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A three–vortex system on a plane is known to be minimally superintegrable in the Liouville sense. In this 
work, integrable generalisations of the three–vortex planar model, which involve root vectors of simple 
Lie algebras, are proposed. It is shown that a generalised system, which is governed by a positive definite 
Hamiltonian, admits a natural integrable extension by spin degrees of freedom. It is emphasised that the 
n–vortex planar model and plenty of its generalisations enjoy the nonrelativistic scale invariance, which 
gives room for possible holographic applications.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the family of integrable models with finite number of de-
grees of freedom, a system of three point vortices on a plane holds 
a special place with impressive history. The research began with 
the work of Helmholtz [1], who had demonstrated that 2d Euler 
equations for an incompressible inviscid fluid admitted a partic-
ular solution which described n point vortices on a plane. A few 
decades later, Kirchhoff had rewritten the n–vortex equations in 
the Hamiltonian form (see Lecture 20 in [2]). First results on inte-
grability of the three–vortex case were reported by Gröbli [3] and 
Poincaré [4]. The nonintegrability of a generic four–vortex model 
had been proven almost a century later [5] (see also a related work 
[6]). In modern times, the study of non–planar generalisations and 
related topics generated extensive literature (see e.g. [7–11] and 
references therein).

The integrability of the three–vortex planar model relies upon 
the E(2)–symmetry. In particular, the generator of rotation on 
a two–dimensional plane, the Casimir element of e(2) and the 
Hamiltonian itself provide three functionally independent integrals 
of motion in involution. Adding the generator of translation in one 
of two spatial directions, renders the system minimally superinte-
grable.1

E-mail address: galajin@tpu.ru.
1 Recall that a Hamiltonian system with 2n phase space degrees of freedom is 

called Liouville integrable, if it admits n functionally independent first integrals, 
which commute under the Poisson bracket. If there are more than n such inte-
grals, a model is called superintegrable. Because in unparameterised form one has 
2n −1 equations of motion, the maximum possible number of functionally indepen-
dent first integrals is 2n − 1. A dynamical system possessing 2n − 1 first integrals is 
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The goal of this Letter is threefold. Firstly, it is emphasised that 
the n–vortex planar model and plenty of its generalisations enjoy 
the nonrelativistic scale invariance. Despite extensive recent stud-
ies of the fluid/gravity correspondence (see e.g. [12] and references 
therein) the n–vortex system appears to have escaped attention. 
Secondly, it is demonstrated that the E(2)–symmetry alone does 
not fix an integrable Hamiltonian, but rather specifies its argu-
ments. Generalisations involving root vectors of simple Lie algebras 
are proposed. Thirdly, it is shown that a generalised three–vortex 
model, which is governed by a positive definite integrable Hamil-
tonian, admits a natural integrable extension by spin degrees of 
freedom.

The work is organised as follows.
In the next section, a system of n point vortices on a plane is 

reviewed and its invariance under the nonrelativistic scale trans-
formation is established. In Sect. 3, restrictions on a form of a 
Hamiltonian, which follow from the E(2)–symmetry and the re-
lated integrability, are formulated. A few generalisations, which 
rely upon root vectors of simple Lie algebras, are proposed, some 
of them bearing resemblance to the Ruijsenaars–Schneider model 
[13]. In Sect. 4, it is shown that a generalised three–vortex sys-
tem, which is governed by a positive definite Hamiltonian, can be 
extended by dynamical spin variables without destroying integra-
bility. In the concluding Sect. 5, we summarise our results and 
discuss possible further developments.

called maximally superintegrable, while that admitting n +1 first integrals is named 
minimally superintegrable.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2022.137119
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2022.137119&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:galajin@tpu.ru
https://doi.org/10.1016/j.physletb.2022.137119
http://creativecommons.org/licenses/by/4.0/


A. Galajinsky Physics Letters B 829 (2022) 137119
2. A system of n point vortices on a plane

As is known since Kirchhoff’s work (see Lecture 20 in [2]), a 
system of n point vortices on a plane can be described by canonical 
equations of motion which derive from the Hamiltonian (in what 
follows we use the notation in [14])

