Министерство образования и науки Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт: Специальность: Кафедра:

Энергетический 140404 Атомные электрические станции и установки Атомных и тепловых электростанций

ДИПЛОМНАЯ РАБОТА

Тема работы

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК КСЕНОНОВОГО ОТРАВЛЕНИЯ РЕАКТОРА ВВЭР-1000 С УДЛИНЕННОЙ АКТИВНОЙ ЗОНОЙ

УДК <u>621.311.25:621.039.54:539.163:546.2.001.6</u> Студент

Группа	ФИО	Подпись	Дата
5002	Копысова Наталья Александровна		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры АТЭС	А.В. Кузьмин	к.т.н., доцент		

КОНСУЛЬТАНТЫ:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры менеджмента	С.И. Сергейчик	к.т.н., доцент		
н с				

По разделу «Социальная ответственность»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры экологии и безопасности жизнедеятельности	А.М. Плахов	к.т.н., доцент		

По разделу «Автоматизация технологических процессов и производств»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры				
автоматизации	ЕВ Иранора	rd MU		
технологических	Е.Б. Иванова	к.фм.н.		
процессов				

Нормоконтроль

Лолжность	ФИО	Ученая	Полпись	Лата
	0	степень, звание		C
Ст. преподаватель				
кафедры	М.А.Вагнер	-		
АТЭС				

ДОПУСТИТЬ К ЗАЩИТЕ:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Зав. кафедрой атомных и тепловых электростанций	А.С. Матвеев	к.т.н., доцент		

Томск – 2016 г.

Реферат

Выпускная квалификационная работа состоит из 69 страниц, 9 рисунков, 38 таблица, 19 источников.

Ключевые слова: реактор, активная зона, стационарное отравление, ксенон-135, реактивность.

Объектом исследования является ядерный энергетический реактор типа ВВЭР - 1000 с удлиненной активной зоной.

Цель работы – определение зависимости стационарного отравления ксеноном от мощности реактора. Сравнение полученных результатов с данными АНФХ первой топливной загрузки РоАЭС энергоблок №3.

В процессе исследования проводились расчеты нейтронно-физических характеристик реактора на разных уровнях мощности.

В результате исследования была получена графическая зависимость стационарного отравления ксеноном от мощности реактора.

Изм.	Лист	№ документа	Подпись	Дата

Список принятых сокращений

АЭС - атомная электрическая станция,

ВВЭР - водо-водяной энергетический реактор,

ТВС - тепловыделяющая сборка,

АО - аксиальный офсет,

КНИ - канал нейтронного измерения,

ДПЗ - датчик прямого заряда,

ОР СУЗ - орган регулирования системы управления и защиты,

СГО - система спецгазоочистки,

АРЭ - аксиальное распределение энерговыделения,

аз - активная зона

Изм.	Лист	№ документа	Подпись	Дата

Оглавление

Введение	.6
1 Исходные данные для расчета	11
1.1 Принимаемы допущения при проведении расчетов	13
2 Расчет нейтронно-физических характеристик активной зоны "холодн	ого"
реактора	15
2.1 Определение объемов компонентов активной зоны	15
2.2 Определение эффективной температуры	18
2.3 Определение ядерной и молекулярной плотностей нуклидов	21
2.4 Определение температуры нейтронного газа	23
2.5 Определение энергии сшивки между спектрами замедляющихся и	1
тепловых нейтронов	24
2.6 Расчет сечений, усредненных по спектру Максвелла	27
2.7 Определение коэффициента использования тепловых нейтронов.	.30
ЗРасчет нейтронно-физических характеристик реактора	на
мощности	31
3.1 Определение объемов компонентов активной зоны	31
3.2 Определение нейтронно-физических характеристик на мощности	
40% N _{HOM}	32
3.3 Определение нейтронно-физических характеристик на мощности	
75% N _{ном}	41
3.4 Определение нейтронно-физических характеристик на мощности	
100% N _{ном.}	49
4 Определение зависимости стационарного отравления реактора ксенс	ЭНОМ
от мощности	58
5 Расчет нейтронно-физических характеристик активной зоны при раз	зных
значениях сечения поглощения гадолиния	52
	Лист
ФЮРА.693100.001.ПЗ	1

Лист

Изм.

№ документа

Подпись

Дата

6 Анализ ро	езультата	расчетов	стационарного	отравления	реактора	на
различных уровня	х мощнос	ти				66
Список испо	льзуемых	источник	ОВ			.68

					ФЮІ
Изм.	Лист	№ документа	Подпись	Дата	

Введение

Во время работы в реакторе непрерывно протекают процессы, приводящие к изменению нуклидного состава реакторных материалов. Подавляющая часть таких процессов вызвана взаимодействием нейтронов с ядрами топлива. Состав уранового топлива изменяется в основном в результате следующих процессов, представленных на рисунке 1.

> ²³⁵ $U + {}_{0}^{1}n \rightarrow {}^{236}U$ \Box Осколки ; деления

²³⁸ $U + {}^{1}_{0}n \rightarrow {}^{239}U \xrightarrow{\beta^{-}}_{33,8_{MUH}} \rightarrow {}^{239}Np \xrightarrow{\beta^{-}}_{3,3_{CYM}} \rightarrow {}^{239}Pu + {}^{1}_{0}n \rightarrow {}^{240}Pu + {}^{1}_{0}n \rightarrow {}^{241}Pu + {}^{1}_{0}n \rightarrow {}^{242}Pu$ \Box Осколки деления \Box Осколки деления

Рисунок 1 – Схема изменения состава уранового топлива

Видно, что с течением времени при работе реактора в ядерном топливе накапливаются продукты деления. Влияние радиоактивных продуктов деления на реактивность реактора называется отравлением.

Отравление реактора - это процесс накопления в нём короткоживущих продуктов деления, участвующих в непроизводительном захвате нейтронов и тем самым снижающих запас реактивности реактора при их образовании и, наоборот, высвобождающих его при их бета-распаде.

Основную роль в процессе отравления играет ¹³⁵Хе, так как сечение поглощения превышает сечение поглощения нейтронов в ядерном топливе более чем в 1000 раз.

Особенности процесса отравления ¹³⁵Хе:

1) ¹³⁵Хе характеризуется величиной стандартного микросечения поглощения $\sigma_{a0}^{Xe} = 27200006$, величина удельного выхода $\gamma_{Xe} = 0,003$ и период полураспада $T_{1/2}^{Xe} = 9,2$ часа (постоянна β-распада $\lambda_{Xe} = 2,09 \cdot 10^{-5} \text{ c}^1$).

						Лис
					ФЮРА.693100.001.ПЗ	6
Изм.	Лист	№ документа	Подпись	Дата		0

2) Отравление - процесс обратимый: при возрастании концентрации ¹³⁵Хе реактор отравляется (и теряет запас реактивности), при снижении концентрации ксенона - он разотравляется (что приводит к высвобождению положительной реактивности).

3) Быстрое достижение равновесной концентрации (через 30...40 часов).

4) Увеличение отравления после остановки реактора ("йодная яма").

5) Из совмещённого графика энергетических спектров для теплового, промежуточного и быстрого реакторов вместе с зависимостью сечения поглощения ¹³⁵Хе от энергии нейтронов Е (рисунок 2) видно, что отравление ксеноном существенно для тепловых реакторов, малосущественно - для промежуточных и несущественно - для быстрых реакторов.

Рисунок 2 – Различия в поглощении нейтронов ксеноном-135 в тепловом (Т), быстром (Б) и промежуточном (П) реакторах.

¹³⁵Хе образуется в реакторе двумя путями: непосредственно как осколок деления ²³⁵U с известным удельным выходом и как дочерний продукт β -распада ¹³⁵J , который сам является продуктом β -распада ¹³⁵Te, образующегося при делении с довольно большим удельным выходом (γ_{Te} =0,06). Поскольку период полураспада ¹³⁵Te во много раз меньше периода полураспада ¹³⁵J, можно приближенно считать, что ¹³⁵J является осколком реакции деления с фиктивным удельным выходом, равным величине истинного удельного выхода ¹³⁵Te.

						Лис
					ФЮРА.693100.001.ПЗ	7
Изм.	Лист	№ документа	Подпись	Дата		/

Рисунок 3 – Схема образования и убыли йода и ксенона

Дифференциальное уравнение скорости изменения концентрации ксенона запишется как разность скорости прибыли и убыли:

$$\frac{\mathrm{dN}_{\mathrm{Xe}}}{\mathrm{dT}} = \gamma_{\mathrm{Xe}} \cdot \Sigma_{\mathrm{f}} \cdot \Phi_{i} + \lambda_{\mathrm{I}} \cdot N_{\mathrm{I}} - (\sigma_{\mathrm{Xe}} \cdot \Phi_{i} + \lambda_{\mathrm{Xe}}) \cdot N_{\mathrm{Xe}},$$

где $\gamma_{xe} \cdot \Sigma_f \cdot \Phi_i$ – скорость образования ксенона как продукта деления,

 $\lambda_{\rm I}\cdot N_{\rm I}$ – скорость прибыли ксенона из-за распада йода,

 $\sigma_{xe} \cdot \Phi_i \cdot N_{xe}$ – скорость убыли ксенона за счет поглощения тепловых нейтронов,

 $\lambda_{xe} \cdot N_{xe}$ – скорость убыли ксенона в результате β -распада,

ү_{хе}, ү_{*I*} − удельный выход ксенона и йода как продуктов деления,

 σ_{xe} – сечение поглощения нейтронов ксенона,

 $\Sigma_{\rm f}$ – макроскопическое сечение деления,

N_{Xe}, N_I – концентрации ксенона и йода,

 $\lambda_{\rm xe}, \lambda_{\rm I}$ – постоянные распада ксенона и йода,

Ф_{*i*} – плотность потока тепловых нейтронов.

Скорость изменения концентрации ¹³⁵Ј является разницей скоростей образования¹³⁵Ј (как непосредственного продукта деления) и убыли его (за счёт β -распада):

$$\frac{\mathrm{d}N_{\mathrm{I}}}{\mathrm{d}T} = \gamma_{\mathrm{I}} \cdot \Sigma_{\mathrm{f}} \cdot \Phi_{i} - \lambda_{\mathrm{I}} \cdot N_{\mathrm{I}},$$

						Лис
					ФЮРА.693100.001.ПЗ	0
Изм.	Лист	№ документа	Подпись	Дата		0

где $\gamma_{\rm I} \cdot \Sigma_{\rm f} \cdot \Phi_i$ – скорость образования йода как продукта деления,

 $\lambda_{I} \cdot N_{I}$ – скорость убыли йода в результате β -распада.

После пуска реактора количество ¹³⁵Хе в начале довольно резко возрастает, а затем, приблизительно, через 30...40 ч при работе реактора на постоянной мощности, из-за процесса образования в результате распада йода и процесса убыли вследствие распада и поглощения нейтронов достигается стационарный уровень (скорость убыли ксенона станет равной скорости его образования).

Стационарным называется отравление, свойственное реактору, длительно работающему на постоянном уровне мощности, в результате чего в его твэлах устанавливаются постоянные во времени концентрации йода и ксенона.

Условия стационарности отравления ¹³⁵Хе:

$$\Phi(t) = idem = \Phi_{o}; N_{Xe}(t) = idem = N_{Xe}^{cT}; N_{J}(t) = N_{J}^{cT}$$

Если подставить приведенные выше условия в дифференциальные уравнения отравления реактора, получим:

$$0 = \gamma_{Xe} \cdot \Sigma_{f}^{5} \cdot \Phi_{0} + \lambda_{J} \cdot N_{J}^{cm} - (\sigma_{Xe} \cdot \Phi_{0} + \lambda_{Xe}) \cdot N_{Xe}^{cm},$$
$$0 = \gamma_{J} \cdot \Sigma_{f}^{5} \cdot \Phi_{0} - \lambda_{J} \cdot N_{J}^{cm}$$

Отсюда величина стационарной концентрации ¹³⁵J и ¹³⁵Xe:

$$\mathbf{N}_{J}^{cm} = \frac{\gamma_{J}}{\lambda_{J}} \cdot \Sigma_{f}^{5} \cdot \Phi_{0}$$
$$\mathbf{N}_{Xe}^{cm} = \frac{\left(\gamma_{Xe} + \gamma_{J}\right)}{\sigma_{Xe} \cdot \Phi_{0} + \lambda_{Xe}} \cdot \Sigma_{f}^{5} \cdot \Phi_{0}$$

Видно, что количество ксенона при стационарном отравлении тем больше, чем выше значение потока нейтронов (мощности реактора).

Величина потерь реактивности при стационарном отравлении реактора ксеноном [2]:

						Лисг
					ФЮРА.693100.001.ПЗ	0
Изм.	Лист	№ документа	Подпись	Дата		9

$$\rho_{Xe}^{cm} = -\theta \frac{\sigma_f^5}{\sigma_a^5 + \sigma_a^8 \left(\frac{1-c_5}{c_5}\right)} \cdot \frac{\sigma_a^{Xe} \left(\gamma_I + \gamma_{Xe}\right) \Phi_0}{\left(\sigma_{Xe} \cdot \Phi_0 + \lambda_{Xe}\right)},$$

где θ - коэффициент использования тепловых нейтронов,

 c_5 - обогащение урана изотопом U²³⁵,

 $\sigma_a^5, \sigma_a^8, \sigma_f^5$ – микроскопические сечения поглощения и деления изотопов урана.

Потери запаса реактивности при стационарном отравлении реактора ксеноном определяются:

а) Величиной концентрации ²³⁵U (величиной обогащения топлива). Чем больше концентрация N_5 - тем больше величина коэффициента использования тепловых нейтронов θ - и тем больше будет абсолютная величина потерь реактивности при стационарном отравлении ρ_{Xe}^{cT} .

б) Величиной уровня мощности, на котором длительно работает реактор.

Изм.	Лист	№ документа	Подпись	Дата

1 Исходные данные для расчета

В качестве исходных данных для расчета стационарного отравления ксеноном примем Альбом нейтронно-физических характеристик реактора третьего энергоблока Ростовской АЭС для первой топливной загрузки, полностью состоящей из топливных кассет типа TBC-2M с удлиненным топливным столбом.

Таблица 1- Характеристики активной зоны [9]

Параметр, единицы измерения	Значение
Мощность реактора тепловая, МВт	3120
Рабочее давление на выходе из активной зоны, МПа	15.7
Расход теплоносителя через активную зону реактора, м ³ /ч,	87000
Температура теплоносителя на входе в реактор при МКУ мощности, °С	280
Температура теплоносителя на входе в реактор	
на мощности 3120 МВт, °С	287.3
Число ТВС, шт.	163
Число ТВС, содержащих органы регулирования, шт.	61

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

Наименование характеристики, единицы измерения	Значение
Тепловыделяющие элементы (твэлы и твэги):	
- количество твэлов и твэгов в ТВС, шт	312
- шаг между твэлами (твэгами), мм	12,75
- высота топлива в холодном/горячем состоянии, мм	3680/3700
- наружный диаметр оболочки твэла (твэга), мм	9,10
- внутренний диаметр оболочки твэла (твэга), мм	7,73
- материал оболочки и заглушек твэла (твэга)	Э-110
- масса топлива (UO2) в твэле, кг, номинальная	1,689
- масса топлива (UO2 + Gd2O3) в твэге для содержания	
Gd2O3 5% / более 5%, кг, номинальная	1,689/1,673
Таблетка твэла и твэга:	
- наружный диаметр таблетки, мм	7,6
- диаметр центрального отверстия таблетки, мм	1,2
- высота таблетки, мм	9-12
Направляющий канал и центральная трубка (под КНИ):	
- количество направляющих каналов, шт	18
- количество центральных трубок, шт.	1
- материал	Э-635
- наружный диаметр, мм, номинальный	13
- внутренний диаметр, мм, номинальный	11
Дистанционирующая решетка:	
- материал	Э-110
- количество (на уровне топлива), шт	12
- масса, г	900

Изм.	Лист	№ документа	Подпись	Дата

Обознач.	Кол.	Cp.	Кол. твэл	ов, шт./	Xa	рактерис	тики
TBC	TBC	обогащ.	обогаш	ение,		(твэгов)
		топлива,	²³⁵ U ве	ec. %			
		²³⁵ U вес. %	Тип 1	Тип 2	Кол.	Обогащ.,	Содерж.
					твэгов	²³⁵ U	$\mathrm{Gd}_{2}\mathrm{O}_{3},$
						вес.%	вес. %
U19	48	1.900	312 / 1,9	-	-	-	-
U19X6	18	1.900	306 / 1,9	-	6	1,9	8
U33W2	24	3.265	300 / 3,3	-	12	2,4	8
U36	12	3.600	312 / 3,6	-	-	-	-
U36W2	7	3.554	300 / 3,6	-	12	2,4	8
U39	24	3.915	246 / 4,0	66 / 3,6	-	-	-
U39B6	6	3.902	240 / 4,0	66 / 3,6	6	3,3	5
U39A8	24	3.883	234 / 4,0	60 / 3,6	18	3,3	5

Таблица 3- Описание типов ТВС-2М первой топливной загрузки [9]

1.1 Принимаемые допущения при проведении расчетов

Для проведения расчетов примем ряд важных допущений:

1) Точечно- параметрическое приближение - предположим, что при нарастании нейтронной мощности реактора плотность тепловых нейтронов во всех точках активной зоны реактора будет нарастать синхронно и пропорционально величине средней плотности тепловых нейтронов в реакторе. В соответствии с этим определим среднее по активной зоне обогащение топлива и содержание оксида гадолиния;

2) Характеристики активной зоны определяем на начало кампании;

						Лисп
					ФЮРА.693100.001.ПЗ	12
Изм.	Лист	№ документа	Подпись	Дата		15

3) Учитываем расширение топливного столба только по высоте, пренебрегая при этом расширением по радиусу;

4)При усреднении сечений по спектру Максвелла примем, что микроскопическое сечение поглощения гадолиния подчиняется законе 1/v;

5) Рассматриваем только стационарное отравление реактора ксеноном.

