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Abstract: The hydrogenation behavior of Cr-coated resistance upset welds (RUW) of E110 zirconium
alloy was investigated at 360, 450 and 900 ◦C and a hydrogen pressure of 2 bar. The deposition of Cr
coating, via magnetron sputtering, can decrease the hydrogen absorption rate of an RUW Zr alloy.
The activation energy for the hydrogen absorption of Cr-coated specimens (84 kJ/mol) is higher in
comparison with uncoated ones (71 kJ/mol), which indicates the deceleration of the hydriding of
welded Zr alloys in the case of Cr coating deposition. A Cr coating can limit the formation of radially
oriented hydrides and the hardening of RUW specimens at 360 and 450 ◦C. No significant difference
in the hydrogen absorption rate was found at 900 ◦C. The application of Cr coating deposition to
protect resistance-upset-welded Zr alloys in a hydrogen atmosphere is discussed.

Keywords: resistance upset welding; hydrogenation; zirconium alloys; chromium; coating; accident
tolerant fuel

1. Introduction

Fuel claddings are the first physical barrier to exclude an output of uranium fuel in an
active zone of light-water nuclear reactors. Zirconium alloys are base materials for nuclear
fuel claddings due to their relevant functional properties such as a low thermal neutron
capture cross-section (0.02 b), high corrosion and radiation resistance, and acceptable
mechanical properties [1,2]. However, the last nuclear accident that occurred in 2011 at
the Fukushima Daiichi nuclear power plant pointed out the critical weakness of Zr alloys
in water steam under high temperatures [3,4]. The interaction of zirconium alloys with
water steam can result in its rapid oxidation, the generation of gaseous hydrogen, and
the hydrogenation of zirconium alloys. It is more important that the reaction of Zr alloy
claddings with water steam has exothermic behavior which leads to the overheating of
the cladding [5]. Thereby, Zr alloy claddings can be strongly oxidized and hydrogenated
under high temperatures in the case of a loss of coolant accident (LOCA) with a resultant
decrease in its plasticity and embrittlement with future swelling and bursting.

The deposition of a protective coating on the outer surface of Zr fuel claddings is
suggested as a possible way to increase the “coping time” before the embrittlement and
failure of fuel claddings. To date, metals (Cr) [6] and compound (TiN, CrN, SiC, CrC) [7,8],
multicomponent (FeCrAl, AlCrY, (AlTiCrNiTa)N, CrAl) [9–11], and multilayer (Cr/CrN,
Cr/ZrO2) [12–14] coatings have been studied as candidate materials to improve the oxi-
dation resistance of Zr alloys. Among many coating materials, chromium can be selected
as more relevant due to its acceptable thermal neutron cross-section, relevant mechanical
properties, and the formation of dense and stable oxide scales in supercritical water and
under LOCA conditions. The deposition of Cr coatings on the outer surface of Zr alloy
claddings also results in increasing corrosion properties under normal operation conditions
(∼360 ◦C, 18.6 MPa) [15]. Many laboratory tests and full-scale experiments demonstrated
enhanced oxidation resistance of Cr-coated Zr alloys in water steam in comparison with
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uncoated ones. The crucial problem of Cr-coated Zr alloys consists of the growth of a eutec-
tic Cr-Zr layer (with a melting point of 1332 ◦C [14]) under high-temperature oxidation,
leading to the fast failure of coated Zr alloy claddings. Despite this, some experiments have
aimed to evaluate the adhesion and cracking resistance of Cr coatings onto Zr alloys [16] to
determine their service properties.

It is no less important to define the hydrogenation behavior of coated Zr alloys under
normal operation and LOCA conditions. The formation of hydrides in Zr alloy claddings
can cause a significant change in mechanical properties due to its orientations in circumfer-
ential and/or plane directions or even in the case of homogeneous distribution [17]. The
concentration of absorbed hydrogen in Zr alloys can depend on their microstructure and
the mechanical properties of the prior β-Zr phase that can be formed during the cooling
stage from high temperatures [18–20]. Taking into account the fact that Zr alloy fuel rods
are produced by welding end plugs to a cladding tube at both sides, the effect of welding
and next coating deposition on the hydrogenation behavior of Zr alloys should be also
considered. Several studies have already shown the decrease in the hydrogen pick up of
coated Zr alloys under normal operation temperatures [21–24]. However, different types of
welding are used in the nuclear industry for the treatment of Zr alloy claddings. Laser beam
welding (LBW) can be applied to join spacer grids, while resistance upset welding (RUW)
is commonly used to weld ends and fuel tubes to produce Zr fuel claddings. The authors
previously investigated the hydrogenation behavior of Cr-coated laser beam welds made
from an E110 zirconium alloy under normal operation and at an elevated temperature
in hydrogen atmosphere [25]. The influence of other types of Zr alloy welding and next
coating deposition should be analyzed to determine the need to apply a Cr coating to
protect the ends and welds of nuclear fuel rods. The aim of this paper is to determine the
role of Cr coating on the hydrogenation behavior of RUW Zr alloy specimens at normal
operation and LOCA temperatures.