H = 1

π

∑
i �= j

�i� j ln
((

xi − x j
)2 + (

yi − y j
)2

)
, (1)

where (xi, yi), i = 1, . . . , n, are Cartesian coordinates of the i–th 
vortex and �i is its (constant) circulation, and the Poisson bracket

{A, B} =
n∑

i=1

1

�i

(
∂ A

∂ yi

∂ B

∂xi
− ∂ A

∂xi

∂ B

∂ yi

)
. (2)

The invariance of (1) under translations and rotation on a two–
dimensional plane results in three constants of the motion

P x =
n∑

i=1

�i xi, P y =
n∑

i=1

�i yi, M = 1

2

n∑
i=1

�i

(
x2

i + y2
i

)
,

(3)

which obey the structure relations of the (centrally extended) Lie 
algebra associated with the Euclidean group E(2)

{M, P x} = P y, {M, P y} = −P x, {P x, P y} = −
n∑

i=1

�i . (4)

As follows from (3), (4), the three–vortex case is minimally super-
integrable in the Liouville sense. Indeed, the quadratic combination 
P 2

x + P 2
y along with H and M provide three functionally indepen-

dent first integrals in involution, while adding P x (or P y) renders 
the system minimally superintegrable. Note that, if the sum of cir-
culations vanishes, P 2

x + P 2
y coincides with the Casimir element of 

e(2).
The equations of motion resulting from (1), (2)

ẋa = − 4

π

∑
i �=a

�i(ya − yi)

(xa − xi)
2 + (ya − yi)

2
,

ẏa = 4

π

∑
i �=a

�i(xa − xi)

(xa − xi)
2 + (ya − yi)

2
,

(5)

also hold invariant under the scale transformation

x′
i = λxi, y′

i = λyi, t′ = λ2t, (6)

where λ is an arbitrary real parameter, which coincides with the 
dilatation transformation entering the Schrödinger group [15]. Be-
cause the action functional

S =
∫

dt

(
n∑

i=1

�i xi ẏi − H

)
(7)

associated with Eqs. (5) transforms as S ′ = λ2 S + const un-
der the dilatation transformation (6), the construction of a con-
served charge via Noether’s theorem appears problematic. This 
is also seen from a natural candidate for the dilatation generator ∑n

i=1 xi yi , which fails to produce the infinitesimal form of (6) via 
the Poisson bracket (2). To the best of our knowledge, the scaling 
symmetry of (5) escaped attention and a gravity dual to a system 
of n point vortices on a plane has not yet been explored in the 
literature.

It is worth mentioning that, according to the Jacobi last mul-
tiplier method (see e.g. [16]), a system of first–order differential 
2

Fig. 1. Parametric plots (x1(t), y1(t)) (outer), (x2(t), y2(t)) (middle), 
(x3(t), y3(t)) (inner) associated with the Hamiltonian (1) for �1 = 0.1, 
�2 = 0.3, �3 = 0.5, x1(0) = 0.1, y1(0) = 0.1, x2(0) = 0.1, y2(0) = −0.1, 
x3(0) = −0.1, y3(0) = −0.1, and t ∈ [0, 2].

equations żi = f i(z), i = 1, . . . , m + 1, is integrable by quadratures, 
if it possesses m − 1 functionally independent first integrals and 
admits an integrating multiplier μ obeying

μ̇ + μ∂i f i = 0. (8)

In particular, if a vector field f i is divergence–free, a system au-
tomatically admits an integrating multiplier μ = const. As ∂i f i = 0
for the equations (5), the three–vortex case can alternatively be 
studied by applying the Jacobi approach.

For what follows, it proves instructive to display parametric 
plots (x1(t), y1(t)) (outer), (x2(t), y2(t)) (middle), (x3(t), y3(t)) (in-
ner) associated with the Hamiltonian (1) for �1 = 0.1, �2 = 0.3, 
�3 = 0.5, x1(0) = 0.1, y1(0) = 0.1, x2(0) = 0.1, y2(0) = −0.1, 
x3(0) = −0.1, y3(0) = −0.1, and t ∈ [0, 2] (see Fig. 1).

