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according to [6]. The first stage is the linear section of elastic deformation (II), in which a decrease in θ coefficient is 

observed. The next stage III is parabolic and occurs when the Beckofen-Consider condition is reached, the coefficient θ at 

this stage decreases to zero. The transition to stage IV is accompanied by a small linear segment, but the general character of 

the curve remains parabolic and the strain-hardening coefficient at this segment remains close to zero. Stages V and VI are 

absent, which can be attributed to the deformation characteristic of the material. At the final stage VII the coefficient θ drops 

to negative values, which is caused by low ductility of the alloy. Neck thickness during deformation process remains 

practically constant, so in the last stage the material sharply loosens, which leads to its destruction. 

It is found that Mg-Y-Nd alloy in extruded state has higher mechanical characteristics than in recrystallized state. 

Under static tension, the deformation behavior of Mg-Y-Nd alloy in extruded and recrystallised states has a common pattern 

in terms of different relative elongation. The severe plastic deformation method is more efficient in the extruded state. 
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The biggest part of the modern oil fields has poor filtration properties, so the energy industry needs new solutions 

in different spheres to reach economic efficiency in the process of oil extraction. One of the most widespread methods to 

produce hydrocarbons from tight reservoirs or facial zone with low permeability (for example, deep marine depositional 

environment: lobe deposit) is applying multistage hydraulic fracturing (HF) on horizontal wells.  

Drilling a well and conducting workovers are connected with a high degree of risk and costs thousands of dollars so 

it requires precise engineering calculations. There are several semi-empirical equations to evaluate productivity index, 

starting liquid and oil rates, water cut, and other well performance indicators. Despite all of these formulas using 

understandable mathematical models of fluid flow in a reservoir, they include highly uncertain parameters such as drainage 

area, permeability, or supply contour radius.  

These parameters could be estimated by well test analysis, however, it is expensive and takes dozens of hours to 

conduct. In our research, we have investigated the machine-learning method in order to reduceing the uncertainty of oil 

production rate forecast after HF.  

The main hypothesis is that a trained regression model based on gradient boosting algorithm is able to predict oil 

production rate after treatment operations without application of analytical equations. For this purpose, the general workflow 

was developed and it includes the followings: data preparation, tuning hyperparameters and training of the model, validation 

on the evaluation data, making forecast based on training data and interpretation of model performance.  

As a result, the proposed approach provides time saving in routine reservoir engineering task in conjunction with 

high-precision oil rate prediction and low uncertainty. Methodology is based on a gradient boosting algorithm and regression 

problem solving. The latter is related to mathematical method for estimating the relationship between dependent variables 

and independent variables in order to find the link. The former is key and tool for solving regression problem to find optimal 

solution.  

Gradient boosting is based on decision trees where each branch represents the outcome of regression. There are 

many techniques such as XGBoost, Random Forest, etc. However, based on the previous experience [3], CatBoost is chosen 

as the main tool for solving regression problem. 

First of all, a machine-learning model has been trained. To receive a good performance of the model and avoid 

overfitting, the main aspects should be taken into account: applicable loss-function, hyperparameters tuning and cross-

validation. Traditionally, RMSE (Root Mean Square Error) metric is applied as loss-function (Fig.1) that controls training 

and quality assessment of regression model [2]  
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Fig. 1. Typical loss-function for training model process 

Loss-function aims to global minimum and the lower value the highest quality and prediction ability of model will 

be [1]. Since the performance of the model is controlled by the behavior of loss-function, there are regulating 

hyperparameters. The creation of regression model is not completed without tuning. This procedure includes selecting 

hyperparameters such as a number of threes, learning rate, etc., in order to avoid overfitting. Partially, training efficiency is 

affected by the variance of the dataset. So, cross-validation is applied in order to estimate the impact of data splitting on the 

training process. When training is completed, it is necessary to evaluate the model ability to forecast. For this purpose, 

coefficient of determination (R2) is introduced. It shows how much variance of the observed variable can be explained using 

the constructed model, i.e. the value of the coefficient of determination indicates the share (in percent) of changes due to the 

influence of factor features in the total variability of the effective feature. 