Изм.	Лист	№ документа	Подпись	Дата

2 Расчет нейтронно-физических характеристик активной зоны "холодного" реактора

2.1 Определение объемов компонентов активной зоны

Активная зона реактора представляет собой совокупность повторяющихся элементов, образующих решетку. Элемент периодичности решетки, который имеет одинаковую геометрическую форму и нейтронные характеристики - элементарная ячейка[3]. Для определения нейтроннофизических характеристик воспользуемся методом эквивалентной ячейки:

1) Элементарную ячейку преобразуем в двухзонную. Нейтроннофизические расчеты проводим на 1см высоты;

2) Эквивалентную ячейку разбиваем на две зоны: блок и замедлитель.

Рисунок 4 – Эскиз эквивалентной ячейки

Общее количество твэлов, твэгов центральных трубок и направляющих каналов в загрузке:

 $N_{\rm mega} = 49908 \mu m, N_{\rm mega} = 948 \mu m, N_{\rm um} = 163 \mu m, N_{\kappa} = 2934 \mu m.$

В данной работе рассматриваем ТВС со смешанным топливом (UO₂+Gd₂O₃) в тепловыделяющих элементах, среднее обогащение топлива по урану составляет:

Изм.	Лист	№ документа	Подпись	Дата

$$c_{5} = \frac{\sum c_{5i} \cdot n_{m_{GD,I}} \cdot n_{TBC,i}}{n_{m_{GD,I}} \cdot n_{TBC}}$$

где $C_{_{5i}}$ - обогащение топлива по урану для соответствующей ТВС,

*n*_{*твэл.і*} - число твэл с соответствующим обогащением,

n_{твс.i} - число ТВС.

По данным параметрам из таблицы 3 определили с5=2,96%.

По данным из таблиц 2 и 3 рассчитаем весовое содержание Gd₂O₃ в одном твэле:

$$m_{Gd\,2O3} = \frac{\sum m_{Gd\,2O3,i} \cdot m_{mon,i} \cdot n_{mb,i} \cdot n_{TBC}}{n_{mb,i} \cdot n_{TBC}},$$

где $m_{_{Gd2O3,i}}$ - содержание Gd_2O_3 в твэге,

*m*_{*monл.i*} - масса топлива в твэге.

Содержание Gd₂O₃ в тепловыделяющем элементе при этом будет равно 2,04г. Тогда ядерная плотность оксида гадолиния :

$$\gamma_{Gd2O3} = \frac{m_{Gd2O3}}{\pi H_{a3} \left[\frac{d_{ma \delta \pi}^2}{4} - \frac{d_{ome}^2}{4} \right]} = \frac{2,04}{3,14 \cdot 368 \left[\frac{0,76^2}{4} - \frac{0,12^2}{4} \right]} = 0,013 e/c M^3,$$

где H_{a3} - высота активной зоны,

 $d_{\scriptscriptstyle maб\!\scriptscriptstyle n}, d_{\scriptscriptstyle omb}$ – диаметр таблетки и отверстия.

Ядерная плотность оксида урана :

$$\gamma_{UO2} = \frac{m_{UO2}}{\pi H_{a3} \left[\frac{d_{ma \delta \pi}^2}{4} - \frac{d_{oms}^2}{4} \right]} = \frac{1689}{3,14 \cdot 368 \left[\frac{0,76^2}{4} - \frac{0,12^2}{4} \right]} = 10,375 \varepsilon / c M^3.$$

По известному общему числу мест определим число рядов $N_{pяд}$. Число тепловыделяющих элементов на главной диагонали составляет $N_D = 21$, тогда общее число рядов:

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

$$N_{p \pi \partial} = \frac{N_D - 1}{2} = \frac{21 - 1}{2} = 10.$$

Размер ТВС «под ключ»:

$$h_{\kappa \pi} = \frac{2}{\sqrt{3}} \cdot a \cdot (1 + 1, 5 \cdot N_{p \pi \partial}) = \frac{2}{\sqrt{3}} \cdot 1,275 \cdot (1 + 1, 5 \cdot 10) = 23,55 cm,$$

где а – шаг между твэлами.

Площадь поперечного сечения ТВС:

$$S_{TBC} = \frac{\sqrt{3}h_{\kappa\pi}^{2}}{2} = \frac{\sqrt{3} \cdot 23,556^{2}}{2} = 480,545cm^{2}.$$

Определим объемы компонентов активной зоны "холодного" реактора: $V_{TBC} = S_{TBC} \cdot H_{a3} = 480,545 \cdot 368 = 1,768 \cdot 10^5 cm^3,$

$$V_{zop} = \pi n_{me_{2n}} H_{a_3} 10^2 \left[\frac{d_{ma_{2n}}^2}{4} - \frac{d_{ome}^2}{4} \right] = 312 \cdot 3, 14 \cdot 368 \left[\frac{0, 76^2}{4} - \frac{0, 12^2}{4} \right] = 5,079 \cdot 10^4 c M^3 - 10^2 M_{a_3} M_{a_3}$$

объем топлива в одной ТВС,

$$V_{o\delta.me_{3,1}} = \pi n_{me_{3,1}} H_{a_3} 10^2 \left[\frac{d_{me.hap}}{4}^2 - \frac{d_{me.hap}}{4}^2 \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left[\frac{0,91^2}{4} - \frac{0,91^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \left$$

 $=2,079\cdot10^4$ см³ – объем оболочки твэла в одной TBC,

$$V_{o6.mp} = \pi \left(n_{HK} + n_{um} \right) H_{a3} 10^2 \left[\frac{d_{mp.Hap}^2}{4} - \frac{d_{mp.6H}^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 19 \cdot 3,14 \cdot 368 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right]$$

 $= 2,636 \cdot 10^3 c M^3$ – объем оболочки направляющего канала и центральной трубки одной TBC,

$$V_{He} = \pi n_{m_{6,0H}} H_{a3} 10^2 \left[\frac{d_{m_{6,BH}}^2}{4} - \frac{d_{max}^2}{4} + \frac{d_{ome}^2}{4} \right] = 312 \cdot 3,14 \cdot 368 \cdot \left[\frac{0,773^2}{4} - \frac{0,76^2}{4} + \frac{0,12^2}{4} \right] = 3,096 \cdot 10^3 \, cm^3 - \text{объем}, \text{ занятый гелием в одной TBC},$$

где $d_{m_{6,BH}}, d_{m_{6,Hap}}$ – внутренний и наружный диаметры оболочки твэла

Объем дистанционирующих решеток:

$$V_{\partial ucm} = \frac{m_{\partial ucm} \cdot n_{\partial ucm}}{\rho_{\partial ucm}} = \frac{0.9 \cdot 10^6 \cdot 12}{6552} = 1,649 \cdot 10^3 cm^3,$$

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

где $\rho_{\partial ucm} = 6636 - 0,286 \cdot T = 6636 - 0,286 \cdot (27 + 273) = 6550 \kappa z / m^3$ - плотность сплава Э110 при средней температуре теплоносителя в "холодном" реакторе [4],

*m*_{дист} - масса дистанционирующей решетки,

*n*_{дист} - число дистанционирующих решеток в одной ТВС.

Определим объемы конструкционных материалов (Zr) и теплоносителя (H₂O):

$$V_{\kappa M} = V_{o \delta.m B \Im I} + V_{o \delta.m p} + V_{\partial u c m} = 2,079 \cdot 10^{4} + 2,636 \cdot 10^{3} + 1,649 \cdot 10^{3} = 2,508 \cdot 10^{4} c M^{3},$$

$$V_{m H} = V_{m G c} - V_{\kappa M} - V_{H e} - V_{c o p} = 1,768 \cdot 10^{5} - 2,508 \cdot 10^{4} - 3,096 \cdot 10^{3} - 5,079 \cdot 10^{4} = 9,788 \cdot 10^{4} c M^{3}.$$

Все объемы эквивалентной ячейки отнесем к одному твэлу:

$$\begin{split} V_{zop} &= \frac{V_{zop}}{N_{me3n} \cdot H_{a3}} = \frac{5,079 \cdot 10^4}{312 \cdot 3,68 \cdot 10^2} = 0,442 c M^3, \\ V_{\kappa M} &= \frac{V_{\kappa M}}{N_{me3n} \cdot H_{a3}} = \frac{2,508 \cdot 10^4}{312 \cdot 3,68 \cdot 10^2} = 0,218 c M^3, \\ V_{m H} &= \frac{V_{m H}}{N_{me3n} \cdot H_{a3}} = \frac{9,719 \cdot 10^4}{312 \cdot 3,68 \cdot 10^2} = 0,853 c M^3, \\ V_{He} &= \frac{V_{He}}{N_{me3n} \cdot H_{a3}} = \frac{3,096 \cdot 10^3}{312 \cdot 3,68 \cdot 10^2} = 0,027 c M^3, \\ V_{3M} &= V_{\kappa M} + V_{eoda} + V_{He} = 0,218 + 0,846 + 0,027 = 1,098 c M^3, \\ V_{\delta n} &= V_{zop} = 0,442 c M^3, \\ V_{ay} &= V_{\delta n} + V_{3y} = 0,442 + 1,092 = 1,54 c M^3. \end{split}$$

2.2 Определение эффективной температуры

1) Расход теплоносителя через активную зону реактора:

$$G_{mh} = \frac{87000 \cdot \rho_{mh}}{3600} = \frac{87000 \cdot 1003}{3600} = 24240 \kappa c / c.$$

					ФЮРА.6
Изм.	Лист	№ документа	Подпись	Дата	

где $\rho_{m\mu} = f(p_{xp}, T_{xp}) = 1003 \kappa z / M^3.$

Через одну ТВС : $G_{mec} = \frac{G_{a3}}{N_{mec}} = \frac{24240}{163} = 148,7 \kappa c / c.$

Площадь проходного сечения ТВС:

$$S_{mH} = S_{mgc} - \frac{\pi \left(d_{mg_{3R}}^{2} \cdot n_{mg_{3R}} + d_{mp}^{2} \cdot n_{mg_{3R}} \right)}{4} = 0,048 - \frac{3,14 \cdot \left(0,0091^{2} \cdot 312 + 0,013^{2} \cdot 19 \right)}{4} = 0,025 \, \text{m}^{2}.$$

Тогда средняя скорость теплоносителя через одну ТВС:

$$w = \frac{G_{mec}}{S_{mH} \cdot \rho_{mH}} = \frac{148,7}{0,025 \cdot 1003} = 5,88 \, \text{m/c}.$$

Гидравлический диаметр для треугольной решетки:

$$d_{z} = d_{m_{63\pi}} \left[\frac{2\sqrt{3}x^{2}}{\pi} - 1 \right] = 0,0091 \cdot \left[\frac{2\sqrt{3} \cdot 1, 4^{2}}{3,14} - 1 \right] = 0,011 \text{ M},$$

где $x = \frac{s}{d_{m_{693,Hap}}} = \frac{0,01275}{0,0091} = 1,4$ - относительный шаг решетки.

Площадь теплопередающей поверхности твэлов:

$$\Pi = \pi d_{m_{GDJ,Hap}} n_{m_{GDJ},Hap} = 3,14 \cdot 0,0091 \cdot 312 \cdot 3,68 = 5,35 \cdot 10^3 \,\text{m}^2.$$

2) Температура теплоносителя в "холодном" реакторе $t_{xp} = 27^{\circ}C = 300,15K$.

Температура на поверхности оболочки твэла средней мощности:

$$T_{cm} = T_f + \frac{\Delta T_f}{2} + \Delta T_{\alpha},$$

где $T_f = 27^{\circ}$ С - средняя температура теплоносителя в аз,

 $\Delta T_{f} = T_{2} - T_{1} = 0$ - полный подогрев теплоносителя в аз,

 $\Delta T_{\alpha} = \frac{\overline{q_F}}{\alpha} = 0$ - температурный напор "стенка-жидкость".

Отсюда получим, что наружная температура стенки твэла равна $T_{cm} = 27^{\circ} C.$

Изм.	Лист	№ документа	Подпись	Дата

 Максимальное значение температуры топлива в твэл средней мощности:

$$T_{\max} = T_{cm} + \Delta T_{o\delta} + \Delta T_{3a3} + \Delta T_{cop}.$$

Максимальный перепад на тонкой оболочке ТВЭЛ можно представить в виде:

$$\Delta T_{o\delta} = \overline{q}_F \cdot \frac{2d_{\rm mg.hap}}{d_{\rm mg.gh} + d_{\rm mg.gh}} \cdot \frac{\delta_{o\delta}}{\lambda_{o\delta}} = 0 ,$$

где $\frac{2d_{m_{6,hap}}}{d_{m_{6,6H}}+d_{m_{6,6H}}}$ - множитель, корректирующий значение потока на

средний диаметр оболочки,

δ_{об}, λ_{об} – толщина и коэффициент теплопроводности оболочки (материал цирконий).

Таким образом максимальный перепад температуры на оболочке твэла примем равной $T_{cm.вh} = T_{cm.hap} + \Delta T_{ob} = 27 + 0 = 27^{\circ} C.$

4) Температурный перепад в газовом зазоре находим по формуле:

$$\Delta T_{_{3a3}}^{\max} = \overline{q}_F^{\max} \cdot \frac{2d_{_{me.hap}}}{d_{_{me.eH}} + d_{_{ma\deltan}}} \cdot \frac{\delta_{_{3a3}}}{\lambda_{_{3a3}}} = 0,$$

где *d*_{*T*} – диаметр топливной таблетки;

 λ_{3a3} – коэффициент теплопроводности газа (гелия), определяется в зависимости от $\overline{T_{3a3}}$.

Процесс расчета максимального перепада температуры в газовом зазоре также итерационный.

Отсюда найдем максимальную температуру наружной поверхности топливного сердечника: $T_{cepd.hap} = T_{cm.вh} + \Delta T_{_{3a3}} = 27 + 0 = 27^{\circ} C$.

5) Определим максимальный радиальный перепад на сердечнике твэла при постоянной теплопроводности.