As was mentioned in the Introduction, for n > 3 and generic 
values of the circulations �i the equations (5) cease to be inte-
grable [5]. When discussing generalised models below, we mainly 
focus on the three–vortex case.

3. Generalised three–vortex systems on a plane

Eqs. (5) were originally obtained by invoking basic principles 
of nonrelativistic fluid mechanics. In particular, specific boundary 
conditions on a fluid, in which point vortices propagate, were 
assumed [2]. In this section, we temporarily set aside physical 
grounds and bring to the forefront the issues of symmetry and 
integrability, thus paving the way for generalisations.

Consider an arbitrary function H(x, y) of (xi, yi), i = 1, 2, 3, 
which will be identified below with the Hamiltonian of a gen-
eralised three–vortex system on a plane, and let us demand it 
be inert under the action of the Euclidean group E(2) generated 
by (3) via the Poisson bracket (2). From {P x, H} = 0, {P y, H} = 0, 
{M, H} = 0 one obtains the linear homogeneous partial differential 
equations
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3∑
i=1

∂ H

∂ yi
= 0,

3∑
i=1

∂ H

∂xi
= 0,

3∑
i=1

(
yi

∂ H

∂xi
− xi

∂ H

∂ yi

)
= 0,

(9)

which can be solved by the well known method of characteristics. 
The general solution to the first two equations in (9) is an arbitrary 
function of the arguments

x1 − x2, x1 − x3, y1 − y2, y1 − y3, (10)

x2 − x3 and y2 − y3 being the linear combinations of the above, 
while the ordinary differential equations associated with the third 
restriction in (9)

dx1

y1
= dx2

y2
= dx3

y3
= −dy1

x1
= −dy2

x2
= −dy3

x3
(11)

give rise to the first integrals

x2
1 + y2

1, x2
2 + y2

2, x2
3 + y2

3,

x1x2 + y1 y2, x1x3 + y1 y3.
(12)

A way to consistently combine (10) and (12) is to choose the 
quadratic combination(
α(xi − x j) + β(xk − xl)

)2 + (
α(yi − y j) + β(yk − yl)

)2
, (13)

where α and β are arbitrary real parameters and i, j, k, l = 1, 2, 3. 
The latter features the argument of H obeying (9).

Eq. (13) allows one to construct a plethora of generalised three–
vortex systems on a plane, which are E(2)–invariant and minimally 
superintegrable. For example, regarding the original model (1) as 
being associated with root vectors of the simple Lie algebra A2, 
and switching instead to long root vectors of G2, one gets the 
Hamiltonian

H = 1

π

∑
i �= j �=k

�i� j ln
((

xi + x j − 2xk
)2 + (

yi + y j − 2yk
)2

)
,

(14)

which results in more fancy orbits (see Fig. 2).
Combining (1) and (14)

H = 1

π

3∑
i �= j

�i� j ln
((

xi − x j
)2 + (

yi − y j
)2

)

+ 1

π

3∑
i �= j �=k

W i W j ln
((

xi + x j − 2xk
)2 + (

yi + y j − 2yk
)2

)
,

(15)

where W i are arbitrary parameters (coupling constants), one gets 
what can be called a G2 three–vortex system on a plane. In partic-
ular, by adjusting the parameters �i and W i , one can interpolate 
between the orbits exposed in Fig. 1 and Fig. 2 Note that, similarly 
to (5), the G2–system is invariant under the scale transformation 
(6).