2. Materials and Methods
2.1. Specimen Preparation

Specimens (Figure 1) were produced using the standard technology of resistance upset
welding of a Zr alloy cladding tube with an end plug in the public joint-stock company
“Novosibirsk Chemical Concentrates Plant” (NCCP, Rosatom, Novosibirsk, Russia). The
cladding tube (diameter of Ø9.1 mm, wall thickness of 0.55 mm) and end plug made from
an E110 (0.9–1.1 wt% Nb, 0.06–0.1 wt% O and Zr balance) zirconium alloy were used as
original materials to produce specimens. The first series of specimens was as-received
(uncoated), which did not undergo any post-treatment operations after welding. The
second series of specimens were coated by chromium using multi-cathode magnetron
sputtering. Special substrate holders were used to fix specimens from one edge for coating
deposition. Due to this, the outer surface of the specimens was fully coated, while an inner
area of the tubes remained uncoated. Prior to the coating process, specimens of the second
series were etched by Ar+ ions for 20 min to delete surface contaminations. The following
parameters of ion source were used: accelerated voltage of 2.5 kV, ion current of 40 mA,
and Ar pressure of 0.1 Pa. The procedure of Cr coating deposition was the same as it was in
previous studies [26,27]. The obtained Cr coating had a dense and columnar microstructure
with a uniform thickness of ~9.8 ± 0.4 µm. Other parameters of such a type of Cr coating
can be found in ref. [27] (specimen M8.2).

An automated machine Gas Reaction Controller (GRC) was used to perform the gas
phase hydrogenation of the specimens at 360, 450 and 900 ◦C. The vacuum chamber was
evacuated up to a pressure of 10−3 Pa and then heated up to the given temperature. The
heating rate was equal to 6 ◦C/min. After the heating stage, hydrogen (99.9999%) was
injected into the chamber. The hydrogen pressure was maintained as constant (2 bar). The
duration of hydrogenation for Cr-coated and uncoated specimens was 240, 35 and 5 min
at 360, 450 and 900 ◦C, respectively. The absorbed hydrogen was recorded during each
hydrogenation test. After hydrogenation, the chamber was evacuated, and specimens
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cooled down up to room temperature with a rate of ~5–10 ◦C/min. An analytical balance
machine (Sartorius CP124 S with an accuracy of 10−4 g) was used to measure the weight
gain of specimens before and after the hydrogenation tests.
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Figure 1. The schematic drawing of an RUW specimen (a). Appearance of (b) uncoated and (c) Cr-coated
RUW E110 alloy specimens before hydrogenation tests.

2.2. Hydrogenation Tests
2.3. Specimen Characterization

The cross-section microstructure of RUW E110 alloy specimens after the hydrogenation
tests was investigated using an optical microscopy via AXIOVERT-200 MAT (Zeiss, Jena,
Germany). The phase composition of specimens was analyzed in their cross-section via
X-ray diffraction (XRD) using XRD-7000S (Shimadzu, Kyoto, Japan) with CuKα radiation
(30 kV, 40 mA). The identification and calculation of phase composition by Rietveld refine-
ment were performed using the ICCD-4+ database and the SIeve program. The hardness of
specimens was studied in the end plug (EZ), weld (WZ) and tube (TZ) zones. Hardness
measurements were performed on cross-sections of specimens using the Nanohardness
Tester 2 (CSM, Geneva, Switzerland). The indentation load and distance between indenta-
tions were equal to 100 mN and ~100 µm, respectively. Thirty indentations were performed
in each zone of all specimens; then, hardness was averaged for each zone.

3. Results
3.1. Hydrogenation Tests

Hydrogen absorption curves for two series of RUW specimens (uncoated and Cr-
coated) at different temperatures are shown in Figure 2. For both specimens, hydrogen
absorption increased with the temperature of the hydrogenation tests. It was shown that
hydrogen absorption is lower in the case of Cr-coated RUW E110 alloy specimens compared
to uncoated ones. Hydrogen absorption rates (q) were calculated from a slope of curves
(Figure 2) and presented in Table 1.