					ФЮРА.693100.001.ПЗ	Лисп
						20
Изм.	Лист	№ документа	Подпись	Дата		20

Если пренебречь зависимостью профиля распределения плотности потока тепловых нейтронов, значение которого в поверхностных слоях топлива более высокое, и взять среднее значение энерговыделения, то получим:

$$T_{rop}(r) = T_{cep\partial.hap} + \frac{\overline{q_{v}}}{4 \cdot \overline{\lambda_{rop}}} \left(\left(\frac{d_{ma\delta \pi}}{2} \right)^{2} - \left(\frac{d_{oms}}{2} \right)^{2} \right),$$

где $\overline{\lambda_{cop}}$ – средняя теплопроводность горючего при $\overline{T_{cepd}}$.

$$\overline{q_{v}} = \frac{Q}{H_{a3} \cdot \pi n_{m63\pi} \left(\left(\frac{d_{ma6\pi}}{2} \right)^{2} - \left(\frac{d_{om6}}{2} \right)^{2} \right)} = 0 \ Bm / M^{3}.$$

Процесс расчета максимальной температуры топливного сердечника итерационный. Тогда средняя температура сердечника "холодном" реакторе:

$$T_{cep} = 27^{\circ} C = 300,15K.$$

Коэффициент теплопроводности для этой температуры найдем по формуле, приведенной в [2]:

$$\overline{\lambda_{zop}} = 10^2 \left(3,77+0,0258\overline{T_{zop}}\right)^{-1} + 1,1 \cdot 10^{-4} \cdot \overline{T_{zop}} + 1,01 \cdot 10^{-11} \cdot \overline{T_{zop}}^3 \cdot \exp\left(7,2 \cdot 10^{-4} \cdot \overline{T_{zop}}\right),$$

$$\overline{\lambda_{zop}} = 10^2 \left(3,77+0,0258 \cdot 300,15\right)^{-1} + 1,1 \cdot 10^{-4} \cdot 300,15 + 1,01 \cdot 10^{-11} \cdot 300,15^3 \cdot \exp\left(7,2 \cdot 10^{-4} \cdot 300,15\right) = 8,719 \frac{Bm}{M \cdot K}$$

$$\Delta T_{rop} = \frac{\overline{q_{v}}}{4 \cdot \overline{\lambda_{rop}}} \left(\left(\frac{d_{ma \delta n}}{2} \right)^{2} - \left(\frac{d_{oms}}{2} \right)^{2} \right) = 0^{O} C.$$

Максимальное значение температуры топлива в твэл средней мощности:

$$T^{\max} = T_{cm.hap} + \Delta T_{o\delta} + \Delta T_{_{3a3}} + \Delta T_{_{POP}} = 27^{o} C.$$

6) Отсюда определим эффективную температуру топлива по формуле:

$$T_{cop}^{_{3\phi}} = T_{cep\partial.hap} + 0, 4 \cdot \left(T_{cep\partial.hh} - T_{cep\partial.hap}\right) = 27^{\circ} C.$$

2.3 Определение ядерной и молекулярной плотностей нуклидов

						Лисп
					ФЮРА.693100.001.ПЗ	21
Изм.	Лист	№ документа	Подпись	Дата		21

Поскольку ячейка реактора состоит из нескольких зон с различными ядерными свойствами, рассчитаем нейтронно-физические характеристики для каждой зоны (горючее, оболочка, теплоноситель, замедлитель). Ядерные концентрации определяем по формуле:

$$N_i(N_{ij}) = \frac{N_A \cdot \gamma_i(\gamma_{ij})}{A_i(M_{ij})}$$
, ядер/см⁻³(мол/см⁻³),

где $\gamma_i(\gamma_{ij})$ – ядерная и химическая плотности отдельных нуклидов,

 $N_A = 6,023 \cdot 10^{23}$ – число Авогадро,

A_i, *M_{iy}* – атомный и молекулярный вес.

1) Топливом является соединение ($UO_2+Gd_2O_3$), обогащенное по U^{235} на 2,96% с содержанием Gd_2O_3 2,04 г. Атомный вес и плотность для топлива определяем с учетом обогащения по делящемуся изотопу с₅ %,:

$$\begin{split} A_{U02} &= \left(\frac{c_5}{100}\right) \cdot A_5 + \left(\frac{100 - c_5}{100}\right) \cdot A_8 + 2 \cdot A_0 = \left(\frac{2.96}{100}\right) \cdot 235 + \left(\frac{100 - 2.96}{100}\right) \cdot 238 + 2 \cdot 16 = \\ &= 269, 9\varepsilon / \text{ моль.} \\ M_{Gd203} &= 2M_{Gd} + 3M_0 = 157, 26 \cdot 2 + 3 \cdot 16 = 362, 52\varepsilon / \text{ моль.} \\ N_{U02} &= \frac{N_a \gamma_{U02}}{A_{U02}} = \frac{6,023 \cdot 10^{23} \cdot 10,375}{269,9} = 2,315 \cdot 10^{22} \frac{9}{7} \frac{9}{$$

Изм.	Лист	№ документа	Подпись	Дата

$$\begin{split} N_{zr} &= \frac{N_a \gamma_{zr}}{A_{zr}} = \frac{6,023 \cdot 10^{23} \cdot 6,4}{91,22} = 4,226 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^3}, \\ N_{H_2O} &= \frac{N_a \rho_{\text{mH}}}{A_{H_2O}} = \frac{6,023 \cdot 10^{23} \cdot 1,003}{18} = 3,356 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^3}, \\ N_{he} &= \frac{N_a \gamma_{he}}{A_{he}} = \frac{6,023 \cdot 10^{23} \cdot 0,0001785}{4,003} = 2,686 \cdot 10^{19} \frac{\text{ядер}}{\text{см}^3}. \end{split}$$

Молекулярная концентрация борной кислоты при концентрации борной кислоты в теплоносителе с_{бк}=9,81г/кг [9]:

$$N_{\delta\kappa} = \frac{N_a \rho_{m\mu} c_{\delta\kappa}}{M_{\delta\kappa}} = \frac{6,023 \cdot 10^{23} \cdot 1,003 \cdot 0,00981}{3 \cdot 1 + 11 + 16 \cdot 3} = 9,559 \cdot 10^{19} \frac{\text{ядер}}{\text{см}^3}.$$

Находим значения эффективных микроскопических сечений по [3]. Таблица 4 - Таблица эффективных микроскопических сечений

	V _i ,	$N_i \cdot 10^{-22}$,	$\sigma_{_a}$,	$\sigma_{_{s}},$	Ę	$VN\sigma_{a}$,	$VN\sigma_{s}\xi$,
ЭЛ.Т	см ³	см ⁻³	барн	барн		CM ⁻¹	CM^{-1}
U ₅	0,442	0,06853	680,9	13,8	0,0085	0,206	3,555.10-5
U_8	0,442	2,247	2,71	8,9	0,0084	0,027	7,429.10-4
O _{rop}	0,442	4,637	0,00027	3,76	0,12	5,538·10 ⁻⁶	9,254·10 ⁻³
Gd	0,442	0,004165	37340	-	0,0127	0,688	0
H ₂ O	0,853	3,356	0,664	48	0,954	0,019	1,31
Zr	0,218	4,226	0,185	6,4	0,0218	1,707.10-3	1,288.10-3
Не	0,027	0,002686	0,007	0,8	0,425	5,069·10 ⁻⁹	2,462.10-7
H ₃ BO ₃	0,853	0,00956	760	76,08	0,83	0,062	5,146.10-3

_				
Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

Лист

2.4 Определение температуры нейтронного газа

Простейший подход в расчёте T_{нг} соответствует одинаковой температуре нейтронного газа во всех зонах ячейки или же средней по объему, т. е. эффективной температуре T_{нг} :

$$T_{\mu z} = T_0 \cdot \left[1 + C \cdot \left(\frac{\sum_a (T_0)}{\xi \sum_s (1)} \right) \right],$$

где Т₀ – средняя температура по элементарной ячейке,

 $\Sigma_a(T_0)$ – макроскопическое сечение поглощения

гомогенизированной элементарной ячейки, поправленное на температуру среды в предположении, что σ_{aj} всех компонентов ячейки подчиняются закону 1/v,

 $\xi \sum_{s} (1)$ - замедляющая способность гомогенизированной элементарной ячейки,

С – эмпирическая константа, зависящая от вида ЗМ. Для ВВЭР C=1,7.

$$T_{0} = 27 \ ^{\circ}C = 300,15K.$$

$$\Sigma_{a}(T_{0}) = \sum_{j=1}^{\infty} \frac{(VN\sigma_{a}(0,0253))}{V_{0}} \cdot \sqrt{\frac{293,6}{T_{0}}},$$

$$\Sigma_{a}(T_{0}) = \frac{0,206 + 0,027 + 5,538 \cdot 10^{-6} + 0,688 + 0,019 + 1,707 \cdot 10^{-3} + 5,069 \cdot 10^{-9} + 0,062}{1,54}.$$

$$\cdot \sqrt{\frac{293,6}{300,15}} = 0,645 cm^{-1},$$

$$\xi \Sigma_{s}(1) = \sum_{j=1}^{\infty} \frac{(VN\xi\sigma_{s}(1))}{V_{0}},$$

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

$$\xi \Sigma_{s}(1) = \frac{3,555 \cdot 10^{-5} + 7,429 \cdot 10^{-4} + 9,254 \cdot 10^{-3} + 1,31 + 1,288 \cdot 10^{-3} + 2,462 \cdot 10^{-7} + 5,146 \cdot 10^{-3}}{1,54}$$

 $=0,861cm^{-1}.$

$$T_{H\Gamma} = 300, 15 \cdot \left[1 + 1, 7 \cdot \left(\frac{0, 645}{0, 861} \right) \right] = 682K.$$

2.5 Определение энергии сшивки между спектрами замедляющихся и тепловых нейтронов

Точка пересечения спектров Ферми и Максвелла для реактора на тепловых и не очень жёстких промежуточных нейтронах условно определяет верхнюю границу тепловой группы. Её определяют из следующего уравнения:

$$f = \frac{x^2 \cdot e^{-x}}{1 - (1 + x) \cdot e^{-x}} = \frac{\sum_a (E_{zp}, E_m)}{\xi \sum_s (1)},$$

или

$$f = \frac{2}{\sqrt{\pi}} \cdot x^2 \cdot \exp(-x) = \frac{\sum_a (E_{zp}, E_m)}{\xi \sum_s (1)},$$

1) Задаемся значением x_{rp} :

Таблица 5 - Значения функции fлев в зависимости от х_{гр}

Х _{гр}	2	4	6	8
f _{лев}	0,911	0,323	0,091	0,022

2) Выбираем три значения 2, 4, 6 и решаем правую часть уравнения.

Определим сечение поглощения гомогенной среды, усреднённое по спектру Максвелла:

$$\sum_{a} \left(E_{zp}, E_{m} \right) = \frac{1}{V_{0}} \cdot \sum_{i} V_{i} \cdot N_{i} \cdot \overline{\sigma_{a}^{i}} \left(E_{zp}, E_{T} \right),$$

где $\overline{\sigma_a^i}(E_{zp}, E_T)$ – сечение поглощения отдельных элементов, усреднённые по спектру Максвелла.

Определим поправочные коэффициенты для трех точек по формуле:

						Лисп
					ФЮРА.693100.001.ПЗ	25
Изм.	Лист	№ документа	Подпись	Дата		23

$$F\left(x_{zp}\right) = \frac{2}{\sqrt{\pi}\left(1 - (1 + x) \cdot \exp(-x)\right)} \cdot \int_{0}^{x_{zp}} \sqrt{x} \cdot \exp(-x) dx.$$

Таблица 6 - Значения функции *г* в зависимости от х_{гр}

Х _{гр}	2	4	6
$F(x_{rp})$	1,243	1,05	1,01

Определим сечение поглощения гомогенной среды, усреднённое по спектру Максвелла:

$$\sum_{a} \left(E_{zp}, E_{m} \right) = \frac{1}{V_{0}} \cdot \sum_{i} V_{i} \cdot N_{i} \cdot \overline{\sigma_{a}^{i}} \left(E_{zp}, E_{T} \right),$$

где $\overline{\sigma_a^i}(E_{zp}, E_T)$ – сечение поглощения отдельных элементов, усреднённые по спектру Максвелла.

$$\overline{\sigma_a^i}(E) = 0,886 \cdot \sigma_a^i \cdot \sqrt{\frac{293}{T_{_{HZ}}}} F(x_{_{ZP}})$$

Таблица 7 - Значения $\overline{\sigma_a^i}(E)$ для различных элементов в зависимости от x_{rp}

	x = 2	x = 4	x = 6
Элемент	$\overline{\sigma_a^i}(E)$, барн	$\overline{\sigma_a^i}(E)$, барн	$\overline{\sigma_a^i}(E)$, барн
U_5	457,1	386,1	371,4
U_8	1,959	1,654	1,591
O _{rop}	1,951.10-4	1,643.10-4	1,585.10-4
Gd	2,699·10 ⁴	2,28·10 ⁴	2,193·10 ⁴
H ₂ O	0,48	0,405	0,39
Zr	0,134	0,113	0,109
He	5,059.10-3	4,273.10-3	4,11.10-3
H ₃ BO ₃	549,3	463,9	446,3

Изм.	Лист	№ документа	Подпись	Дата

	$x_{rp} = 2$	$x_{rp} = 4$	$x_{rp} = 6$
Элемент	$VN\overline{\sigma_a^i}$, cm ⁻¹	$VN\overline{\sigma_a^i}$, cm ⁻¹	$VN\overline{\sigma_a^i}$, cm ⁻¹
U ₅	0,139	0,117	0,113
U_8	0,019	0,016	0,016
Огор	4,002.10-6	3,38.10-6	3,252.10-6
Gd	0,497	0,42	0,404
H ₂ O	0,014	0,012	0,011
Zr	1,234.10-3	1,042.10-3	1,003.10-3
Не	3,664.10-9	3,094.10-9	2,977.10-9
H ₃ BO ₃	0,045	0,038	0,036
$f_{\pi\mu\mu}$	0,539	0,455	0,438

Таблица 8 - Значения $VN\overline{\sigma_a^i}$ для различных элементов в зависимости от x_{rp}

При расчете учитываем, что ^{235}U не подчиняется закону 1/v. Усреднение сечения поглощения по спектру Максвелла для этого элемента можно найти применяя g_{a5} - фактор, который можно определить с помощью [3] (g_{a5} =0,929).

Рисунок 5 – Определение граничной энергии

В точке пересечения этих графиков находим точку x_{rp} и определяем его: x_{rp} =3,4.

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

 $E_{zp} = x_{zp} \cdot E_m = 3, 4 \cdot 0,0253 = 0,086 \cdot B$ — это и есть энергия сшивки между спектрами замедляющихся и тепловых нейтронов.

2.6 Расчет сечений, усредненных по спектру Максвелла

При $x_{rp} = 3,4$: $F(x_{rp}) = 0,8779 \cdot x^{-1} + 0,01471 \cdot x + 0,7735 = 1,08.$

Транспортное сечение определяем по формуле:

$$\sigma_{tr}^i = \sigma_a^i + \sigma_s^i \cdot (1 - \mu_i),$$

где σ_{tr}^{i} - транспортное сечение,

 $\mu_i = \frac{2}{3A_i}$ -средний косинус угла рассеяния.

Таблица 9 - Значения $\overline{\sigma_a^i}(E)$ для различных элементов в зависимости от x_{rp}

Элемент	$x_{rp} = 3,4$	$(1 - \mu)$
JICMCIII	$\overline{\sigma_a^i}(E)$, барн	$(\mathbf{I} \ \boldsymbol{\mu}_i)$
U_5	397,1	0,997
U_8	1,701	0,997
Огор	1,695 [.] 10 ⁻⁴	0,958
Gd	$2,344 \cdot 10^4$	0,996
H ₂ O	0,417	0,963
Zr	0,116	0,993
He	4,395·10 ⁻³	0,833
H ₃ BO ₃	477,2	0,989

Для U²³⁵ $\overline{\sigma_{_f}}$ находим [3] при T_{нг} .

