidentification-background parameterisations using
Johnson SU functions instead of Crystal Ball functions. The efficiencies used to constrain
the level of misidentification background are varied within the corresponding uncertain-
ties in 100 fits and the spread in the raw asymmetries is used to estimate the systematic
uncertainty. The impact on the raw asymmetries is quantified when various neglected
background components are included in the model, including semileptonic D+

(s)→ h0e+νe

and D+
(s) → h0µ+νµ decays, partially reconstructed D0 → K−π+π0 decays and a com-

binatorial component with a real-η distribution. Additionally, the assumption that the
pure-combinatorial m(h+h0) exponential slope is independent of m(e+e−γ) is relaxed by
allowing a linear dependence. The signal tail parameters that are fixed to values obtained
from simulation are allowed to vary with an overall scaling factor and the impact on the
raw asymmetries is quantified. The assumption that the mean D+

(s) mass positions are the
same for D+

(s) and D
−
(s) candidates is tested by allowing different values. The systematic un-

certainty from the fit model is dominated by the fixed tail parameters for D+→ π+π0, the
fixed misidentification efficiency ratio for D+→ K+π0 and D+

s → K+π0 decays, the signal
parameterisation for D+→ π+η decays and the lack of real-η combinatorial contribution
for D+

s → π+η, D+→ K+η and D+
s → K+η decays.

The selection of the signal and control modes uses different requirements for the PID
variables. Tighter conditions are needed for the control modes to reduce misidentification
background such as Λ+

c → pK0
S decays. The size of a possible charge asymmetry induced

by these different requirements is quantified by first computing the asymmetry of the
PID efficiencies, εPID, when determined separately for positively and negatively charged
hadrons, APID = [εPID(h+)− εPID(h−)]/[εPID(h+)+ εPID(h−)]. Then, the difference in PID
asymmetry when calculated using signal and control mode PID requirements, ∆APID =
Asignal

PID −Acontrol
PID , is used to quantify the corresponding systematic uncertainty. Additionally,

the difference in the raw asymmetries when not performing the IP weighting is used to
quantify the systematic uncertainty arising from the secondary decays.

The asymmetries for D+
(s) → h+π0 decays are determined from simultaneous fits to

data sets taken during Run 1 and Run 2, with a single CP asymmetry shared between the
categories for each mode. In contrast, the control-mode fits are performed separately for
Run 1 and Run 2 and then a weighted average is performed to combine the measurements,
where the weighting is determined from the yields of signal mode decays. The systematic
uncertainty arising from this method is quantified by performing the signal fits separately
for Run 1 and Run 2, taking the appropriate difference with the control-mode asymmetries
and then combining the Run 1 and Run 2 results to get an alternative estimate.

The control-mode weighting is performed in nearly equally populated bins. The bin-
ning scheme is varied to determine the associated systematic uncertainty. After performing
the weighting procedure, the remaining discrepancies in the kinematic distributions are
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Source D+→ π+π0 D+→ K+π0 D+
s → K+π0

Fit model 0.59 1.55 1.01
PID asymmetry 0.06 0.27 0.15
Secondary decays < 0.01 0.01 0.02
Combined ARaw Run 1 and Run 2 0.23 0.65 0.30
Control modes 0.03 1.18 0.59
AMix(K0) < 0.01 < 0.01 < 0.01
ACP

(
D+

(s)→ K0
Sh

+
)

0.12 0.08 0.26

Total 0.65 2.07 1.24

Table 3. Absolute systematic uncertainties (%) on the CP asymmetries for D+
(s)→ h+π0 decays.

Source D+→ π+η D+
s → π+η D+→ K+η D+

s → K+η

Fit model 0.35 0.15 4.04 1.08
PID asymmetry 0.06 0.01 0.87 0.16
Secondary decays < 0.01 0.02 0.01 0.04
Control modes 0.05 0.39 0.14 0.12
AMix(K0) < 0.01 < 0.01 < 0.01 < 0.01
ACP

(
D+

(s)→ K0
Sh

+
)

0.12 0.20 0.08 0.26

Total 0.38 0.46 4.13 1.13

Table 4. Absolute systematic uncertainties (%) on the CP asymmetries for D+
(s)→ h+η decays.

quantified by summing the difference in the normalised distributions of signal and control
modes, multiplied by the local asymmetry minus the average asymmetry. The fit model
used to measure the control-mode raw asymmetries is varied from the sum of a Johnson
SU function and a Gaussian function to the sum of a Crystal Ball function and a Gaussian
function. The contribution to the control mode raw asymmetry from the neutral-kaon
mixing and decay asymmetry is calculated and the corresponding uncertainty of this cal-
culation is dominated by the knowledge of the detector material. The uncertainties of the
external values of the control mode ACP are included as systematic uncertainties.

The systematic uncertainties are listed for the D+
(s)→ h+π0 modes in table 3 and for

the D+
(s)→ h+η modes in table 4. These are dominated by the fit-model uncertainty in

most cases, except for the mode D+
s → π+η which is dominated by the uncertainty arising

from the control mode D+
s → K0

Sπ
+, the smallest of the control samples.