The deposition of Cr coating on RUW specimens led to a decrease in its hydrogen
absorption rate by 7.5 times at 360 ◦C, 8.5 times at 450 ◦C, and 3.8 times at 900 ◦C (Table 1).
The hydrogen absorption by the uncoated RUW specimen was characterized by a linear
growth of hydrogen concentration up to 0.007 wt.% at 360 ◦C (until 120 min). Then, the
hydrogen absorption of the uncoated specimen accelerated due to a reduction in the surface
oxide film by hydrogen (Figure 2a) [28]. When the temperature of the hydrogenation
tests was 450 ◦C, the near-linear growth of hydrogen concentration was observed for both
types of specimens during the entire hydrogenation period (Figure 2b). However, the
absorbed hydrogen concentration was significantly lower for the Cr-coated RUW E110
alloy. Similar behaviors of the hydrogen absorption kinetics of the uncoated and Cr-coated
RUW specimens were observed at 900 ◦C (Figure 2c), but the Cr-coated RUW specimen had
a lower absorption rate. Nevertheless, the hydrogen absorption rate increased significantly
at 900 ◦C, even for the Cr-coated specimen (9.8·10−2 cm3(H2)·cm−2·s−1). It can be observed
that the absorption curve for the uncoated RUW specimen showed a significant decrease
in the hydrogen absorption rate at a hydrogen concentration above 0.8 wt.% (Figure 2c).
This indicates the decrease in absorption rate was caused by the formation of δ-zirconium
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hydrides, which have a lower hydrogen diffusion rate [25,29,30]. At the same time, the
Cr-coated RUW specimen showed a smoother change in the hydrogen absorption rate.
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Table 1. Hydrogen absorption rate for uncoated and Cr-coated RUW E110 alloy specimens.

Time, Min T, ◦C
Hydrogen Absorption Rate (q), cm3(H2)·cm−2·s−1 Hydrogen Concentration (CH), ppm

Cr-Coated RUW Uncoated RUW Cr-Coated RUW Uncoated RUW

240 360 2.8·10−5 2.1·10−4 30 240
35 450 2.7·10−4 2.3·10−3 64 890
5 900 9.8·10−2 3.7·10−1 3900 2700

Arrhenius curves were plotted for a comparative analysis of activation energy for
the hydrogen absorption of the uncoated and Cr-coated RUW specimens (Figure 2d). The
obtained values also confirmed the barrier properties of the Cr coating: the activation
energy of hydrogen absorption was higher for Cr-coated specimens (84 kJ/mol) compared
to uncoated ones (71 kJ/mol). The activation energy of sorption and desorption was the
minimum amount of energy that hydrogen molecules need to receive for their dissociation
on the surface of a substance (to overcome the activation barrier) or hydrogen atoms for
their recombination into molecules and desorption. The value of activation energy is the
minimum amount of energy that needs to be supplied to the system (joule per mole) for
a sorption/desorption reaction to occur. Thus, an increase in the value of the activation
energy of hydrogen sorption by 18% due to the chromium coating deposition on the
welded zirconium alloy indicated an increase in the hydrogen resistance of the alloy due to
a decrease in the rate of hydrogenation.
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3.2. Phase Composition and Cross-Section Microstructure of RUW Specimens

The phase composition of RUW specimens is presented in Figure 3. The as-received
RUW specimen was represented only by an α-Zr phase. The analysis of XRD patterns
shows the formation of the δ-ZrH1.66 hydride phase in the uncoated RUW specimens
hydrogenated at all temperatures. The intensities of the δ phase reflections increased with
temperature, which indicated higher content of the hydride phase and correlated with
the measured H concentrations in specimens. For Cr-coated specimens, the formation of
two types of hydrides (δ-ZrH1.66 and γ-ZrH) was observed only after hydrogenation at
900 ◦C, despite the fact that the hydrides were clearly seen in optical images for the coated
specimen hydrogenated at 450 ◦C (Figure 4). This was due to the low concentration of
hydrogen and, therefore, hydrides in the sample, which made it difficult to detect via the
XRD technique. It should be noted that the specimens were analyzed on cross-sections,
and no reflections from the thin Cr coating were also observed in the XRD patterns of the
Cr-coated specimens.
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Figure 4 shows cross-section optical images of specimens after the hydrogenation
tests. The microstructural analysis showed that Cr-coated specimens did not have cracks or
hydrides in all observed zones at a temperature of 360 ◦C. No peeling of Cr coatings was
found. At the same temperature, the uncoated RUW specimen had cracks formed at the
welding burr.