Изм.	Лист	№ документа	Подпись	Дата

Эл-т	$\overline{\sigma_a},$ барн	$\overline{\sigma_{_f}},$ барн	$\overline{\sigma_{_{tr}}},$ барн	$VN\overline{\sigma_a},$ cm $^{-1}$	$VN\overline{\sigma_{_f}}$ cm $^{-1}$	$VN\overline{\sigma_{_{tr}}},$ cm $^{-1}$
U ₅	397,1	336,2	410,8	0,12	0,102	0,125
U ₈	1,701	-	10,557	0,017	-	0,105
Огор	1,695.10-4	-	3,604	3,477.10-6	-	0,074
Gd	$2,344.10^4$	-	$2,344 \cdot 10^4$	0,4532	-	0,432
H ₂ O	0,417	-	46,639	0,012	-	1,334
Zr	0,116	-	6,469	1,072.10-3	-	0,06
He	4,395.10-3	-	0,671	3,182.10-9	-	4,859.10-7
H ₃ BO ₃	477,2	-	552,4	0,039	-	0,045

Таблица 10 - Усреднённые сечения по спектру Максвелла

1) Находим макроскопические сечения поглощения:

По элементарной ячейке:

$$\Sigma_a^{\Im \mathcal{H}} = \frac{1}{V_0} \sum \left(V N \overline{\sigma_a} \right) = 0,403 c m^{-1}.$$

По зонам блока:

$$\Sigma_{a}^{\text{ET}} = \frac{1}{V_{\text{ET}}} \sum \left(V N \overline{\sigma_{a}} \right) = 1,287 \text{ cm}^{-1}.$$

По замедлителю:

$$\Sigma_a^{3M} = \frac{1}{V_{3M}} \sum \left(V N \overline{\sigma_a} \right) = 0,047 c M^{-1}.$$

2) Находим макроскопические транспортные сечения рассеяния:

По элементарной ячейке:

$$\Sigma_{tr}^{\Im \Re} = \frac{1}{V_0} \sum \left(V N \overline{\sigma_{tr}} \right) = 1,412 c M^{-1}.$$

По зонам блока:

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

$$\Sigma_{tr}^{E/I} = \frac{1}{V_{E/I}} \sum \left(V N \overline{\sigma_{tr}} \right) = 1,663 c M^{-1}.$$

По замедлителю:

$$\Sigma_{tr}^{3M} = \frac{1}{V_{3M}} \sum \left(V N \overline{\sigma_{tr}} \right) = 1,311 c M^{-1}.$$

3) Находим макроскопические сечения деления:

По элементарной ячейке:

$$\Sigma_f^{\Im \mathcal{H}} = \frac{1}{V_0} \sum \left(V N \overline{\sigma_f} \right) = 0,066 c M^{-1}.$$

По зонам блока:

$$\Sigma_{f}^{ET} = \frac{1}{V_{ET}} \sum \left(V N \overline{\sigma_{f}} \right) = 0,066 c M^{-1}.$$

По замедлителю:

$$\Sigma_f^{3M} = \frac{1}{V_{3M}} \sum \left(V N \overline{\sigma_f} \right) = 0.$$

2.7 Определение коэффициента использования тепловых нейтронов

$$\frac{1}{\theta} = 1 + f \cdot \frac{\sum_{a}^{3M}}{\sum_{a}^{\delta n}} + (E - 1),$$

где $E-1 \approx \frac{(\alpha'' R_{_{3M}})^2}{2} \cdot (\ln(R_{_{3M}} \cdot \alpha') - 0,75)$ - поправка на внешний блок-эффект,

$$f = 1 + \frac{(\alpha' R_{\delta \pi})^2}{8} - \frac{(\alpha' R_{\delta \pi})^4}{192}$$
 - коэффициент проигрыша.

$$R_{_{3\!\mathcal{R}}} = \sqrt{\frac{V_{_{3\!\mathcal{R}}}}{\pi}} = \sqrt{\frac{1,54}{3,14}} = 0,7$$
м. - радиус элементарной ячейки.

$$R_{\delta\pi} = \sqrt{\frac{V_{\delta\pi}}{\pi}} = \sqrt{\frac{0,442}{3,14}} = 0,375$$
м. - радиус блока.

$$R_{_{3M}} = \sqrt{\frac{V_{_{3M}}}{\pi}} = \sqrt{\frac{1,098}{3,14}} = 0,591$$
м. - радиус замедлителя.

Рассчитаем поправку на внешний блок - эффект:

Изм.	Лист	№ документа	Подпись	Дата

$$\begin{aligned} \alpha'' &= \sqrt{\frac{\sum_{a}^{3M}}{D}} = \sqrt{3\sum_{tr}^{3M} \cdot \sum_{a}^{3M}} = \sqrt{3 \cdot 1, 311 \cdot 0, 047} = 0, 431 - \text{ коэффициент замедлителя,} \\ \alpha' &= \sqrt{\frac{\sum_{a}^{6n}}{D}} = \sqrt{3\sum_{tr}^{6n} \cdot \sum_{a}^{6n}} = \sqrt{3 \cdot 1, 663 \cdot 1, 287} = 2,533 - \text{ коэффициент блока.} \\ E - 1 &\approx \frac{\left(0, 431 \cdot 0, 591\right)^2}{2} \cdot \left(\ln\left(0, 591 \cdot 2, 533\right) - 0, 75\right) = -0,011. \end{aligned}$$

Рассчитаем коэффициент проигрыша:

$$f = 1 + \frac{\left(2,533 \cdot 0,375\right)^2}{8} - \frac{\left(2,533 \cdot 0,375\right)^4}{192} = 1,109.$$

Тогда коэффициент использования тепловых нейтронов будет равен:

$$\frac{1}{\theta} = 1 + 1,109 \cdot \frac{1,098 \cdot 0,047}{1,4 \cdot 1,287} - 0,011 = 1,09 \Longrightarrow \theta = 0,918.$$

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

3 Расчет нейтронно-физических характеристик реактора на мощности

3.1 Определение объемов компонентов активной зоны

Определим объемы компонентов активной зоны "горячего" реактора с учетом того, что произошло увеличение длины топливного столба до 370см.

$$V_{TBC} = S_{TBC} \cdot 10^4 \cdot H_{a3} \cdot 10^2 = 480,545 \cdot 370 = 1,778 \cdot 10^5 \, cm^3,$$

$$V_{cop} = \pi n_{me3n} H_{a3} 10^2 \left[\frac{d_{max}^2}{4} - \frac{d_{oms}^2}{4} \right] = 312 \cdot 3,14 \cdot 370 \left[\frac{0,76^2}{4} - \frac{0,12^2}{4} \right] = 5,106 \cdot 10^4 \, cm^3,$$

$$V_{ob.me3n} = \pi n_{me3n} H_{a3} 10^2 \left[\frac{d_{me.map}^2}{4} - \frac{d_{me.map}^2}{4} \right] = 312 \cdot 3,14 \cdot 370 \left[\frac{0,91^2}{4} - \frac{0,773^2}{4} \right] = 2,091 \cdot 10^4 \, cm^3,$$

$$V_{o\delta,mp} = \pi \left(n_{_{HK}} + n_{_{UM}} \right) H_{_{a3}} 10^2 \left[\frac{d_{_{mp,Hap}}^2}{4} - \frac{d_{_{mp,BH}}^2}{4} \right] = 19 \cdot 3,14 \cdot 370 \left[\frac{1,3^2}{4} - \frac{1,1^2}{4} \right] = 2,65 \cdot 10^3 \, cm^3.$$

$$V_{He} = \pi n_{_{M69,H}} H_{_{a3}} 10^2 \left[\frac{d_{_{m6,BH}}^2}{4} - \frac{d_{_{ma\delta,H}}^2}{4} + \frac{d_{_{om6}}^2}{4} \right] = 312 \cdot 3,14 \cdot 370 \left[\frac{0,773^2}{4} - \frac{0,76^2}{4} + \frac{0,12^2}{4} \right] = 3,112 \cdot 10^3 \, cm^3.$$

Объем дистанционирующих решеток:

$$V_{\partial ucm} = \frac{m_{\partial ucm} \cdot n_{\partial ucm}}{\rho_{\partial ucm}} = \frac{0.9 \cdot 10^{\circ} \cdot 12}{6472} = 1,669 \cdot 10^{3} cm^{3},$$

где $\rho_{oucm} = 6636 - 0,286 \cdot T = 6636 - 0,286 \cdot (303 + 273) = 6472 \kappa z / M^3$ - плотность

сплава Э110 при средней температуре теплоносителя в "горячем" реакторе [4].

Объемы конструкционных материалов и теплоносителя:

$$V_{\rm KM} = V_{ob.mb37} + V_{ob.mp} + V_{oucm} = 2,091 \cdot 10^4 + 2,65 \cdot 10^3 + 1,669 \cdot 10^3 = 2,552 \cdot 10^4 \, cm^3,$$

 $V_{mu} = V_{mec} - V_{\kappa M} - V_{He} - V_{zop} = 1,778 \cdot 10^5 - 2,552 \cdot 10^4 - 3,112 \cdot 10^3 - 5,106 \cdot 10^4 = 9,84 \cdot 10^4 c M^3.$ Все объемы эквивалентной ячейки отнесем к одному твэлу:

$$V_{zop} = \frac{V_{zop}}{N_{m63\pi} \cdot H_{a3}} = \frac{5,106 \cdot 10^4}{312 \cdot 3,7 \cdot 10^2} = 0,442 cm^3$$
$$V_{\kappa M} = \frac{V_{\kappa M}}{N_{m63\pi} \cdot H_{a3}} = \frac{2,552 \cdot 10^4}{312 \cdot 3,7 \cdot 10^2} = 0,219 cm^3,$$

Подпись

Дата

Изм.

Лист

№ документа

ФЮРА.693100.001.ПЗ

$$\begin{split} V_{m\mu} &= \frac{V_{m\mu}}{N_{me3\pi} \cdot H_{a3}} = \frac{9,84 \cdot 10^4}{312 \cdot 3,7 \cdot 10^2} = 0,852 c m^3, \\ V_{He} &= \frac{V_{He}}{N_{me3\pi} \cdot H_{a3}} = \frac{3,112 \cdot 10^3}{312 \cdot 3,7 \cdot 10^2} = 0,027 c m^3, \\ V_{3M} &= V_{\kappa M} + V_{m\mu} + V_{He} = 0,219 + 0,852 + 0,027 = 1,098 c m^3, \\ V_{\delta \pi} &= V_{cop} = 0,442 c m^3, \\ V_{gg} &= V_{\delta \pi} + V_{3M} = 0,442 + 1,098 = 1,54 c m^3. \end{split}$$

3.2 Определение нейтронно-физических характеристик на мощности 40% N_{ном}

1) Расход теплоносителя через активную зону реактора с учетом изменения температуры теплоносителя:

$$G_{mn} = \frac{87000 \cdot \rho_{mn}}{3600} = \frac{87000 \cdot 725}{3600} = 17520, 8\kappa c / c,$$

ГДе $\rho_{m_{H}} = f(p_1, T_{m_{H}}) = 725 \kappa c / M^3.$

Через одну ТВС : $G_{mec} = \frac{G_{a3}}{N_{mec}} = \frac{17520,8}{163} = 107,5\kappa c/c.$

Средняя скорость теплоносителя через одну ТВС:

$$w = \frac{G_{mec}}{S_{mH} \cdot \rho_{mH}} = \frac{107,5}{0,025 \cdot 725} = 5,9 \, \text{m/c}.$$

Площадь теплопередающей поверхности твэлов:

 $\Pi = \pi d_{\text{mesn,hap}} n_{\text{mesn}} H_{a3} = 3,14 \cdot 0,0091 \cdot 312 \cdot 3,7 = 5,379 \cdot 10^3 \,\text{m}^2.$

2) Коэффициент теплоотдачи в пучках стержней найдем по зависимости:

$$Nu = 0,021 \cdot \text{Re}^{0,8} \cdot \text{Pr}^{0,43}$$
.

Критерий Рейнольдса определим по формуле:

$$\operatorname{Re} = \frac{wd_{e}}{v_{cp}} = \frac{5,9 \cdot 0,011}{1,217 \cdot 10^{-7}} = 5,115 \cdot 10^{5}.$$

Изм.	Лист	№ документа	Подпись	Дата	

ФЮРА.693100.001.ПЗ

где $\Pr = f(p_{xp}, T_{xp}) = 0,8649 - число Прандтля,$ $\lambda = f(p_{xp}, T_{xp}) = 0,5585Bm/(M \cdot K)$ – теплопроводность теплоносителя, $v_{cp} = f(p_{xp}, T_{xp}) = 1,217 \cdot 10^{-7} \, \text{м}^2 \, / \, c$ – коэффициент кинематической вязкости.

Тогда
$$Nu = 0,021 \cdot (5,115 \cdot 10^5)^{0,8} \cdot 0,8649^{0,43} = 728.$$

Зная критерий Нуссельта определим коэффициент теплоотдачи:

$$\alpha = Nu \frac{\lambda}{d_{z}} = 728 \cdot \frac{0.5585}{0.011} = 3.837 \cdot 10^{4} Bm / (m^{2}K).$$

Тепловой поток при этом в будет равен:

$$q_f = \frac{Q}{\Pi} = \frac{1200}{5,379 \cdot 10^3} = 2,231 \cdot 10^5 Bm / M^2.$$

Температура теплоносителя на мощности реактора 40% N_{ном} 3) $t_{xp} = 300, 9^{\circ}C = 574K.$

Температура на поверхности оболочки твэл средней мощности:

$$T_{cm} = T_f + \frac{\Delta T_f}{2} + \Delta T_{\alpha},$$

где $T_f = 300,9^{\circ}$ С - средняя температура теплоносителя в аз,

 $\Delta T_f = T_2 - T_1 = 319 - 282, 8 = 36, 2^{\circ}C$ - полный подогрев теплоносителя в аз,

 $\Delta T_{\alpha} = \frac{\overline{q_F}}{2} = \frac{2,231 \cdot 10^5}{3.837 \cdot 10^4} = 6^{\circ} C$ - температурный напор "стенка-жидкость".

Отсюда получим, что наружная температура стенки твэла равна

$$T_{cm} = 300,9 + \frac{36,2}{2} + 6 = 325^{\circ}C.$$

4) Максимальное значение температуры топлива в твэл средней мощности:

$$T_{\max} = T_{cm} + \Delta T_{o\delta} + \Delta T_{3a3} + \Delta T_{cop}.$$

Изм.	Лист	№ документа	Подпись	Дата	

Максимальный перепад на тонкой оболочке ТВЭЛ можно представить в виде:

$$\Delta T_{o\delta} = \overline{q}_F \cdot \frac{2d_H}{d_H + d_B} \cdot \frac{\delta_{o\delta}}{\lambda_{o\delta}},$$

Процесс расчета максимального перепада температуры на оболочке твэла итерационный. Примем максимальную температуру на внутренней стенке оболочки $T_{cm, 6\mu} = 334^{\circ}C$. Тогда средняя температура оболочки:

$$\overline{T_c} = \frac{T_{cm.6\mu} + T_{cm.hap}}{2} = \frac{335 + 3325}{2} = 330^{\circ} C.$$

По этой температуре находим из [4] для материала оболочки из сплава циркония с ниобием (1%) Э-110:

$$\lambda_{o\delta} = 23,5 - 0,0192 \left(\overline{T_c} + 273,15\right) + 1,68 \cdot 10^{-5} \left(\overline{T_c} + 273,15\right)^2 = 18,031Bm/(M \cdot K)$$
$$\Delta T_{o\delta} = 2,231 \cdot 10^5 \cdot \frac{2 \cdot 9,1 \cdot 10^{-3}}{9,1 \cdot 10^{-3} + 7,73 \cdot 10^{-3}} \cdot \frac{6,85 \cdot 10^{-4}}{18,031} = 9^{\circ}C.$$

Таким образом максимальный перепад температуры на оболочке твэла примем равной

$$T_{cm.eh} = T_{cm.hap} + \Delta T_{ob} = 324 + 9 = 334^{\circ} C.$$

Таким образом максимальный перепад температуры на оболочке твэла примем равной $\Delta T_{ob}^{\max} = 9^o C.$

5) Температурный перепад в газовом зазоре находим по формуле:

$$\Delta T_{_{3a3}}^{\max} = \overline{q}_F^{\max} \cdot \frac{2d_{_{m6,Hap}}}{d_{_{m6,BH}} + d_{_{ma\delta\pi}}} \cdot \frac{\delta_{_{3a3}}}{\lambda_{_{3a3}}}$$

Процесс расчета максимального перепада температуры в газовом зазоре также итерационный. В первом приближении примем максимальную температуру сердечника $T_{cepd.hap} = 388^{\circ}C$. Тогда средняя температура газового зазора:

$$\overline{T_{_{3a3}}} = \frac{T_{_{cm.6H}} + T_{_{cep\partial.hap}}}{2} = \frac{334 + 388}{2} = 361^{\circ} C.$$

Изм.	Лист	№ документа	Подпись	Дата	

По этой температуре при давлении 2 МПа находим из [4] $\overline{\lambda_{3a3}} = 0,26107 \frac{Bm}{M \cdot K}.$

$$\Delta T_{_{3a3}}^{\max} = 2,231 \cdot 10^5 \cdot \frac{2 \cdot 7,73 \cdot 10^{-3}}{7,6 \cdot 10^{-3} + 7,73 \cdot 10^{-3}} \cdot \frac{6,5 \cdot 10^{-5}}{0,26107} = 56^{\circ} C.$$

Отсюда найдем максимальную внутреннюю температуру стенки твэла и максимальную температуру наружной поверхности топливного сердечника:

$$T_{cepd.hap} = T_{cm.eh} + \Delta T_{3a3} = 334 + 56 = 388^{\circ} C.$$

Максимальный перепад температуры в газовом зазоре примем равным $\Delta T_{_{3a3}} = 56^{O} C.$

6) Определим максимальный радиальный перепад на сердечнике твэла при постоянной теплопроводности.