As follows from our consideration above, an explicit form of a 
Hamiltonian is not fixed by demanding the E(2) symmetry alone. 
So one is at liberty to experiment with various functions of the 
argument (13) and build a plethora of generalised systems. An in-
teresting model arises if one replaces the logarithm in (1) with the 
exponent

H = 1

4

∑
�i� je

2
(
xi−x j

)2
e2

(
yi−y j

)2
. (16)

Fi
(x
�
x3

Fi
(x
�
x3

Eq
[1
(s
(6

th
pl
i �= j

3

g. 2. Parametric plots (x1(t), y1(t)) (outer), (x2(t), y2(t)) (middle), 
3(t), y3(t)) (inner) associated with the Hamiltonian (14), for �1 = 0.1, 

2 = 0.3, �3 = 0.5, x1(0) = 0.1, y1(0) = 0.1, x2(0) = 0.1, y2(0) = −0.1, 
(0) = −0.1, y3(0) = −0.1, and t ∈ [0, 2].

g. 3. Parametric plots (x1(t), y1(t)) (outer), (x2(t), y2(t)) (middle), 
3(t), y3(t)) (inner) associated with the Hamiltonian (16), for �1 = 0.1, 

2 = 0.3, �3 = 0.5, x1(0) = 0.1, y1(0) = 0.1, x2(0) = 0.1, y2(0) = −0.1, 
(0) = −0.1, y3(0) = −0.1, and t ∈ [0, 20].

. (16) bears resemblance to the Ruijsenaars–Schneider model 
3] and it is characterised by a more gentle dynamical behaviour 
ee Fig. 3). Note though that it does not enjoy the scale symmetry 
).

It is natural to expect that n > 3 generalised systems will lack 
e integrability property. In particular, one can look into the sim-
est model
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Fig. 4. The orbits associated with the Hamiltonian (17) exhibit erratic behaviour. The 
plot is given for �1 = 0.1, �2 = 0.3, �3 = 0.5, �4 = 0.7, x1(0) = 0.1, y1(0) = 0.1, 
x2(0) = 0.2, y2(0) = −0.2, x3(0) = −0.3, y3(0) = −0.3, x4(0) = −0.4, y4(0) = 0.4, 
and t ∈ [0, 3].

H = 1

16π

∑
i �= j �=k �=l

(�i + � j)(�k + �l) ln
(
(xi + x j − xk − xl)

2

+ (yi + y j − yk − yl)
2),

(17)

and reveal rather erratic orbits depicted in Fig. 4.
In the next section, we dwell on positive definite Hamiltonians 

similar to (16) and construct integrable extensions of such systems 
by spin degrees of freedom.

4. Integrable extensions by supersymmetrisation

As was advocated in a recent work [17], given an integrable 
system with a positive definite Hamiltonian, one can use methods 
of supersymmetry in order to construct its integrable (bosonic) ex-
tension. In this section, we elaborate on this proposal by focusing 
on generalised three–vortex models.

Let us consider a three–vortex system governed by a positive–
definite Hamiltonian

H = 1

2
(�12)

2 + 1

2
(�13)

2 + 1

2
(�23)

2, (18)

where �i j are three functions of (xi, yi), i, j = 1, 2, 3, and it is 
assumed that their arguments are structured in accord with the 
prescription (13). In order to construct an N = 1 supersymmetric 
extension of (18), for each bosonic pair (xi, yi) one introduces a 
real fermionic partner θi , i = 1, 2, 3, obeying the Poisson brackets

{θi, θ j} = −iδi j, {θi, x j} = 0, {θi, y j} = 0, (19)

and then builds the supersymmetry charge

Q = �12θ3 + �13θ2 + �23θ1, (20)

which via the Poisson bracket
4

{Q , Q } = −2iH, (21)

gives rise to the super–extended Hamiltonian

H = H − i{�13,�23}θ1θ2 − i{�12,�23}θ1θ3 − i{�12,�13}θ2θ3.

(22)

From (22) one can readily obtain equations of motion describ-
ing the extended system. In particular, the original equations ẋi =
{xi, H} and ẏi = {yi, H} will be modified to include fermionic con-
tributions.

