УДК 621.793.79:669.27

ВЛИЯНИЕ РАССТОЯНИЯ ДО ПОДЛОЖКИ НА ПРОЦЕСС ФОРМИРОВАНИЯ ПОКРЫТИЯ ИЗ КУБИЧЕСКОГО КАРБИДА ВОЛЬФРАМА ПЛАЗМОДИНАМИЧЕСКИМ МЕТОДОМ

А. Насырбаев

Научный руководитель: профессор, д.т.н. А.А. Сивков Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: arn1@tpu.ru

EFFECT OF THE DISTANCE TO THE SUBSTRATE ON THE FORMATION OF A COATING FROM CUBIC TUNGSTEN CARBIDE BY THE PLASMA DYNAMIC METHOD

A. Nassyrbayev

Scientific Supervisor: Prof., Dr. A.A. Sivkov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: arn1@tpu.ru

Abstract. The paper shows the possibility of obtaining coatings from cubic tungsten carbide by the plasma dynamic method. According to X-ray phase analysis, the coating consists mainly of cubic tungsten carbide (up to 97%), hexagonal modifications - W_2C and WC, also unreacted tungsten and carbon. The optimal location of the substrate relative to the cut of the graphite electrode-barrel was determined, which provides the maximum content of cubic tungsten carbide, as well as the largest deposition area, which amounted to $55\div65$ mm.

Введение. Одной из современных инженерных задач является увеличение срока службы и эксплуатационных характеристик промышленных изделий. В связи с чем широкое распространение получили технологии создания защитных покрытий, позволяющие улучшить коррозионную стойкость, износостойкость и механические свойства. Защитные покрытия нашли свое применение в различных областях производства для защиты рабочих инструментов, а также технических материалов, таких как медь, применяемой во множестве отраслях промышленности ввиду своих высоких электро- и теплопроводности, хорошей коррозионной стойкости и высокой температуры плавления. Однако использование меди в чистом виде ограничено как в нормальных, так и в высокотемпературных условиях ввиду плохих механических характеристик, таких как низкая твердость, предел прочности и ползучесть [1]. В связи с этим уделяется большое внимание повышению характеристик технических изделий из меди путем создания различных композитов, а также нанесением упрочняющих покрытий. Перспективным материалом для этих целей служит карбид вольфрама (WC), обладающий высокими значениями твердости, модуля Юнга и износостойкостью [2]. Среди фазовых модификаций карбида вольфрама выделяется кубическая фаза WC_{1-х}, обладающая повышенными механическим характеристиками [3]. Однако существующие методы получения покрытий из WC_{1-х} недостаточно эффективны.

Материалы и методы исследования. Получение покрытий из кубического карбида вольфрама WC_{1-х} производилось с использованием сильноточного импульсного коаксиального магнитоплазменного ускорителя с графитовыми электродами (КМПУ). Прекурсорами выступали порошок вольфрама и углерод,

Россия, Томск, 26-29 апреля 2022 г.

ХІХ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

нарабатываемый в ходе электроэрозии с графитовых электродов. В рамках работы [4] по получению дисперсного WC_{1-x} было установлено, что наиболее оптимальными условиями формирования кубического карбида вольфрама в дисперсном виде (до 95 мас. %,) являются: зарядное напряжение U = 3,0 кВ; емкость накопителя C = 6,0 мФ; газовая среда – аргон (10^5 Па). С учетом полученных данных выбор оптимального расстояния от среза графитового электрода-ствола до подложки производился в этих условиях синтеза. Была произведена серия экспериментов, в ходе которой производилась оценка влияния расстояния от среза графитового электрода-ствола до подложки на фазовый состав получаемого покрытия. Все исследования выполнялись при использовании медных подложек с параметрами 50x50x4 мм.

Фазовый состав полученных покрытий исследовался методом рентгеновской дифрактометрии на дифрактометре Shimadzu XRD 7000S (CuKα -излучение, счетчик-монохроматор Shimadzu CM-3121) без предварительной обработки. Идентификация фаз производилась по базе PDF4 (выпуск 2018 г.).

Результаты. В таблице 1 представлены основные энергетические параметры серии экспериментов, которые свидетельствуют о практически идентичных условиях проведения экспериментов, что позволяет исключить из оценки фазового состава получаемых покрытий влияние энергетики процесса.