Если пренебречь зависимостью профиля распределения плотности потока тепловых нейтронов, значение которого в поверхностных слоях топлива более высокое, и взять среднее значение энерговыделения, то получим:

$$T_{zop}(r) = T_{cep\partial. Hap} + \frac{\overline{q_v}}{4 \cdot \overline{\lambda_{zop}}} \left(\left(\frac{d_{madol}}{2} \right)^2 - \left(\frac{d_{oms}}{2} \right)^2 \right),$$

$$\overline{q_v} = \frac{Q}{H_{a3} \cdot \pi n_{me3n}} \left(\left(\frac{d_{madol}}{2} \right)^2 - \left(\frac{d_{oms}}{2} \right)^2 \right) = \frac{1200}{\pi \cdot 3, 7 \cdot 50856} \left(\left(\frac{7, 6 \cdot 10^{-3}}{2} \right)^2 - \left(\frac{1, 2 \cdot 10^{-3}}{2} \right)^2 \right) = 1,442 \cdot 10^8 Bm / M^3.$$

Процесс расчета максимальной температуры топливного сердечника итерационный. Примем максимальную температуру топливного сердечника

$$T_{cepd} = 508^{\circ} C.$$

Коэффициент теплопроводности для этой температуры найдем по формуле, приведенной в [2]:

$$\overline{\lambda_{cop}} = 10^2 \left(3,77+0,0258T_{cep\delta}\right)^{-1} + 1,1 \cdot 10^{-4} \cdot T_{cep\delta} + 1,01 \cdot 10^{-11} \cdot T_{cep\delta}^{-3} \cdot \exp\left(7,2 \cdot 10^{-4} \cdot T_{cep\delta}\right),$$

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

$$\overline{\lambda_{cop}} = 10^2 (3,77+0,0258\cdot781,15)^{-1} + 1,1\cdot10^{-4}\cdot781,15+1,01\cdot10^{-11}\cdot781,15^3\cdot\exp(7,2\cdot10^{-4}\cdot781,15) = 4,274\frac{Bm}{M\cdot K}$$

$$\Delta T_{rop} = \frac{\overline{q_{v}}}{4 \cdot \overline{\lambda_{rop}}} \left(\left(\frac{d_{ma\delta\pi}}{2} \right)^{2} - \left(\frac{d_{ome}}{2} \right)^{2} \right) = \frac{1,442 \cdot 10^{8}}{4 \cdot 4,274} \left(\left(\frac{7,6 \cdot 10^{-3}}{2} \right)^{2} - \left(\frac{1,2 \cdot 10^{-3}}{2} \right)^{2} \right) = 120^{O} C.$$

Максимальное значение температуры топлива в твэл средней мощности:

$$T_{{}_{cep\partial.sh}} = T_{{}_{cep\partial.hap}} + \Delta T_{{}_{rop}} = 388 + 120 = 508^{\circ}C.$$

7) Отсюда определим эффективную температуру топлива по формуле:

$$T_{cop}^{\mathfrak{s}\phi} = T_{cep\mathfrak{d}.hap} + 0, 4 \cdot \left(T_{cep\mathfrak{d}.\mathfrak{s}h} - T_{cep\mathfrak{d}.hap}\right) = 438^{\circ} C.$$

Ядерная плотность топлива также изменится с увеличением топливного столба :

$$\gamma_{Gd2O3} = \frac{m_{Gd2O3}}{\pi H_{a3} \left[\frac{d_{ma\deltan}^{2}}{4} - \frac{d_{ome}^{2}}{4}\right]} = \frac{2,04}{3,14 \cdot 370 \left[\frac{0,76^{2}}{4} - \frac{0,12^{2}}{4}\right]} = 0,012 \text{ / } \text{ cm}^{3}.$$

$$\gamma_{UO2} = \frac{m_{UO2}}{\pi H_{a3} \left[\frac{d_{ma\deltan}^{2}}{4} - \frac{d_{ome}^{2}}{4}\right]} = \frac{1689}{3,14 \cdot 370 \left[\frac{0,76^{2}}{4} - \frac{0,12^{2}}{4}\right]} = 10,32 \text{ / } \text{ cm}^{3}.$$

1) Тогда концентрации компонентов активной зоны будут равны:

$$N_{UO2} = \frac{N_a \gamma_{UO2}}{A_{UO2}} = \frac{6,023 \cdot 10^{23} \cdot 10,32}{269,9} = 2,303 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^3},$$
$$N_{Gd2O3} = \frac{N_a \gamma_{Gd2O3}}{M_{Gd2O3}} = \frac{6,023 \cdot 10^{23} \cdot 0,012}{362,52} = 2,071 \cdot 10^{19} \frac{\text{ядер}}{\text{см}^3}$$

Расчет концентраций отдельных элементов, ходящих в состав топлива:

$$\begin{split} N_{U5} &= \frac{c_5}{100} N_{U02} = \frac{2,96}{100} \cdot 2,303 \cdot 10^{22} = 6,815 \cdot 10^{20} \, \frac{\text{ядер}}{\text{см}^3}, \\ N_{U8} &= \frac{100 - c_5}{100} \, N_{U02} = \frac{\left(100 - 2,96\right)}{100} \cdot 2,303 \cdot 10^{22} = 2,235 \cdot 10^{22} \, \frac{\text{ядер}}{\text{см}^3}, \\ N_{Gd} &= 2N_{Gd203} = 2 \cdot 2,071 \cdot 10^{19} = 4,143 \cdot 10^{19} \, \frac{\text{ядер}}{\text{см}^3}, \end{split}$$

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

$$\begin{split} N_{O} &= 2N_{UO2} + 3N_{Gd2O3} = 2 \cdot 2,303 \cdot 10^{22} + 3 \cdot 2,071 \cdot 10^{19} = 4,612 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^{3}}, \\ N_{H_{2}O} &= \frac{N_{a}\rho_{_{MH}}}{A_{H_{2}O}} = \frac{6,023 \cdot 10^{23} \cdot 0,725}{18} = 2,426 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^{3}}, \\ N_{\delta\kappa} &= \frac{N_{a}\rho_{_{MH}}c_{_{\delta\kappa}}}{M_{_{\delta\kappa}}} = \frac{6,023 \cdot 10^{23} \cdot 0,725 \cdot 0,00981}{3 \cdot 1 + 11 + 16 \cdot 3} = 6,909 \cdot 10^{19} \frac{\text{ядер}}{\text{см}^{3}}. \end{split}$$

Находим значения эффективных микроскопических сечений по [3]. Таблица 11 - Таблица эффективных микроскопических сечений

	V _i ,	$N_i \cdot 10^{-22}$,	$\sigma_{_a},$	$\sigma_s,$	ξ	$VN\sigma_{a}$,	$VN\sigma_{s}\xi$,
J 1.1	см ³	см ⁻³	барн	барн		\mathbf{CM}^{-1}	\mathbf{CM}^{-1}
U ₅	0,442	0,06815	680,9	13,8	0,0085	0,205	3,536.10-5
U ₈	0,442	2,235	2,71	8,9	0,0084	0,027	7,39.10-4
O _{rop}	0,442	4,612	0,00027	3,76	0,12	5,508.10-6	9,205·10 ⁻³
Gd	0,442	0,004143	37340	-	0,0127	0,684	0
H ₂ O	0,852	2,426	0,664	48	0,954	0,014	0,947
Zr	0,219	4,226	0,185	6,4	0,0218	1,708.10-3	1,288.10-3
Не	0,027	0,002686	0,007	0,8	0,425	5,069 [.] 10 ⁻⁹	2,462.10-7
H ₃ BO ₃	0,852	0,006909	760	76,1	0,83	0,045	3,719.10-3

Температура нейтронного газа:

$$T_{\mu z} = T_0 \cdot \left[1 + C \cdot \left(\frac{\sum_a (T_0)}{\xi \sum_s (1)} \right) \right]$$
$$\sum_a (T_0) = \sum_{j=1} \frac{(VN\sigma_a(0,0253))}{V_0} \cdot \sqrt{\frac{293,6}{T_0}},$$

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

$$\begin{split} \Sigma_a(T_0) &= \frac{0,205 + 0,027 + 5,508 \cdot 10^{-6} + 0,684 + 0,014 + 1,708 \cdot 10^{-3} + 5,069 \cdot 10^{-9} + 0,045}{1,54} \cdot \\ &\cdot \sqrt{\frac{293,6}{574}} = 0,453 c \textit{m}^{-1}, \\ &\quad \boldsymbol{\xi} \Sigma_s(1) = \sum_{j=1}^{-1} \frac{(VN \boldsymbol{\xi} \sigma_s(1))}{V_0}, \\ &\quad \boldsymbol{\xi} \Sigma_s(1) = \frac{3,536 \cdot 10^{-5} + 7,39 \cdot 10^{-4} + 9,205 \cdot 10^{-3} + 0,947 + 1,288 \cdot 10^{-3} + 2,462 \cdot 10^{-7} + 3,719 \cdot 10^{-3}}{1,54} = \\ &= 0,625 c \textit{m}^{-1}. \\ &\quad T_{HT} = 574 \cdot \left[1 + 1,7 \cdot \left(\frac{0,453}{0,625}\right)\right] = 1283 \textit{K}. \end{split}$$

Определеним энергию сшивки между спектрами замедляющихся и тепловых нейтронов.

Сечение поглощения отдельных элементов, усреднённых по спектру Максвелла:

$$\overline{\sigma_a^i}(E) = 0,886 \cdot \sigma_a^i \cdot \sqrt{\frac{293}{T_{_{_{H2}}}}} F(x_{_{_{2P}}})$$

Таблица 12 - Значения $\overline{\sigma_a^i}(E)$ для различных элементов в зависимости от x_{rp}

	$x_{rp}=2$	$x_{rp} = 4$	$x_{rp} = 6$
Элемент	$\overline{\sigma_a^i}(E),$	$\overline{\sigma_a^i}(E),$	$\overline{\sigma_a^i}(E),$
	барн	барн	барн
U5	327,8	276,9	266,3
U8	1,428	1,206	1,16
Огор	1,423.10-4	1,202.10-4	1,156.10-4
Gd	1,968·10 ⁴	1,662.104	1,599·10 ⁴
H ₂ O	0,35	0,296	0,284
Zr	0,098	0,082	0,079
He	3,689.10-3	3,116.10-3	2,997.10-3
H ₃ BO ₃	400,6	338,3	325,4

						Лист
					ФЮРА.693100.001.ПЗ	20
Изм.	Лист	№ документа	Подпись	Дата		39

	$x_{rp} = 2$	$x_{rp} = 4$	$x_{rp} = 6$
Элемент	$VN\overline{\sigma_a^i}$, CM ⁻¹	$VN\overline{\sigma_a^i}$, CM ⁻¹	$VN\overline{\sigma_a^i}$, $ extsf{CM}^{-1}$
U_5	0,099	0,083	0,08
U_8	0,014	0,012	0,011
Огор	2,903.10-6	2,452.10-6	2,359.10-6
Gd	0,361	0,305	0,293
H ₂ O	7,237.10-3	6,113·10 ⁻³	5,88·10 ⁻³
Zr	9,003.10-4	7,604.10-4	7,315.10-4
Не	2,672.10-9	2,257.10-9	2,171.10-9
H ₃ BO ₃	0,024	0,02	0,019
${ m f}_{{ m прав}}$	0,525	0,444	0,427

Таблица 13 - Значения $VN\overline{\sigma_a^i}$ для различных элементов в зависимости от x_{rp}

При расчете учитываем, что ^{235}U не подчиняется закону 1/v. Усреднение сечения поглощения по спектру Максвелла для этого элемента можно найти применяя g_{a5} - фактор, который можно определить с помощью [3] (g_{a5} =0,913).

Рисунок 6 – Определение граничной энергии

						Лист
					ФЮРА.693100.001.ПЗ	40
Изм.	Лист	№ документа	Подпись	Дата	2	

В точке пересечения этих графиков находим точку x_{rp} и определяем его: x_{rp} =3,43.

 $E_{ep} = x_{ep} \cdot E_m = 3,43 \cdot 0,0253 = 0,087 \cdot B$ — это и есть энергия сшивки между спектрами замедляющихся и тепловых нейтронов.

Произведем расчет сечений, усредненных по спектру Максвелла.

При $x_{rp} = 3,43$: $F(x_{ap}) = 0,8779 \cdot x^{-1} + 0,01471 \cdot x + 0,7735 = 1,078.$

Таблица 14 - Значения $\overline{\sigma_a^i}(E)$ для различных элементов в зависимости от x_{rp}

	$x_{rp} = 3,43$	
Элемент	$\overline{\sigma_a^i}(E),$	$(1-\mu_i)$
	барн	
U ₅	284,2	0,997
U_8	1,239	0,997
O_{rop}	1,234.10-4	0,958
Gd	$1,707.10^{4}$	0,996
H_2O	0,303	0,963
Zr	0,085	0,993
He	3,199·10 ⁻³	0,833
H_3BO_3	347,4	0,989

Изм.	Лист	№ документа	Подпись	Дата

Эл-т	$\overline{\sigma_a},$ барн	$\overline{\sigma_{_f}}$, барн	$\overline{\sigma_{_{tr}}},$ барн	$VN\overline{\sigma_a}$, ${ m CM}^{-1}$	$VN\overline{\sigma_f}$ CM^{-1}	$VN\overline{\sigma_{tr}}$, cm ⁻¹
U ₅	284,2	238,5	297,9	0,086	0,072	0,09
U_8	1,239	-	10,114	0,012	-	0,1
Огор	1,234.10-4	-	3,603	2,518.10-6	-	0,074
Gd	$1,707.10^4$	-	1,707·10 ⁴	0,313	-	0,313
H ₂ O	0,303	-	46,526	6,276.10-3	-	0,962
Zr	0,085	-	6,438	7,807.10-4	-	0,059
Не	3,199.10-3	-	0,67	2,317·10 ⁻⁹	-	4,851·10 ⁻ 7
H ₃ BO ₃	347,4		422,6	0,02		0,025

Таблица 15 - Усреднённые сечения по спектру Максвелла

Таблица 16 - Макроскопические сечения

	Σ_a, CM^{-1}	Σ_{tr}, CM^{-1}	Σ_f, cm^{-1}
RE	0,284	1,053	0,047
БЛ	0,928	1,302	0,047
3M	0,025	0,953	0

3.3 Мощность реактора 75% N_{ном}

Определеним эффективную температуру топлива.

1) При изменении температуры теплоносителя также изменится расход теплоносителя через активную зону:

$$G_{mh} = \frac{87000 \cdot \rho_{mh}}{3600} = \frac{87000 \cdot 722,5}{3600} = 17460, 4\kappa c / c,$$

где $\rho_{mh} = f(p_1, T_{mh}) = 722,5\kappa 2 / M^3.$

					Γ
Изм.	Лист	№ документа	Подпись	Дата	

Через одну ТВС : $G_{mec} = \frac{G_{a3}}{N_{mec}} = \frac{17460, 4}{163} = 107, 1 \kappa 2 / c.$

Тогда средняя скорость теплоносителя через одну ТВС:

$$w = \frac{G_{mec}}{S_{mH} \cdot \rho_{mH}} = \frac{107,1}{0,025 \cdot 722,5} = 5,87 \, \text{m/c}.$$

2) Коэффициент теплоотдачи в пучках стержней найдем по зависимости:

$$Nu = 0,021 \cdot \text{Re}^{0.8} \cdot \text{Pr}^{0.43}$$

Критерий Рейнольдса определим по формуле:

$$\operatorname{Re} = \frac{wd_{z}}{\upsilon_{cp}} = \frac{5,87 \cdot 0,011}{1,215 \cdot 10^{-7}} = 5,109 \cdot 10^{5}.$$

где $\Pr = f(p_{xp}, T_{xp}) = 0,8685 -$ число Прандтля, $\lambda = f(p_{xp}, T_{xp}) = 0,5562Bm/(M \cdot K) -$ теплопроводность теплоносителя, $\upsilon_{cp} = f(p_{xp}, T_{xp}) = 1,215 \cdot 10^{-7} M^2 / c -$ коэффициент кинематической вязкости.