Precipitations of hydrides (dark contrast) were observed inside the Cr-coated specimen
at 450 ◦C. Hydrides have different orientations: they are primarily circumferentially on the
outer side of the specimen, while they are radially orientated on the inner side. Radially
oriented hydrides can cause an undesirable path of crack propagation, leading to the brittle
fracture of the cladding material [31]. Hydrides also precipitate along a weld zone, and
here, some reorientation of hydrides in a direction to the outer surface of the weld zone
was observed. The same orientations were observed for the uncoated specimen at 360 and
450 ◦C, which was caused by hydrogen diffusion from the inner uncoated side. Moreover,
a hydride rim was also observed inside uncoated specimens on the outer side, also found
in [32].

Due to the high diffusion mobility of hydrogen at 900 ◦C, both uncoated and Cr-coated
RUW specimens had relatively uniform distributions and high contents of hydrides inside
the volume of the specimens. It was found that the Cr-coated specimen had a higher
hydride concentration than the uncoated one.
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Figure 5 shows cross-section optical images of specimens in a TZ. It was found that
the increase in hydrogenation temperature could lead to a formation of a hydride rim. This
was observed for uncoated specimens at 360 and 450 ◦C, while the hydride rim was not
observed for Cr-coated specimens after all the hydrogenation tests. When the hydride rim
was formed (at a depth of ~50 µm), hydrogen still penetrated further into the alloy, where
hydrides are formed. For both types of specimens at 900 ◦C, absorption and diffusion rates
were high, so hydride formation occurred throughout a volume of specimens.

3.3. Hardness Measurements

The hardness of the uncoated and Cr-coated RUW specimens is shown in Table 2. The
hardness of the as-received RUW E110 alloy had a uniform distribution, and the obtained
values of hardness were comparable with that of E110 zirconium alloy (~180 HV) [33]. Ac-
cording to Table 2, the magnetron deposition of the Cr coating on the outer surface of the
RUW E110 alloy did not affect its hardness using the applied deposition parameters. The
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maximal temperature of the RUW alloy during Cr coating deposition (390 ◦C) was less than
the typical annealing temperature of Zr alloy cladding tubes and welds (500–580 ◦C) [34,35].
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zones.

Table 2. Hardness of uncoated and Cr-coated RUW E110 alloy specimens.

Specimen Time, Min T, ◦C CH, ppm
Average Hardness, HV

EZ WZ TZ

As-received Cr-coated 0 0 0 210 ± 17 212 ± 19 191 ± 14

As-received uncoated 0 0 0 208 ± 30 213 ± 10 178 ± 9

Cr-coated 240 360 30 208 ± 30 220 ± 24 207 ± 33

Uncoated 240 360 240 232 ± 37 255 ± 41 273 ± 36

Cr-coated 35 450 64 218 ± 24 212 ± 26 216 ± 19

Uncoated 35 450 890 223 ± 37 229 ± 32 231 ± 50

Cr-coated 5 900 3900 266 ± 27 270 ± 30 260 ± 42

Uncoated 5 900 2700 266 ± 26 255 ± 20 266 ± 32

The hydrogenation of RUW specimens led to the hardening of both types of specimens
(Cr-coated and uncoated) due to a formation of the δ-ZrH phase. After the hydrogenation
test at 360 ◦C, the hardness of the uncoated RUW specimen was equal to 255 HV in WZ,
while the Cr-coated one had 220 HV in the same zone. The hardness of the uncoated RUW
specimen (229 HV) was also higher in WZ at 450 ◦C compared to that of the Cr-coated
RUW (212 HV). The hardness of specimens was the highest (255–270 HV) in all zones after
the hydrogenation tests at 900 ◦C. At the same time, the hardness in WZ became higher
for the Cr-coated specimen due to the higher hydrogen concentration compared to the
uncoated specimen (3900 and 2700 ppm, respectively).