As a crosscheck, the fits are performed in various subsamples: split by year of data
taking; magnet polarity; trigger category; bremsstrahlung category; D+

(s) kinematics and
h+ kinematics. No significant biases are found with respect to the nominal results.
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D+→ π+π0 D+→ K+π0 D+
s → K+π0

ARaw
(
D+

(s)→ h+π0
)

−1.64 ± 0.93 −2.53 ± 4.75 −0.25 ± 3.87

Aw
Raw

(
D+

(s)→ K0
Sh

+
)
−0.45 ± 0.02 0.58 ± 0.08 0.60 ± 0.07

ACP
(
D+

(s)→ K0
Sh

+
)

−0.02 ± 0.12 −0.01 ± 0.08 0.09 ± 0.26

AMix(K0) −0.070± 0.004 −0.072± 0.004 −0.072± 0.004

ACP
(
D+

(s)→ h+π0
)

−1.3± 0.9± 0.6 −3.2± 4.7± 2.1 −0.8± 3.9± 1.2

Table 5. Final ACP (%) results for the D+
(s)→ h+π0 modes. The uncertainties of ACP (D+

(s)→
h+π0) are statistical and systematic respectively. The uncertainties of ARaw(D+

(s) → h+π0) are
purely statistical. The uncertainties of AMix(K0) are systematic. Externally measured values
of ACP (D+

(s) → K0
Sh

+) are taken from refs. [18, 37–41]. For comparison the unweighted control
asymmetries are ARaw(D+ → K0

Sπ
+) = −0.45 ± 0.02, ARaw(D+ → K0

SK
+) = 0.47 ± 0.05 and

ARaw(D+
s → K0

SK
+) = 0.51± 0.04.

7 Results and conclusions

The CP asymmetries are calculated using eq. (1.6), where for each mode the correspond-
ing control channel Aw

Raw, independently measured ACP (D+
(s) → K0

Sh
+) and calculated

AMix(K0) are taken. The final results are listed in tables 5 and 6. The results are
shown with the corresponding statistical uncertainty from the fits and the total system-
atic uncertainty as listed in tables 3 and 4. The systematic uncertainties attributed to
Aw

Raw(D+
(s)→ K0

Sh
+), ACP (D+

(s)→ K0
Sh

+) and AMix(K0) are listed separately.
In summary, measurements of CP asymmetries in D+

(s) → h+π0 and D+
(s) → h+η

decays are performed using pp collision data corresponding to 9 fb−1 and 6 fb−1 of inte-
grated luminosity collected at the LHCb experiment, respectively. The neutral mesons
are reconstructed using the e+e−γ final state, allowing the D+

(s) decay vertex to be recon-
structed. The production and detection asymmetries are cancelled using large samples of
D+

(s) → K0
Sh

+ decays, weighted to match the kinematics of the signal modes. The CP
asymmetries are determined to be

ACP (D+→ π+π0) = (−1.3± 0.9± 0.6)%,
ACP (D+→ K+π0) = (−3.2± 4.7± 2.1)%,
ACP (D+→ π+η) = (−0.2± 0.8± 0.4)%,
ACP (D+→ K+η) = (−6 ± 10 ± 4 )%,
ACP (D+

s → K+π0) = (−0.8± 3.9± 1.2)%,
ACP (D+

s → π+η) = ( 0.8± 0.7± 0.5)%,
ACP (D+

s → K+η) = ( 0.9± 3.7± 1.1)%,

where the first uncertainty is statistical and the second systematic. All of the results are
consistent with no CP asymmetry and the first five constitute the most precise measure-
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D+→ π+η D+
s → π+η

ARaw
(
D+

(s)→ h+η
)

−0.55 ± 0.76 0.75 ± 0.65

Aw
Raw

(
D+

(s)→ K0
Sh

+
)
−0.46 ± 0.04 −0.02 ± 0.37

ACP
(
D+

(s)→ K0
Sh

+
)

−0.02 ± 0.12 0.13 ± 0.20

AMix(K0) −0.070± 0.004 −0.070± 0.004

ACP
(
D+

(s)→ h+η
)

−0.2± 0.8± 0.4 0.8± 0.7± 0.5

D+→ K+η D+
s → K+η

ARaw
(
D+

(s)→ h+η
)

−5.39 ± 10.40 1.28 ± 3.67

Aw
Raw

(
D+

(s)→ K0
Sh

+
)

0.33 ± 0.10 0.36 ± 0.10

ACP
(
D+

(s)→ K0
Sh

+
)

−0.01 ± 0.08 0.09 ± 0.26

AMix(K0) −0.073± 0.004 −0.073± 0.004

ACP
(
D+

(s)→ h+η
)

−6± 10± 4 0.9± 3.7± 1.1

Table 6. Final ACP (%) results for the D+
(s) → h+η modes. The uncertainties of ACP (D+

(s) →
h+η) are statistical and systematic respectively. The uncertainties of ARaw(D+

(s) → h+η) are
purely statistical. The uncertainties of AMix(K0) are systematic. Externally measured values
of ACP (D+

(s) → K0
Sh

+) are taken from refs. [18, 37–41]. For comparison the unweighted con-
trol asymmetries are ARaw(D+→ K0

Sπ
+) = −0.45 ± 0.02, ARaw(D+

s → K0
Sπ

+) = −0.13 ± 0.17,
ARaw(D+→ K0

SK
+) = 0.47± 0.05 and ARaw(D+

s → K0
SK

+) = 0.51± 0.04.

ments to date. Very recently the Belle collaboration has also reported precise measure-
ments of ACP (D+

s → K+π0), ACP (D+
s → π+η) and ACP (D+

s → K+η) [42]. The result for
ACP (D+→ π+π0) is consistent with the SM expectation and the previous measurement
by the Belle collaboration [10]. Using the relevant lifetimes, branching fractions and CP

asymmetries from ref. [11] and an updated average of ACP (D+→ π+π0) = (0.43± 0.79)%
calculated using the measurements by Belle [10], CLEO [43] and the result presented here,
the isospin sum rule defined in eq. (1.2) is found to be consistent with zero, with a value
of R = (0.1± 2.4)× 10−3.
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