Тогда $Nu = 0,021 \cdot (5,124 \cdot 10^5)^{0,8} \cdot 0,8685^{0,43} = 730.$

Зная критерий Нуссельта определим коэффициент теплоотдачи:

$$\alpha = Nu \frac{\lambda}{d_{e}} = 730 \cdot \frac{0.5585}{0.011} = 3.833 \cdot 10^{4} Bm / (M^{2}K).$$

Тепловой поток при этом в "горячем" реакторе будет равен:

$$q_f = \frac{Q}{\Pi} = \frac{2250}{5,379 \cdot 10^3} = 4,183 \cdot 10^5 Bm / M^2.$$

3) Температура теплоносителя на мощности реактора 75% $N_{\text{ном}}$ $t_{xp} = 302, 1^{\circ}C = 575, 3K.$

Температура на поверхности оболочки твэл средней мощности:

$$T_{cm} = T_f + \frac{\Delta T_f}{2} + \Delta T_{\alpha},$$

где $T_f = 302, 1^{\circ}$ С - средняя температура теплоносителя в аз,

					ФЮ
Изм.	Лист	№ документа	Подпись	Дата	

$$\Delta T_{f} = T_{2} - T_{1} = 319 - 285, 2 = 33, 8^{\circ}C$$
 - полный подогрев теплоносителя в

аз,

$$\Delta T_{\alpha} = \frac{\overline{q_F}}{\alpha} = \frac{4.183 \cdot 10^5}{3.841 \cdot 10^4} = 11^{\circ} C$$
 - температурный напор "стенка-жидкость".

Отсюда получим, что наружная температура стенки твэла равна

$$T_{cm} = 302, 1 + \frac{33, 8}{2} + 11 = 330^{\circ} C.$$

4) Максимальное значение температуры топлива в твэле средней мощности:

$$T_{\max} = T_{cm} + \Delta T_{o\delta} + \Delta T_{3a3} + \Delta T_{cop}.$$

Максимальный перепад на тонкой оболочке ТВЭЛ можно представить в виде:

$$\Delta T_{o\delta} = \overline{q}_F \cdot \frac{2d_H}{d_H + d_B} \cdot \frac{\delta_{o\delta}}{\lambda_{o\delta}},$$

Примем максимальную температуру на внутренней стенке оболочки $T_{_{CTM.BH}} = 347^{\circ}C$. Тогда средняя температура оболочки:

$$\overline{T_c} = \frac{T_{cm.BH} + T_{cm.Hap}}{2} = \frac{347 + 330}{2} = 339^{\circ}C.$$

По этой температуре находим из [4] для материала оболочки из сплава циркония с ниобием (1%) Э-110:

$$\lambda_{o\bar{o}} = 23,5 - 0,0192 \left(\overline{T_c} + 273,15\right) + 1,68 \cdot 10^{-5} \left(\overline{T_c} + 273,15\right)^2 = 18,041 Bm / (M \cdot K)$$
$$\Delta T_{o\bar{o}} = 4,183 \cdot 10^5 \cdot \frac{2 \cdot 9,1 \cdot 10^{-3}}{9,1 \cdot 10^{-3} + 7,73 \cdot 10^{-3}} \cdot \frac{6,85 \cdot 10^{-4}}{18,041} = 17^{\circ} C.$$

Таким образом максимальный перепад температуры на оболочке твэла примем равной

$$T_{cm.вh} = T_{cm.hap} + \Delta T_{o\delta} = 330 + 17 = 347^{\circ} C.$$

Таким образом максимальный перепад температуры на оболочке твэла примем равной $\Delta T_{o\delta}^{\max} = 17^{\circ} C.$

						Ли
					ФЮРА.693100.001.ПЗ	1
Изм.	Лист	№ документа	Подпись	Дата		4

5) Температурный перепад в газовом зазоре находим по формуле:

$$\Delta T_{3a3}^{\max} = \overline{q}_F^{\max} \cdot \frac{2d_{me.nap}}{d_{me.eu} + d_{ma\delta3}} \cdot \frac{\delta_{3a3}}{\lambda_{3a3}}$$

В первом приближении примем максимальную температуру сердечника $T_{cepd.hap} = 447^{\circ}C$. Тогда средняя температура газового зазора:

$$\overline{T_{_{3a3}}} = \frac{T_{_{cm.6H}} + T_{_{cep\partial.hap}}}{2} = \frac{447 + 347}{2} = 398^{\circ}C.$$

По этой температуре при давлении 2 МПа находим из [4] $\overline{\lambda_{3a3}} = 0,273712 \frac{Bm}{M \cdot K}.$

$$\Delta T_{_{3d3}}^{\max} = 4,183 \cdot 10^5 \cdot \frac{2 \cdot 7,73 \cdot 10^{-3}}{7,6 \cdot 10^{-3} + 7,73 \cdot 10^{-3}} \cdot \frac{6,5 \cdot 10^{-5}}{0,273712} = 100^{\circ} C.$$

Максимальная внутренняя температура стенки твэла и максимальная температура наружной поверхности топливного сердечника:

$$T_{cepd.hap} = T_{cm.6h} + \Delta T_{3a3} = 347 + 100 = 447^{\circ} C.$$

Максимальный перепад температуры в газовом зазоре примем равным $\Delta T_{_{3a3}} = 100^{O} C.$

6) Определим максимальный радиальный перепад на сердечнике твэла при постоянной теплопроводности.

Среднее значение энерговыделения:

$$\overline{q_{v}} = \frac{Q}{H_{a3} \cdot \pi n_{m633}} \left(\left(\frac{d_{ma\delta\pi}}{2} \right)^{2} - \left(\frac{d_{ome}}{2} \right)^{2} \right)^{2} = \frac{2250}{\pi \cdot 3,7 \cdot 50856} \left(\left(\frac{7,6 \cdot 10^{-3}}{2} \right)^{2} - \left(\frac{1,2 \cdot 10^{-3}}{2} \right)^{2} \right)^{2} = 2,703 \cdot 10^{8} Bm / M.$$

Примем максимальную температуру топливного сердечника $T_{cepd} = 715^{\circ} C$.

Коэффициент теплопроводности для этой температуры найдем по формуле, приведенной в [5]:

$$\overline{\lambda_{cop}} = 10^2 \left(3,77+0,0258T_{cep\partial}\right)^{-1} + 1,1 \cdot 10^{-4} \cdot T_{cep\partial} + 1,01 \cdot 10^{-11} \cdot T_{cep\partial}^{-3} \cdot \exp\left(7,2 \cdot 10^{-4} \cdot T_{cep\partial}\right),$$

Изм.	Лист	№ документа	Подпись	Дата	

$$\overline{\lambda_{zop}} = 10^2 \left(3,77+0,0258\cdot988\right)^{-1} + 1,1\cdot10^{-4}\cdot988 + 1,01\cdot10^{-11}\cdot988^3\cdot\exp\left(7,2\cdot10^{-4}\cdot988\right) = 3,546\frac{Bm}{M\cdot K}$$
$$\Delta T_{zop} = \frac{\overline{q_v}}{4\cdot\overline{\lambda_{zop}}} \left(\left(\frac{d_{mada}}{2}\right)^2 - \left(\frac{d_{ome}}{2}\right)^2\right) = \frac{2,703\cdot10^8}{4\cdot3,546} \left(\left(\frac{7,6\cdot10^{-3}}{2}\right)^2 - \left(\frac{1,2\cdot10^{-3}}{2}\right)^2\right) = 268^OC.$$

Максимальное значение температуры топлива в твэле средней мощности:

$$T_{cepd.eh} = T_{cepd.hap} + \Delta T_{cop} = 447 + 268 = 715^{\circ} C.$$

7) Эффективная температура топлива:

$$T_{cop}^{_{3\phi}} = T_{_{cep\partial. Hap}} + 0, 4 \cdot \left(T_{_{cep\partial. BH}} - T_{_{cep\partial. Hap}}\right) = 555^{\circ} C.$$

Определим ядерную и молекулярную плотности нуклидов. Находим значения эффективных микроскопических сечений по [3].

Гаолица 1/ - Гаолица эффективных микроскопических сечении

тт	V _i ,	$N_i \cdot 10^{-22}$,	$\sigma_{_a},$	$\sigma_{s},$	ξ	$VN\sigma_a$,	$VN\sigma_{s}\xi$,
J.1.1	см ³	см-3	барн	барн		CM ⁻¹	см ⁻¹
U ₅	0,442	0,06815	680,9	13,8	0,0085	0,205	3,536.10-5
U ₈	0,442	2,235	2,71	8,9	0,0084	0,027	7,39.10-4
Огор	0,442	4,612	0,00027	3,76	0,12	5,508·10 ⁻⁶	9,205 [.] 10 ⁻³
Gd	0,442	0,004143	37340	-	0,0127	0,684	0
H ₂ O	0,853	2,418	0,664	48	0,954	0,014	0,944
Zr	0,218	4,226	0,185	6,4	0,0218	1,707·10 ⁻³	1,287·10 ⁻³
Не	0,027	0,002686	0,007	0,8	0,425	5,069 [.] 10 ⁻⁹	2,462.10-7
H ₃ BO ₃	0,853	0,006885	760	76,08	0,83	0,045	3,707.10-3

ФЮРА.693100.001.ПЗ

Лист № документа Подпись Дата

Изм.

Температура нейтронного газа:

$$T_{_{H2}} = T_0 \cdot \left[1 + C \cdot \left(\frac{\sum_a \left(T_0 \right)}{\xi \sum_s \left(1 \right)} \right) \right].$$

где $T_0=302,1^{\circ}C=575,3K$ – средняя температура по элементарной ячейке.

$$\begin{split} \Sigma_{a}(T_{0}) &= \sum_{j=1}^{\infty} \frac{\left(VN\sigma_{a}(0,0253)\right)}{V_{0}} \cdot \sqrt{\frac{293,6}{T_{0}}}, \\ \Sigma_{a}(T_{0}) &= \frac{0,205 + 0,027 + 5,508 \cdot 10^{-4} + 0,684 + 0,014 + 1,707 \cdot 10^{-3} + 5,069 \cdot 10^{-9} + 0,045}{1,54} \cdot \\ \cdot \sqrt{\frac{293.6}{575,3}} &= 0,453 c m^{-1}, \\ \zeta \Sigma_{s}(1) &= \sum_{j=1}^{\infty} \frac{\left(VN\zeta\sigma_{s}(1)\right)}{V_{0}}, \\ \zeta \Sigma_{s}(1) &= \frac{3,536 \cdot 10^{-5} + 7,39 \cdot 10^{-4} + 9,205 \cdot 10^{-3} + 0,944 + 1,287 \cdot 10^{-3} + 2,462 \cdot 10^{-7} + 3,707 \cdot 10^{-3}}{1,54} = 0,623 c m^{-1}. \\ T_{HT} &= 575,3 \cdot \left[1 + 1,7 \cdot \left(\frac{0,453}{0,623}\right)\right] = 1287 K. \end{split}$$

Энергии сшивки между спектрами замедляющихся и тепловых нейтронов. Сечение поглощения отдельных элементов, усреднённые по спектру Максвелла.

$$\overline{\sigma_a^i}(E) = 0.886 \cdot \sigma_a^i \cdot \sqrt{\frac{293}{T_{_{H2}}}} F(x_{_{2P}})$$

						-
						Лист
					ФЮРА.693100.001.ПЗ	17
Изм.	Лист	№ документа	Подпись	Дата		4/

Элемент	$x_{rp} = 2$	$x_{rp} = 4$	$x_{rp} = 6$
Элемент	$\overline{\sigma_a^i}(E)$, барн	$\overline{\sigma_a^i}(E)$, барн	$\overline{\sigma_a^i}(E)$, барн
U ₅	327,2	276,4	265,8
U_8	1,426	1,205	1,159
Огор	1,421.10-4	1,2.10-4	1,154.10-4
Gd	1,965.104	$1,66.10^4$	1,596·10 ⁴
H ₂ O	0,349	0,295	0,284
Zr	0,097	0,082	0,079
He	3,684.10-3	3,111.10-3	2,993.10-3
H_3BO_3	399,9	337,8	324,9

Таблица 18 - Значения $\overline{\sigma_a^i}(E)$ для различных элементов в зависимости от x_{rp}

Таблица 19 - Значения $VN\overline{\sigma_a^i}$ для различных элементов в зависимости от x_{rp}

	$x_{rp} = 2$	$x_{rp} = 4$	$x_{rp} = 6$
Элемент	$VN\overline{\sigma_a^i}$, $ extsf{CM}^{-1}$	$VN\overline{\sigma_a^i}$, $ extsf{CM}^{-1}$	$VN\overline{\sigma_a^i}$, CM^{-1}
U ₅	0,099	0,083	0,08
U_8	0,014	0,012	0,011
Огор	2,899.10-6	2,448.10-6	2,355.10-6
Gd	0,36	0,304	0,293
H ₂ O	7,202.10-3	6,083.10-3	5,851.10-3
Zr	8,982·10 ⁻⁴	7,586.10-4	7,297.10-4
Не	2,667.10-9	2,253.10-9	2,167.10-9
H ₃ BO ₃	0,023	0,02	0,019
f _{прав}	0,526	0,444	0,427

Изм.	Лист	№ документа	Подпись	Дата

Рисунок 7 – Определение граничной энергии

В точке пересечения этих графиков находим точку x_{rp} и определяем его: $x_{rp} = 3,44.$

 $E_{_{\it cp}} = x_{_{\it cp}} \cdot E_{_{\it m}} = 3,44 \cdot 0,0253 = 0,087 ext{ э}B$ - Энергия сшивки.

3.3.5 Расчет сечений, усредненных по спектру Максвелла

При $x_{rp} = 3,44$: $F(x_{cp}) = 0,8779 \cdot x^{-1} + 0,01471 \cdot x + 0,7735 = 1,078.$

Таблица 20 - Значения $\overline{\sigma_a^i}(E)$ для различных элементов в зависимости от \mathbf{x}_{rp}

Элемент	$x_{rp} = 3,44$	$(1-\mu_i)$	
	$\sigma_a^i(E)$, оарн		
U ₅	283,6	0,997	
U_8	1,236	0,997	
O _{rop}	1,231.10-4	0,958	
Gd	1,703.104	0,996	
H ₂ O	0,303	0,963	
Zr	0,084	0,993	
He	3,193·10 ⁻³	0,833	
H_3BO_3	346,6	0,989	

						Лист
					ФЮРА.693100.001.ПЗ	40
Изм.	Лист	№ документа	Подпись	Дата		49

Эл-т	$\overline{\sigma_{_a}},$ барн	$\overline{\sigma_{_f}}$, барн	$\overline{\sigma_{_{tr}}}$, барн	$V\!N\overline{\sigma_a}$, см $^{-1}$	$VN\overline{\sigma_{_f}}$ cm ⁻¹	$VN\overline{\sigma_{_{Ir}}}$, cm ⁻¹
U ₅	283,6	237,9	297,4	0,085	0,072	0,09
U ₈	1,236	-	10,11	0,012	-	0,1
Огор	1,231.10-4	-	3,603	2,512.10-6	-	0,074
Gd	$1,703 \cdot 10^4$	-	1,703·10 ⁴	0,312	-	0,312
H ₂ O	0,303	-	46,53	6,242.10-3	-	0,959
Zr	0,084	-	6,438	7,784.10-4	-	0,059
Не	3,193.10-3	-	0,67	2,312.10-9	-	4,851.10-7
H ₃ BO ₃	346,6	-	421,9	0,02	-	0,025

Таблица 21 - Усреднённые сечения по спектру Максвелла

Таблица 22 - Макроскопические сечения

	Σ_a, CM^{-1}	Σ_{tr}, CM^{-1}	Σ_f, cm^{-1}
RE	0,284	1,051	0,047
БЛ	0,926	1,300	0,047
3M	0,025	0,950	0

3.4 Мощность реактора 100% N_{ном}

Определим эффективную температуру топлива.