4. Discussion

The hydrogenation of resistance upset welds (RUW) from E110 zirconium alloy was
performed at 360, 450, and 900 ◦C. It was shown that native surface oxide can limit the
penetration of hydrogen to the welded alloy to some extent (Figure 2a). However, when
such an oxide layer was reduced, the hydrogen absorption rate rapidly accelerated. At
higher temperatures (450 and 900 ◦C), the hydrogenation absorption rate of the uncoated
specimens drastically increased (from 2.1·10−4 to 2.3·10−3 and 3.7·10−1 cm3 (H2)·cm−2·s−1,
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respectively). A hydride rim could be formed in the outer surface of the welded alloy at
360 and 450 ◦C. The tube zones of uncoated RUW specimens preferred circumferentially
oriented hydrides (Figure 5), while hydrides formed in the radial direction in the weld
zone of specimens. The phase transformation of α-Zr into δ-ZrH1.66 could lead to a volume
expansion of about 17.2% [36]. Possible stress concentrations can be easily released in
brittle hydride precipitates and at the α/δ phase boundaries [37]. The latter can lead
to a negative effect on the mechanical properties of welded specimens [25]. Indeed, the
noticeable increase in the hardness of RUW specimens after hydrogenation was determined
(Table 2). After hydrogenation at 900 ◦C, the uncoated RUW specimen had a uniform
distribution of hydrides throughout the volume of specimens. As hydrogen solubility and
diffusivity can drastically increase in Zr alloys at high temperatures [38], no hydrogen
rim was observed for these specimens. In this case, hydrides were precipitated uniformly
during the cooling stage of the hydrogenation test.

The deposition of a chromium coating on the outer surface of RUW specimens can
be used as a barrier layer for hydrogen permeation. The same result was found in several
studies [25,32]. We found that Cr-coated RUW specimens have lower hydrogen absorption
rates and higher activation energy compared to uncoated ones (Table 1). Indeed, the lower
hydrogen concentration was found in coated specimens after tests at 360 and 450 ◦C. As the
Cr coating decreased hydrogen absorption, no hydride rim was found in the cross-section
of welded specimens. These findings indicate the good barrier properties of the magnetron-
deposited Cr coating to hydrogen permeation at temperatures simulating normal operation
conditions. Moreover, the Cr-coated Zr alloy fuel rod suggested the deposition of a Cr
coating on the surface of tube claddings should only occur when the ends of the rod remain
uncoated [39]. The obtained results can be used as the rough estimations of a possible
decrease in hydrogen absorption by Zr alloy rods under normal operation conditions, if
it was fully coated by chromium. However, the Cr coating cannot significantly decrease
the absorption rate of hydrogen at 900 ◦C (Figure 2c). It is more important that a higher
hydrogen concentration was obtained in the Cr-coated specimen (3900 ppm) compared
to the uncoated RUW (2700 ppm) as the Cr coating decreased the hydrogen output from
the welded alloy during the cooling stage of the hydrogenation test. Such a trend can
have a negative effect on the mechanical properties and integrity of welded Zr alloys after
hydrogen exposure as the higher H concentration remains in the Cr-coated alloy.

The comparison of the hydrogenation behavior of RUW specimens and laser beam
welds obtained in the previous study [25] showed that welding can cause a formation
of transversely oriented hydrides in welded zones of specimens during hydrogenation
procedures. In both types of welding, RUW and LBW, Cr coating deposition via magnetron
sputtering can decrease such types of hydride precipitations in the case of low-temperature
hydriding (360–450 ◦C). This can be considered as a one of the main advantages of the
fully Cr-coated nuclear fuel rod compared to the uncoated one at temperatures of normal
operation. Moreover, RUW specimens usually have some non-regularities (weld burr) on
the surface in the weld zone due to an excess of liquid metal pressed in an outer surface
during such types of welding. No presence of localized hydrides in cross-sections of Cr-
coated specimens after hydrogenation at 360 and 450 ◦C indicated that the magnetron
deposition of a 9.8 µm thick Cr coating can prevent the fast hydriding of welded Zr alloys
in such regions. At the higher hydrogenation temperature (900 ◦C), the barrier properties
of Cr coating decreases, and therefore, no considerable difference was found between the
hydrogenation behavior of Cr-coated and uncoated RUW specimens.

5. Conclusions

Resistance upset welds of an E110 zirconium alloy without and with a 9.8 µm thick Cr
coating deposited on its outer surface was studied in the temperature range of 360–900 ◦C
in pure hydrogen atmosphere. The following conclusions were obtained:

1. Due to high hydrogen absorption rates of uncoated RUW specimens, a hydride rim
can be formed in its outer surface at 360 and 450 ◦C. Chromium coating can decrease
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the absorption rate by one order of magnitude and eliminate the growth of the hydride
rim during the considered time of hydrogenation tests.

2. The influence of Cr coating on the hydrogen absorption rate in RUW specimens is
noticeably decreased during hydrogenation at 900 ◦C. The Cr-coated RUW specimen
has a higher residual concentration of hydrogen (3900 ppm) since hydrogen output
from the welded alloy is slowed down by the coating during the cooling stage.

3. Welding can cause a formation of radially oriented hydrides in the welded zone
of RUW specimens during hydrogenation. The coating deposition of Cr limits the
formation of hydrides with such an orientation under low-temperature hydriding
(360–450 ◦C).
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