Secondly, it is required to explain the nature of the data. For our experiment, the main parameters of the technical 

side and reservoir characteristics are collected from real fields. Table 1 demonstrates the names of features and their 

relationship by using the Pearson correlation matrix (Fig.2). The specificity of the proposed algorithm is characterized by the 

fact that features should not strongly correlate to each other to avoid overfitting [4]. So, the analysis of the covariance matrix 

allows excluding oil viscosity (Visc) and well pressure drop (dP) from data. 

 

Table  

Name of features in dataset 
 

Parameter Description 

L Length of horizontal section 

N Number of stages 

Hpay Reservoir thickness 

Pres Reservoir pressure 

Visc Oil viscosity 

Az Azimuth 

Mprop Propant agent mass 

Xf Half length of the fracture 

H Height fracture 

W Width fracture 

BHP Bottom Hole Pressure 

Perm Permeability 

dp Well Pressure Drop 

  

 

Fig. 2. Names of features in dataset 

 

 

 
 

Fig. 3. Cross-validation and target value distribution for training, evaluating and testing data 
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     Finally, results are obtained. The figure (Fig.4) demonstrates a cross-plot where the correlation between predicted and true 

values of oil rate after HF is presented for tested dataset (R2 = 0.86). Obviously, the regression model has a high prediction 

ability. Additionally, the model has low aleatoric uncertainty if the predicted value lies in the range from 5 to 50 and from 

200 to 300. It means that forecast of low and high oil rates looks better than middle values.  

 

 

Fig. 4. Cross plot of predicted and true values 

The following conclusion is made as a result of this study: 

• The regression model for flow rate prediction was created by CatBoostRegressor algorithm; 

• Input parameters allow to reach the high predictive ability of the model; 

• Performance of model is sufficient: RMSE (test) = 0.86; 

• Based on the trained model the computational time for the forecast is less than 1 minute; 

• Applicability of proposed solution can be translated into routine reservoir engineer tasks. 
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For the first time, the use of surfactants as an additive in oil reservoir flooding was used in the USA in the 40s of 

the 20th centuries. According to the nature of hydrophilic head groups, surfactants are majorly divided into four classes: 

anionic, cationic, zwitterionic, and nonionic surfactants (Fig. 1). Anionic surfactant is the most commonly used type, 

containing sulfate (-O-SO3
−), sulfonate (SO3

−), or carboxylate (-COO−) groups, though usually in association with an alkaline 

metal (Na+ or K+) cation. The sulfate surfactant has a better tolerance to salinity for both monovalent and divalent cations, but 

can be easily decomposed at temperature higher than 60 °C. On the other hand, surfactants containing sulfonate groups are 

tolerated to high temperature, but sensitive to high salinity and easily precipitate at high divalent cation concentrations. The 

most commonly used surfactants for CEOR are sulfonate surfactants, which were produced either by direct sulfonation of 

aromatic groups in refinery streams or crude oils, or by organic synthesis of alkyl/aryl sulfonates. Petroleum sulfonate, 

synthetic alkyl/aryl sulfonate, internal olefin sulfonate (IOS), alpha olefin sulfonate (AOS), and alkoxy sulfonates have been 

evaluated for CEOR applications. Equilibrium adsorption for the alkyl aryl sulfonate surfactant was 3.5 mg/m2, whereas its 

ethoxylated counterpart demonstrated lower adsorption of 0.8 mg/m2 on calcite. Under water-wet conditions, changing the 

surface redox potential from an oxidized to a reduced state decreased the C14−16 AOS adsorption level by 40%, to ~0.3 

mg/g on Berea sandstone cores [1, 2]. At a concentration of 3000 ppm of IOS, increasing the pH from 8.24 to 9.57 decreased 

surfactant adsorption from 0.760 to 0.161 meq/100 g of rock. Adsorption of C15−18 IOS onto two pure minerals (calcite and 

quartz) are about the same ~1.1 mg/g, and the adsorption capacity of shales depends on the mineral composition, ranging 

from 7.0 to 1.7 mg/g. Typically, cationic surfactants are quaternary ammonium compounds (QAC), with the positive charge 

on the N atom. Nonetheless, cationic surfactants are more expensive than anionic surfactants. Zwitterionic surfactant contains 
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