1) Расход теплоносителя через активную зону:

$$G_{m\mu} = \frac{87000 \cdot \rho_{m\mu}}{3600} = \frac{87000 \cdot 720, 3}{3600} = 17407, 3\kappa c / c,$$

ГДе $\rho_{m\mu} = f(p_1, T_{m\mu}) = 720, 3\kappa \epsilon / M^3.$

Через одну ТВС : $G_{mec} = \frac{G_{a3}}{N_{mec}} = \frac{17407,3}{163} = 106,8\kappa^2/c.$

Изм.	Лист	№ документа	Подпись	Дата	

ФЮРА.693100.001.ПЗ

Средняя скорость теплоносителя через одну ТВС:

$$w = \frac{G_{mec}}{S_{mH}} = \frac{106,8}{0,025 \cdot 720,3} = 5,87 \, \text{m/c}.$$

2) Коэффициент теплоотдачи в пучках стержней найдем по зависимости:

$$Nu = 0,021 \cdot \text{Re}^{0,8} \cdot \text{Pr}^{0,43}$$
.

Критерий Рейнольдса определим по формуле:

$$\operatorname{Re} = \frac{wd_{2}}{\upsilon_{cp}} = \frac{5,87 \cdot 0,011}{1,213 \cdot 10^{-7}} = 5,132 \cdot 10^{5}.$$

 $Pr = f(p_1, T_{mn}) = 0,8718$ $\lambda = f(p_1, T_{mn}) = 0,5543Bm / (M \cdot K)$ $\upsilon_{cp} = f(p_1, T_{mn}) = 1,213 \cdot 10^{-7} M^2 / c.$

Тогда $Nu = 0,021 \cdot (5,132 \cdot 10^5)^{0,8} \cdot 0,8718^{0,43} = 732,5.$

Коэффициент теплоотдачи:

$$\alpha = Nu \frac{\lambda}{d_{z}} = 732, 5 \cdot \frac{0,5543}{0,011} = 3,831 \cdot 10^{4} Bm / (m^{2}K).$$

Тепловой поток при этом в "горячем" реакторе будет равен:

$$q_f = \frac{Q}{\Pi} = \frac{3000}{5,379 \cdot 10^3} = 5,577 \cdot 10^5 Bm / m^2.$$

3) Температура теплоносителя на мощности реактора 100% $N_{\text{ном}}$ $t_{mu} = 303,15^{\circ}C = 576,3K.$

Температура на поверхности оболочки твэл средней мощности:

$$T_{cm} = T_f + \frac{\Delta T_f}{2} + \Delta T_{\alpha},$$

где $T_f = 303,15^{\circ}$ С - средняя температура теплоносителя в аз,

 $\Delta T_f = T_2 - T_1 = 319 - 287, 3 = 31, 7^{\circ}C$ - полный подогрев теплоносителя в аз,

 $\Delta T_{\alpha} = \frac{\overline{q_F}}{\alpha} = \frac{5,577 \cdot 10^5}{3,831 \cdot 10^4} = 15^{\circ}C$ - температурный напор "стенка-жидкость".

Наружная температура стенки твэла равна $T_{cm} = 303,15 + \frac{31,7}{2} + 15 = 334^{\circ}C.$

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

4) Максимальное значение температуры топлива в твэл средней мощности:

$$T_{\max} = T_{cm} + \Delta T_{o\delta} + \Delta T_{3a3} + \Delta T_{oop}.$$
$$\Delta T_{o\delta} = \overline{q}_F \cdot \frac{2d_H}{d_H + d_P} \cdot \frac{\delta_{o\delta}}{\lambda_{o\delta}},$$

Примем максимальную температуру на внутренней стенке оболочки *T*_{ст.вн} = 357°*C*. Средняя температура оболочки:

$$\overline{T_c} = \frac{T_{cm.6\mu} + T_{cm.hap}}{2} = \frac{357 + 334}{2} = 345^{\circ} C.$$

По этой температуре находим из [4] для материала оболочки из сплава циркония с ниобием (1%) Э-110:

$$\lambda_{o\delta} = 23, 5 - 0,0192 \left(\overline{T_c} + 273, 15\right) + 1,68 \cdot 10^{-5} \left(\overline{T_c} + 273, 15\right)^2 = 18,051 Bm / (M \cdot K)$$
$$\Delta T_{o\delta} = 5,577 \cdot 10^5 \cdot \frac{2 \cdot 9, 1 \cdot 10^{-3}}{9, 1 \cdot 10^{-3} + 7,73 \cdot 10^{-3}} \cdot \frac{6,85 \cdot 10^{-4}}{18,051} = 23^o C.$$

Таким образом максимальный перепад температуры на оболочке твэла примем равной

$$T_{cm.eh} = T_{cm.hap} + \Delta T_{o\delta} = 334 + 23 = 357^{\circ} C.$$

Таким образом максимальный перепад температуры на оболочке твэла примем равной $\Delta T_{o\delta}^{\max} = 23^{o} C.$

5) Температурный перепад в газовом зазоре:

$$\Delta T_{_{3a3}}^{\max} = \overline{q}_{_{F}}^{\max} \cdot \frac{2d_{_{m 6. Hap}}}{d_{_{m 6. Hap}}} \cdot \frac{\delta_{_{3a3}}}{\lambda_{_{3a3}}}$$

В первом приближении примем максимальную температуру сердечника $T_{cep\partial, Hap} = 480^{\circ} C.$

Средняя температура газового зазора $\overline{T_{_{3a3}}} = \frac{T_{_{cm, 6H}} + T_{_{cep\partial, Hap}}}{2} = \frac{480 + 357}{2} = 422^{\circ}C.$

По этой температуре при давлении 2 МПа находим из [4] $\overline{\lambda_{3a3}} = 0,29694 \frac{Bm}{M \cdot K}$.

Изм.	Лист	№ документа	Подпись	Дата	

$$\Delta T_{_{3a3}}^{\max} = 5,577 \cdot 10^5 \cdot \frac{2 \cdot 7,73 \cdot 10^{-3}}{7,6 \cdot 10^{-3} + 7,73 \cdot 10^{-3}} \cdot \frac{6,5 \cdot 10^{-5}}{0,29694} = 123^{O}C.$$

Максимальная внутренняя температура стенки твэла и максимальная температура наружной поверхности топливного сердечника:

$$T_{cepd.hap} = T_{cm.6h} + \Delta T_{3a3} = 357 + 123 = 480^{\circ} C.$$

Максимальный перепад температуры в газовом зазоре примем равным $\Delta T_{_{3a3}} = 123^{O}C.$

6) Максимальный радиальный перепад на сердечнике твэла при постоянной теплопроводности.

$$\overline{q_{v}} = \frac{Q}{H_{a3} \cdot \pi n_{m633}} \left(\left(\frac{d_{ma63}}{2} \right)^{2} - \left(\frac{d_{om6}}{2} \right)^{2} \right)^{2} = \frac{3000}{\pi \cdot 3,7 \cdot 50856} \left(\left(\frac{7,6 \cdot 10^{-3}}{2} \right)^{2} - \left(\frac{1,2 \cdot 10^{-3}}{2} \right)^{2} \right)^{2} = 3,604 \cdot 10^{8} Bm / m^{3}.$$

Примем максимальную температуру топливного сердечника $T_{cepd} = 885^{\circ}C$. Коэффициент теплопроводности для этой температуры найдем по формуле, приведенной в [5]:

$$\overline{\lambda_{cop}} = 10^2 \left(3,77+0,0258T_{cep\delta}\right)^{-1} + 1,1 \cdot 10^{-4} \cdot T_{cep\delta} + 1,01 \cdot 10^{-11} \cdot T_{cep\delta}^{-3} \cdot \exp\left(7,2 \cdot 10^{-4} \cdot T_{cep\delta}\right) = 3,135 \frac{Bm}{M \cdot K}.$$

$$\Delta T_{cop} = \frac{\overline{q_{v}}}{4 \cdot \overline{\lambda_{cop}}} \left(\left(\frac{d_{ma\delta n}}{2}\right)^2 - \left(\frac{d_{ome}}{2}\right)^2 \right) = \frac{3,604 \cdot 10^8}{4 \cdot 3,135} \left(\left(\frac{7,6 \cdot 10^{-3}}{2}\right)^2 - \left(\frac{1,2 \cdot 10^{-3}}{2}\right)^2 \right) = 405^{\circ} C.$$

Максимальное значение температуры топлива в твэл средней мощности:

$$T_{cepd.bh} = T_{cepd.hap} + \Delta T_{cop} = 480 + 405 = 885^{\circ} C.$$

7) Эффективная температура топлива:

$$T_{\rm cop}^{\rm 3ch} = T_{\rm cepd.hap} + 0, 4 \cdot \left(T_{\rm cepd.bh} - T_{\rm cepd.hap}\right) = 641^{o} C.$$

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

Таолица 25 - Гаолица эффективных микроскопических сечении							
ת הכ	V _i ,	$N_i \cdot 10^{-22}$,	$\sigma_{_a},$	$\sigma_{s},$	Ę	$VN\sigma_a$,	$VN\sigma_{s}\xi$,
J.I. I	см ³	CM ⁻³	барн	барн		CM ⁻¹	CM ⁻¹
U ₅	0,442	0,06815	680,9	13,8	0,0085	0,205	3,536.10-5
U_8	0,442	2,235	2,71	8,9	0,0084	0,027	7,39.10-4
Orop	0,442	4,612	0,00027	3,76	0,12	5,508·10 ⁻⁶	9,205·10 ⁻³
Gd	0,442	0,004143	37340	-	0,0127	0,684	0
H ₂ O	0,853	2,41	0,664	48	0,954	0,014	0,941
Zr	0,218	4,226	0,185	6,4	0,0218	1,707.10-3	1,287·10 ⁻³
Не	0,027	0,002686	0,007	0,8	0,425	5,069·10 ⁻⁹	2,462.10-7
H ₃ BO ₃	0,853	0,006977	760	76,08	0,83	0,045	3,756.10-3

Таблица 23 - Таблица эффективных микроскопических сечений

Температура нейтронного газа:

$$\sum_{a} (T_0) = \sum_{j=1}^{a} \frac{(VN\sigma_a(0,0253))}{V_0} \cdot \sqrt{\frac{293,6}{T_0}},$$

 $\Sigma_{a}(T_{0}) = \frac{0,205 + 0,027 + 5,508 \cdot 10^{-6} + 0,684 + 0,014 + 1,707 \cdot 10^{-3} + 5,069 \cdot 10^{-9} + 0,045}{1,54}$

$$\sqrt{\frac{293.6}{576,3}} = 0,453cm^{-1},$$

$$\xi \Sigma_{s}(1) = \sum_{j=1}^{\infty} \frac{(VN\xi\sigma_{s}(1))}{V_{0}},$$

Изм.	Лист	№ документа	Подпись	Дата

 $\xi \Sigma_{s}(1) = \frac{3,536 \cdot 10^{-5} + 7,39 \cdot 10^{-4} + 9,205 \cdot 10^{-3} + 0,941 + 1,287 \cdot 10^{-3} + 2,462 \cdot 10^{-7} + 3,756 \cdot 10^{-3}}{1,534} = \frac{1}{1,534}$

 $=0,621cm^{-1}$.

$$T_{H\Gamma} = 576, 3 \cdot \left[1 + 1, 7 \cdot \left(\frac{0, 453}{0, 621} \right) \right] = 1291K.$$

Энергия сшивки между спектрами замедляющихся и тепловых нейтронов.

Таблица 24 - Значения	$\overline{\sigma_a^i}(E)$ для ра	азличных элементов	в зависимости от х _{гр}
-----------------------	-----------------------------------	--------------------	----------------------------------

Элемент	$x_{rp} = 2$	$x_{rp} = 4$	$x_{rp} = 6$
Элемент	$\overline{\sigma_a^i}(E)$, барн	$\overline{\sigma_a^i}(E)$, барн	$\overline{\sigma_a^i}(E)$, барн
U_5	326,6	275,9	265,4
U_8	1,424	1,203	1,157
Огор	1,419.10-4	1,198.10-4	1,152.10-4
Gd	1,962.104	$1,657.10^4$	$1,594.10^4$
H ₂ O	0,349	0,295	0,283
Zr	0,097	0,082	0,079
He	3,678·10 ⁻³	3,106.10-3	2,988.10-3
H ₃ BO ₃	399,3	337,2	324,4

Изм.	Лист	№ документа	Подпись	Дата

	х _{гр} = 2	$x_{rp} = 4$	$x_{rp} = 6$
Элемент	$VN\overline{\sigma_a^i}$, CM ⁻¹	$VN\overline{\sigma_a^i}$, $ extsf{CM}^{-1}$	$VN\overline{\sigma_a^i}$, CM ⁻¹
U ₅	0,098	0,083	0,08
U_8	0,014	0,012	0,011
Огор	2,894.10-6	2,444.10-6	2,351.10-6
Gd	0,359	0,304	0,292
H ₂ O	7,168.10-3	6,055·10 ⁻³	5,824.10-3
Zr	8,967.10-4	7,574.10-4	7,285.10-4
Не	2,663.10-9	2,249.10-9	2,164.10-9
H ₃ BO ₃	0,024	0,02	0,019
$\mathbf{f}_{\Pi \mathrm{pab}}$	0,527	0,445	0,428

Таблица 25 - Значения $VN\overline{\sigma_a^i}$ для различных элементов в зависимости от x_{rp}

В точке пересечения этих графиков находим точку $x_{rp} = 3,44$. $E_{zp} = x_{zp} \cdot E_m = 3,44 \cdot 0,0253 = 0,087 \cdot B$ –энергия сшивки.

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

Произведем расчет сечений, усредненных по спектру Максвелла.

Таблица 26 - Значения $\overline{\sigma_a^i}(E)$ для различных элементов в зависимости от x_{rp}

Элемент	$\mathbf{x}_{\mathrm{rp}} = 3,44$ $\overline{\sigma_a^i}(E),$	$(1-\mu_i)$
	барн	
U_5	283,1	0,997
U ₈	1,234	0,997
Огор	1,229.10-4	0,958
Gd	$1,7.10^{4}$	0,996
H ₂ O	0,302	0,963
Zr	0,084	0,993
Не	3,187.10-3	0,833
H ₃ BO ₃	346,1	0,989

Таблица 27 - Усреднённые сечения по спектру Максвелла

Эл-т	$\overline{\sigma_{_a}},$ барн	$\overline{\sigma_{_f}} \ ,$ барн	$\overline{\sigma_{_{tr}}},$ барн	$VN\overline{\sigma_a} \ ,$ cm $^{-1}$	$VN\overline{\sigma_{_f}}$ cm ⁻¹	$VN\overline{\sigma_{tr}}$, cm ⁻¹
U ₅	283,1	237,6	296,8	0,085	0,072	0,089
U ₈	1,234	-	10,109	0,012	-	0,1
Огор	1,229.10-4	-	3,603	2,508.10-6	-	0,074
Gd	1,7.104	-	1,7.104	0,312	-	0,312
H ₂ O	0,302	-	46,525	6,213.10-3	-	0,956
Zr	0,084	-	6,437	7,772.10-4	-	0,059
Не	3,187.10-3	-	0,67	2,308.10-9	-	4,851.10-7
H ₃ BO ₃	346,1	-	421,3	0,021	-	0,025

Изм.	Лист	№ документа	Подпись	Дата

Таблица 28 - Макроскопические сечения

	Σ_a, CM^{-1}	Σ_{tr}, CM^{-1}	$\Sigma_f, \mathcal{CM}^{-1}$
RE	0,284	1,049	0,046
БЛ	0,925	1,299	0,046
3M	0,025	0,948	0

					ФЮРА.693100.001.ПЗ
Изм.	Лист	№ документа	Подпись	Дата	

4 Определение зависимости стационарного отравления реактора

ксеноном от мощности

Определим плотность потока тепловых нейтронов на различных уровнях мощности. Мощность реактора по [6] равна:

$$N_i = \frac{\Phi_i \cdot \Sigma_f^{E/I} \cdot V_{TBC}}{3.1 \cdot 10^{13}}.$$

Тогда плотность потока:

$$\Phi_i = \frac{3.1 \cdot 10^{13} \cdot N_i}{\sum_{f}^{B/I} V_{TBC}},$$

где *m*₅ - масса U²³⁵ в г,

N - в кВт.