Таблица 1

Исходные данные и энергетические параметры серии экспериментов по определению оптимального расстояния до подложки

№	<i>l</i> _{ст-под.} , ММ	Энергетические параметры экспериментов									
		Исходные пар-ры			Данные осциллографирования						
		С,	$U_{\rm sap},$	$W_{\rm c},$	W,	$t_{\rm имп},$	$I_{\text{макс}},$	Uд,	Р _{макс} ,	$P_{\rm cp},$	
		мΦ	ĸВ	кДж	кДж	мкс	кА	кВ	МВт	MВт	
1	45	6	3	27	17,93	300,0	96,4	1,2	120,5	59,8	
2	55	6	3	27	18,61	310,0	97,2	1,3	126,8	60,0	
3	65	6	3	27	18,71	310,0	96,4	1,3	122,7	60,4	
4	75	6	3	27	18,41	310,0	96,4	1,4	133,9	59,4	

В результате серии экспериментов были получены образцы покрытий, которые в последствие анализировались методами рентгеновской дифрактометрии. Данные количественного рентгенофазового анализа состава полученных покрытий приведены в таблице 2.

Таблица 2

Результаты количественного рентгенофазового анализа покрытий, полученных в экспериментах с

различным расстоянием от среза ускорителя до подложки

N⁰	<i>I</i> _{ст-под.} , мм	Исходные пар-ры			CAN	Состав покрытия по XRD, %				
		W	С	Σ	C/W	WC _{1-x}	С	W	W ₂ C	WC
1	45	0,506	0,012	0,518	0,36	84,10	0,65	5,40	9,38	0,47
2	55	0,507	0,014	0,521	0,42	96,97	0,75	0,84	1,03	0,41
3	65	0,507	0,012	0,519	0,36	90,09	2,09	2,61	4,79	0,42
4	75	0,507	0,015	0,522	0,45	63,98	0,49	6,75	28,35	0,42

Анализ полученных данных свидетельствует о том, что наиболее приемлемые покрытия с позиции максимального выхода фазы кубического карбида вольфрама получены в экспериментах с расстоянием от ускорителя до подложки $l_{cr-под} = 55$ мм и $l_{cr-под} = 65$ мм. Данные материалы характеризуются высокой

ХІХ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

чистотой выхода фазы WC_{1-х} (более 90 мас. %) и минимальным содержанием примесных гексагональных фаз карбида вольфрама. Удаление подложки на расстояния свыше 75 мм от среза ускорительного канала приводит к изменению параметров распыления и формированию большего количества гексагональных фаз. Покрытие, полученное на меньшей длине, характеризуется достаточно высоким содержанием кубической фазы карбида вольфрама, однако анализ внешнего вида (рисунок 1) полученных образцов медных подложек свидетельствует о наличии наплава в центральной части, вызванного высокоинтенсивным воздействием плазменного потока с большей скорость. Покрытия, синтезированные при $l_{cr-под} = 65$ мм, выглядят более равномерными и качественными с позиции получения как можно большей площади напыления без прогаров и наплавок.

Рис. 1. Образцы медных подложек с покрытием из кубического карбида вольфрама, полученные при $l_{cm-nod} = 45$ мм (a) и $l_{cm-nod} = 65$ мм (б)

Заключение. В работе показана возможность получения покрытий кубического карбида вольфрама плазмодинамическим методом. Согласно рентгенофазовому анализу покрытие состоит преимущественно из кубического карбида вольфрама (до 97 %), гексагональных модификаций – W₂C и WC, также непрореагировавшего вольфрама и углерода. По результатам проведенной серии экспериментов определено оптимальное местоположение подложки относительно среза графитового электрода-ствола, обеспечивающее максимальное содержание WC_{1-х}, а также наибольшую площадь напыления, которое составило 55÷65 мм.

СПИСОК ЛИТЕРАТУРЫ

- Akbarpour M.R., Alipour S. Wear and friction properties of spark plasma sintered SiC/Cu nanocomposites // Ceramics International. – 2017. – V. 43, – №. 16. – P. 13364–13370.
- 2. Liu K. et al. CBN tool wear in ductile cutting of tungsten carbide // Wear. 2003. V. 255. №. 7-12. P. 1344-1351.
- 3. Fuchs K. et al. Reactive and non-reactive high rate sputter deposition of tungsten carbide // Thin Solid Films. 1987. V. 151. №. 3. P. 383-395.
- Pak A. et al. Synthesis of ultrafine cubic tungsten carbide in a discharge plasma jet // International Journal of Refractory Metals and Hard Materials. – 2015. – V. 48. – P. 51-55.