In general, the super-extended system is not integrable, as one 
introduces three fermionic degrees of freedom and only one con-
served super–charge. Yet, one can achieve an integrable general-
isation, if one focuses on a particular solution [17], in which all 
fermions are proportional to one and the same Grassmann–odd 
number ε

θi(t) = εϕi(t), (23)

where ϕi(t) are bosonic functions of the temporal variable and 
ε2 = 0. As follows from (22), ϕi(t) obey the linear differential 
equations

ϕ̇1 = −{�13,�23}ϕ2 − {�12,�23}ϕ3,

ϕ̇2 = {�13,�23}ϕ1 − {�12,�13}ϕ3,

ϕ̇3 = {�12,�23}ϕ1 + {�12,�13}ϕ2. (24)

Because a square of a Grassmann–odd number is zero, ε2 = 0, 
equations of motion for (xi, yi) reduce to those of the original 
bosonic system governed by H in (18)

ẋi = {xi, H}, ẏi = {yi, H}. (25)

Thus, Eqs. (24) describe an extension of (18), (25) by three 
bosonic degrees of freedom ϕi . Because the new variables do not 
alter the dynamics of (xi, yi), it suffices to establish integrability in 
the ϕi –sector. Two first integrals

�12ϕ3 + �13ϕ2 + �23ϕ1, ϕ2
1 + ϕ2

2 + ϕ2
3 , (26)

the first of which is obtained from the super–charge (20), allow 
one to reduce (24) to a single linear inhomogeneous first order dif-
ferential equation, which can be easily integrated by conventional 
means.

As an illustration, let us consider the Hamiltonian (16), in which 
all �i are assumed positive. The building blocks

�i j = √
�i� je

(
xi−x j

)2
e
(

yi−y j
)2

, (27)

with i < j, obey the structure relations

{�12,�13} = 4

�1

(
(y1 − y2)(x1 − x3)

− (y1 − y3)(x1 − x2)
)
�12�13,

{�12,�23} = − 4

�2

(
(y1 − y2)(x2 − x3)

− (y2 − y3)(x1 − x2)
)
�12�23,

{�13,�23} = 4

�3

(
(y1 − y3)(x2 − x3)

− (y2 − y3)(x1 − x3)
)
�13�23,

(28)

which specify the equations of motion (24) for the extra variables. 
Interestingly enough, the functions (no sum over repeated indices)

(x j − xi)(yk − yi) − (xk − xi)(y j − yi), (29)
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Fig. 5. Plots ϕ1(t) (top), ϕ2(t) (middle), ϕ3(t) (bottom) corresponding to 
Eqs. (24), for �1 = 0.1, �2 = 0.3, �3 = 0.5, x1(0) = 0.1, y1(0) = 0.1, 
x2(0) = 0.1, y2(0) = −0.1, x3(0) = −0.1, y3(0) = −0.1, ϕ1(0) = 0.1, 
ϕ2(0) = 0.1, ϕ3(0) = 0.1, and t ∈ [0, 300].

which accompany the quadratic combinations of � on the right 
hand sides of Eqs. (28), coincide with the geometric variables 
i jk
introduced in [7].

While (xi, yi) follow the vortex orbits depicted in Fig. 3, each 
component of ϕi undergoes a quasi–periodic oscillation (see Fig. 5). 
The tip of the vector ϕi swings on a two–sphere (26) and it can be 
interpreted as a generalised spin vector [17].

5. Conclusion

To summarise, in this Letter integrable generalisations of a 
three–vortex system on a plane were studied. First, restrictions on 
a form of a Hamiltonian, which follow from the E(2)–symmetry 
and the related integrability, were formulated. Then a few models, 
which rely upon root vectors of simple Lie algebras, were pro-
posed. Finally, it was demonstrated that the generalised systems 
governed by a positive definite Hamiltonian can be extended by 
dynamical spin variables without destroying integrability.

Turning to possible further developments, it would be interest-
ing to study in detail a link of the generalised models in this work 
to the nonrelativistic fluid mechanics. In particular, a possible mod-
ification of the Euler equations is worth studying. Some models in 
Sect. 3 bear resemblance to the Ruijsenaars–Schneider model [13], 
which is known to be integrable for an arbitrary number of par-

ticles. It is interesting to explore whether some of the generalised 
models may admit extra integrals of motion in addition to those 
originating from the E(2)–symmetry. Long time behaviour of the 
generalised systems is worth studying as well.
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