Таблица 29 - Плотность потока нейтронов на различных уровнях мощности

N,%	0	40	75	100
Ф,	0	$2,749 \cdot 10^{13}$	5,167·10 ¹³	6,901·10 ¹³
нейтрон/см ² с				

Рисунок 9 – Зависимость плотности потока нейтронов от

мощности реактора

						Лист
					ФЮРА.693100.001.ПЗ	50
Изм.	Лист	№ документа	Подпись	Дата		39

Стационарная концентрация ксенона определяется равновесием между скорости прибыли ксенона из распадающегося йода и как осколка деления и скоростью убыли его путем радиоактивного распада и поглощения нейтронов:

$$N_{0Xe} = -\theta \frac{\gamma_I + \gamma_{Xe}}{\lambda_{Xe} + \sigma_{Xe}} \Phi \cdot \Sigma_{fon} \Phi.$$

Стационарная концентрация йода прямопропорциональна мощности реактора:

$$N_{0I} = \frac{\gamma_I}{\lambda_I} \cdot \Sigma_{f \delta n} \Phi.$$

Таблица 30 - Стационарные концентрации ксенона и йода

N, %	0	40	75	100
$N_{0Xe} \cdot 10^{-15}$,	0	1,490	1,849	1,988
ядер/см ³				
$N_{0I} \cdot 10^{-15}$,	0	2,505	4,696	6,261
ядер/см ³				

Сечение поглощения ксенона рассчитываем по аппроксимационной формуле из [11]:

$$\sigma_{Xe} = 231500 + 3,5 \cdot 10^6 \left(-\frac{T_{H\Gamma}}{920}\right).$$

Таблица 31 - Сечение поглощения нейтронов ксенона на различных уровнях мощности реактора

N, %	0	40	75	100
σ_{Xe} , барн	1,881·10 ⁶	$1,082.10^{6}$	1,078·10 ⁶	1,074.106

Коэффициент использования тепловых нейтронов с учетом отравления ксеноном:

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

$$\frac{1}{\theta} = 1 + f \cdot \frac{\Sigma_a^{\scriptscriptstyle 3M}}{\Sigma_a^{\scriptscriptstyle 6\pi} + \Sigma_a^{\scriptscriptstyle omp}} + (E-1),$$

где $\Sigma_a^{omp} = \sigma_{Xe} \cdot N_{0Xe}$.

Коэффициент замедлителя:

$$\alpha'' = \sqrt{\frac{\sum_{a}^{3M}}{D}} = \sqrt{3\Sigma_{tr}^{3M} \cdot \Sigma_{a}^{3M}} .$$

Коэффициент блока:

$$\alpha' = \sqrt{\frac{\sum_{a}^{\delta_{n}}}{D}} = \sqrt{3 \frac{\left(\sum_{i} V_{i}^{\delta_{n}} N_{i}^{\delta_{n}} \sigma_{tr,i}^{\delta_{n}} + V_{xe} N_{xe}^{0} \sigma_{tr}^{xe}\right)}{V_{\delta_{n}}} \cdot \frac{\left(\sum_{i} V_{i}^{\delta_{n}} N_{i}^{\delta_{n}} \sigma_{a,i}^{\delta_{n}} + V_{xe} N_{xe}^{0} \sigma_{a}^{xe}\right)}{V_{\delta_{n}}}$$

Таблица 32 - Коэффициент использования тепловых нейтронов на различных уровнях мощности реактора

N, %	0	40	75	100
θ	0,918	0,941	0,941	0,94

Потерю реактивности при отравлении ксеноном определим по формуле из [2]:

$$\rho_{0Xe} = -\theta \frac{\gamma_I + \gamma_{Xe}}{1 + \frac{\lambda_{Xe}}{\sigma_{Xe}} \Phi} \cdot \frac{\sigma_{f5}}{\sigma_{a5} + \sigma_{a8} \frac{1 - \frac{c_5}{100}}{\frac{c_5}{100}}}$$

В таблице 33 помимо результатов расчета также приведены значения реактивности при стационарном отравлении реактора, взятые из Альбома нейтронно-физических характеристик шестой топливной загрузки блока №2 Ростовской АЭС, значения для условного теплового реактора и результаты расчета первой топливной загрузки блока №1 Ростовской АЭС [19].

						Лисі
					ФЮРА.693100.001.ПЗ	61
Изм.	Лист	№ документа	Подпись	Дата		01

Таблица 33 - Стационарное отравление ксеноном-135 на различных уровнях мощности реактора

Обозначение	N, % $\rho_{_{0Xe}}, \%$	0	40	75	100
1	Результаты расчета	0	-2,384	-2,956	-3,171
2	Данные АНФХ шестой топливной загрузки 2 блока РоАЭС	0	-1,952	-2,698	-2,868
3	УТР	0	-2,5	-3,7	-4,0
4	Результаты расчета первой топливной загрузки 1блока РоАЭС	0	-1,423	-1,941	-2,167

Графическая зависимость стационарного отравления ксеноном от мощности реактора представлена в приложении А.

Изм.	Лист	№ документа	Подпись	Дата

5 Расчет нейтронно-физических характеристик активной зоны при разных значениях сечения поглощения гадолиния

При выполнении работы было принято допущение о подчинении закону 1/v сечения поглощения гадолиния. В ходе расчетов, приведенных выше, значение сечения поглощения гадолиния при стандартной энергии тепловых нейтронов было принято из [13] σ_{aGd} = 37340 барн, при этом предполагалось, что в теплоносителе присутствует борная кислота. Для определения влияния величины сечения поглощения гадолиния на характер изменения реактивности при стационарном отравлении реактора проведем расчет нейтронно-физических характеристик активной зоны без учета борной Для сравнения помимо ранее кислоты. принятого значения сечения поглощения Gd (1 вариант) произведем расчет для значения, взятого из другого литературного источника [7] σ_{aGd} = 49000 барн (2 вариант). Результаты расчетов представим в таблицах.

Таблица 34 - Температура нейтронного газа

N, %	0	40	75	100
Т _{НГ} (1 вариант), К	660	1253	1257	1260
Т _{НГ} (2 вариант), К	742	1408	1413	1417

Таблица 35 - Значения х_{гр}

N, %	0	40	75	100
Х _{гр} (1 вариант)	3,48	3,5	3,5	3,5
Х _{гр} (2 вариант)	3,15	3,17	3,17	3,17

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

Таблица 36 - Макроскопические сечения

N %		$\Sigma_a, \mathcal{CM}^{-1}$		Σ_{tr}, c	$\Sigma_{tr}, \mathcal{CM}^{-1}$		$\Sigma_{f}^{}, \mathcal{CM}^{-1}$	
11,70		1 вар.	2 вар.	1 вар.	2 вар.	1 вар.	2 вар.	
	RE	0,383	0,453	1,387	1,458	0,067	0,064	
0	БЛ	1,303	1,549	1,679	1,925	0,067	0,064	
	3M	0,012	0,012	1,270	1,270	0	0	
	RE	0,273	0,324	1,039	1,090	0,047	0,045	
40	БЛ	0,936	1,113	1,310	1,487	0,047	0,045	
	3M	0,007	0,006	0,931	0,930	0	0	
	RE	0,273	0,324	1,037	1,088	0,047	0,045	
75	БЛ	0,934	1,112	1,308	1,486	0,047	0,045	
	3M	0,007	0,006	0,928	0,927	0	0	
	RE	0,273	0,323	1,035	1,085	0,047	0,045	
100	БЛ	0,933	1,111	1,307	1,484	0,047	0,045	
	3M	0,006	0,006	0,925	0,925	0	0	

Таблица 37 - Коэффициент использования тепловых нейтронов

N, %	0	40	75	100
θ (1 вариант)	0,978	0,984	0,984	0,984
θ (2 вариант)	0,981	0,987	0,987	0,987

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

Табли	Таблица 38 - Характеристики стационарного отравления ксеноном							
1 вариант	N, %	0	40	75	100			
	N _{0Xe} ·10 ⁻¹⁵ , ядер/см ³	0	1,475	1,827	1,963			
	σ_{Xe} , барн	1,922·10 ⁶	1,110 [.] 10 ⁶	1,106·10 ⁶	1,103.106			
	$ ho_{_{0Xe}},$ %	0	-2,512	-3,107	-3,332			
вариант	N _{0.Xe} · 10 ⁻¹⁵ , ядер/см ³	0	1,552	1,948	2,103			
	σ_{Xe} , барн	1,776·10 ⁶	9,708·10 ⁵	9,669·10 ⁵	9,634·10 ⁵			
7	$ ho_{_{0Xe}},\%$	0	-2,422	-3,032	-3,268			

Графическая зависимость стационарного отравления ксеноном от мощности реактора представлена в приложении Б.

Изм.	Лист	№ документа	Подпись	Дата	

ФЮРА.693100.001.ПЗ

6 Анализ результата расчетов стационарного отравления реактора на различных уровнях мощности

Из полученной зависимости стационарного отравления реактора ксеноном от мощности, представленной в приложении А, видно, что результаты расчета отличаются от данных, взятых из Альбома нейтроннофизических характеристик шестой топливной загрузки блока №2 Ростовской АЭС. Стоит отметить, что расчет проводился по данным первой топливной загрузки блока №3 Ростовской АЭС, что могло сказаться на разнице полученных результатов, так как компоновка активных зон обеих загрузок отличается количеством твэлов и твэгов, а также средним обогащением топлива по урану и содержанием оксида гадолиния в твэгах.

Вернемся к допущениям, принятым в начале расчетов. Синхронное изменение плотности тепловых нейтронов во всех точках активной зоны невозможно: наиболее динамичные изменения плотности тепловых нейтронов всегда будут происходить в областях непосредственного возмущения активной зоны, и чем дальше располагается та или иная область объёма активной зоны от области непосредственного источника возмущений, тем более асинхронно будут протекать в ней переходные процессы изменения плотности тепловых нейтронов. Приняв основное допущение - модель реактора в точечно-параметрическом приближении - упростили задачу. Это позволило провести расчет нейтронно-физических характеристик для среднего обогащения топлива и среднего содержания оксида гадолиния в твэле по всей активной зоне. Вместе с этим задача была упрощена заменой элементарной ячейки на эквивалентную. Такие допущения в значительной мере могли повлиять на результат расчетов.

Следующее принятое допущение - в процессе работы реактора происходит распухание топливного стержня только по высоте. Пренебрежение увеличением таблетки по радиусу также могло сказаться на

Изм.	Лист	№ документа	Подпись	Дата

ФЮРА.693100.001.ПЗ

неточности полученных результатов, так как при учете изменения размеров топлива по радиусу произойдет изменение концентрации топлива в объеме элементарной ячейки, а, следовательно, и других нейтронно-физических характеристик активной зоны.

Еще одна характеристика, которая могла оказать влияние на результат расчетов: сечение поглощения гадолиния. В литературе не указан характер зависимости сечения поглощения Gd от температуры, поэтому было принято еще одно допущение: подчинение данной характеристики закону 1/v. В 5 разделе приведены расчеты при значениях сечения поглощения Gd из разных источников: $\sigma_a^{Gd} = 49000$ барн[7] и $\sigma_a^{Gd} = 37340$ барн[13]. Опираясь на полученные значения нейтронно-физических характеристик можно сказать, что наибольшее влияние на их величину оказывает гадолиний, даже при небольшой его концентрации в объеме активной зоны. Исходя из этого можно предположить, что усреднение сечения поглощения гадолиния по спектру Максвелла, возможно, требует более строгой постановки задачи термализации нейтронов.

Использование в качестве выгорающего поглотителя ${}_{10}{}^{5}$ B, у которого стандартное сечение поглощения $\sigma_a^{{}^{10}B} = 3837$ барн [7] при концентрации 7,7 $\cdot 10^{20}$ ядер/см³ [19], и Gd со стандартным сечением поглощения $\sigma_a^{Gd} = 37340$ барн [13] и содержанием 4,2 $\cdot 10^{19}$ ядер/см³ определяют границу возможных значений равновесной концентрации ксенона в зависимости от мощности реактора.

Изм.	Лист	№ документа	Подпись	Дата

Список используемых источников

1 Галанин А.Д. Введение в теорию ядерных реакторов на тепловых нейтронах. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1990. – 536 с.

2 Владимиров В.И. Физика ядерных реакторов: Практические задачи по их эксплуатации. Изд. 5-е, перераб. и доп. – М.: Книжный дом «ЛИБРОКОМ», 2009. – 480 с.

3 Кузьмин А. В. Подготовка параметров к нейтронно-физическому расчету реактора на тепловых нейтронах. Издательство ТПУ 2009. – 60 с.

4 Теплофизические свойства материалов ядерной техники : учебносправочное пособие / под ред. П. Л. Кириллова. — 2-е изд., испр. и доп. — М. : ИздАт, 2007. — 200 с. : ил. — Библиография в конце разделов.

5 Теплофизические свойства твердого диоксида урана в рабочем диапазоне температур современных ВВЭР / Е.Ю.Синяткин, А.В.Кузьмин.

6 Бойко В.И., Кошелев Ф.П., Шаманин И.В., Колпаков Г.Н., Селиваникова О.В.Физический расчёт ядерного реактора на тепловых нейтронах: учебное пособие. – Томск: Изд-во Томского политехнического университета, 2009. – 504 с.

7 Бартоломей Г.Г., Бать Г.А., Байбаков В.Д. Основы теории и методы расчёта ядерных энергетических реакторов: Учебное пособие для вузов. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат. 1989. – 512 с.:ил.

8 Дементьев Б.А. Кинетика и регулирование ядерных реакторов: Учеб. Пособие для вузов. – 2-е изд., перераб. и доп. – М.:Энергоатомиздат, 1986. -272 с.: ил.

9 Альбом нейтронно-физических характеристик первой топливной загрузки ВВЭР-1000 Энергоблок №3 АНФХ.3.ҮС.ОЯБиН/3.01

10 Теплофизические свойства материалов ядерной техники : учебносправочное пособие / под ред. П. Л. Кириллова. — 2-е изд., испр. и доп. — М. : ИздАт, 2007. — 200 с. : ил. — Библиография в конце разделов.

					ФЮРА.693100.001.ПЗ	Лисп
						69
Изм.	Лист	№ документа	Подпись	Дата		08

11 Аппроксимации к определению зависимости равновесного отравления ксеноном от мощности реактора / А.Г.Белоусов, А.В.Кузьмин

12 Беляев С.А., Кузьмин А.В. Методика теплового и нейтроннофизического расчётов реактора на тепловых нейтронах. Учебное пособие. Томск, изд. ТПИ им. С.М. Кирова, 1981. – 81 с.

13 Абагян Л.П., Базазянц Н.О. Групповые константы для расчета ядерных реакторов. Учебное пособие. Атомиздат. 1964. - 137с.

14 Экономика ядерной энергетики/ В. В. Батов, Ю. И. Корякин. - М.: Атомиздат, 1969. - 400 с.: ил.

15 Синев Н. М. Экономика ядерной энергетики: Основы технологии и экономики производства ядерного топлива. Экономика АЭС: Учеб. пособие для вузов. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1987. - 480 с.: ил.

16 Пособие для стажеров по ядерной физике реакторов ВВЭР-1000, Энергодар 1997г.

17 Рабочий технологический регламент безопасной эксплуатации энергоблока №3 Ростовской АЭС. РГ.3.01. 2013г.

18 Коренной А.А./ Совершенстование методов управления распределнием энерговыделения в аз реактора ВВЭР-1000.

19 Кузьмин И.С. Дипломная работа. Вывод зависимости стационарного отраления ксеноном-135 от мощности реактора, 95 с.

Изм.	Лист	№ документа	Подпись	Дата

						Πιι
					ФЮРА.693100.001.ПЗ	7
Изм.	Лист	№ документа	Подпись	Дата		

