Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль _18.06.01 Химическая технология /2.6.14 Технология силикатных и тугоплавких неметаллических материалов
Школа _Инженерная школа новых производственных технологий (ИШНПТ) _
Отделение Научно-образовательный центр им. Н.М. Кижнера

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада

Разработка одностадийной технологии пористого стеклокомпозита на основе высокодисперсного кремнеземистого сырья щелочным активированием

УДК 621.763:666.189.24:546.28-31

Аспирант

Группа	ФИО	Подпись	Дата
A9-53	Скирдин Кирилл Вячеславович	1	22.05.28

Руковолитель профиля полготовки

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор НОЦ Н.М.	Петровская Татьяна	д.т.н.,	10	07.06.2022
Кижнера ИШНПТ	Семеновна	профессор	Meleglo/	07.06.2022

Руководитель отделения

Должность	ФИО	Ученая степень,	Подпись	Дата
Заведующий кафедрой – руководитель НОЦ Н.М. Кижнера на правах кафедры	Краснокутская Елена Александровна	д.х.н., профессор	Super	07.06.2023

Научный руководитель

паучный руководитель				
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор НОЦ Н.М. Кижнера ИШНПТ	Казьмина Ольга Викторовна	д.т.н., профессор	Hope	22.05.23

В научно-квалифицированной работе разработана технология пористого стеклокомпозита на основе кристаллического кремнеземистого сырья (маршалита) с добавкой аморфного микрокремнезема по одностадийной щелочной технологии. Показана перспективность расширения сырьевой базы за счет использования природного и техногенного кремнеземистого сырья.

Первая глава посвящена сравнению существующих технологий синтеза пористых стеклокомпозитов (двух стадийной и одностадийной щелочной технологии). Обобщены и систематизированы описанные в литературе технологии и составы простых стеклокомпозитов по одностадийной щелочной технологии. Систематизированы современные представления о процессах гидратации и дегидратации в кремнеземистых системах при нагревании.

Во второй главе получены данные о свойствах основных сырьевых материалов (маршалит, микрокремнезем) и добавок, описаны основные методы анализа, использованные в работе.

Третья глава посвящена изучению процессов гидратации и дегидратации в системе SiO₂-Na₂O-H₂O при нагревании. Кремнезем в системе представлен кристаллическим маршалитом и аморфным микрокремнеземом. Изучено действие факторов: силикатного модуля, степени замены маршалита на микрокремнезем и концентрации раствора едкого натрия на процессы гидратации и дегидратации композиции при нагревании. Оптимизирована технология синтеза пористого стеклокомпозита с учетом физико-химических процессов, происходящих в композиции. Разработана структурная схема превращений в кремнеземистой композиции при щелочном активировании в высококремнеземистой области составов в условиях недостатка воды.

В четвертой главе изучено влияние добавки оксида кальция на физикомеханические свойства стеклокомпозита, а также показатели водостойкости материала. Показано увеличение гидролитической стойкости материала за счет образования менее растворимой стеклофазы и волластонитовой фазы включающей ортосиликат кальция (2CaO·SiO₂), β -волластонит (β - CaO·SiO₂) и псевдо волластонитом (α -CaO·SiO₂). Увеличение водостойкости (коэффициента размягчения) связано с упрочняющим эффектом образующихся на стадии щелочной активации композиции гидросиликатов кальция и их переходом при нагревании до 850°C в стеклофазу материала.

СПИСОК ЛИТЕРАТУРЫ

- 1. Спиридонов Ю.А., Орлова Л. А. Проблемы получения пеностекла // Стекло и керамика. 2003. № 10. С.10–11.
- 2. Сосунов Е.Г. Пеностекло. На пути из прошлого в будущее // Архитектура и строительство. 2004. № 5. С. 110–111.
- 3. Демидович Б.К. Производство и применение пеностекла. Минск: Наука и техника, 1972. 301 с. 4. Демидович Б. К.
- 4. Маневич В.Е., Субботин К.Ю. Пеностекло и проблемы энергосбережения // Стекло и керамика. 2008. № 4. С. 3–6. 11.
- 5. Кетов А.А. Перспективы пеностекла в жилищном строительстве // Строительные материалы. 2016. № 3. С. 79-81.
- 6. Казанцева Л.К., Стороженко Г.И. Особые свойства пеностекла из природного сырья // Строительные материалы. 2014. № 11. С. 34–36.
- 7. Коган В.Е. Использование пеностекла и полимерных материалов в качестве эффективных нефтесорбентов / В. Е. Коган [и др.] // Стекло и керамика. 2013. № 12. С. 3–7.
- 8. Апкарьян А.С., Губайдулина Т.А., Каминская О.В. Фильтрующий материал для очистки питьевой воды от железа и марганца на основе пеностеклокерамики // Стекло и керамика. 2014. № 11. С. 41–46.
- 9. Казьмина О.В., Душкина М.А., Чубик М.В. Биостойкость пеностеклокристаллических материалов в условиях воздействия мицелиальных грибов // Стекло и керамика. 2013. № 9. С. 24–28.
- 10. Щербак, А. С. Исследование свойств современных теплоизоляционных материалов / А. С. Щербак // Наука та прогрес транспорту. 2013. № 2(44).
 С. 136-143.
- 11. Сопегин, Г. В. Анализ существующих технологических решений производства пеностекла / Г. В. Сопегин, Д. Ч. Рустамова, С. М. Федосеев // Вестник МГСУ. 2019. Т. 14. № 12. С. 1584-1609. DOI 10.22227/1997-0935.2019.12.1584-1609.

- 12. Шелковникова, Т. И. Стратегический анализ и оценка рыночных перспектив материалов и изделий из пеностекла / Т. И. Шелковникова, Е. В. Баранов, Е. А. Пряженцева // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2018. № 6. С. 15-20. DOI 10.12737/article_5b115a5f648ca5.27747964
- 13. Степанова, М. Н. Анализ современных теплоизоляционных материалов на основе пеностекла / М. Н. Степанова, О. В. Пучка // Наукоемкие технологии и инновации : сборник докладов международной научно-практической конференции, Белгород, 06–07 октября 2016 года. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, 2016. С. 385-389.
- 14. ГОСТ 33949 Изделия из пеностекла теплоизоляционные для зданий и сооружений.
- 15. Пехташева Е.Л., Неверов А.Н., Заиков Г.Е., Софьина С.Ю., Темникова Н.Е. Методы оценки биостокйости материалов // Вестник казанского технологического университета. 2012. Т. 15. № 8. С. 163-166.
- 16. Казьмина, О. В. Биостойкость пеностеклокристаллических материалов в условиях воздействия мицелиальных грибов / О. В. Казьмина, М. А. Душкина, М. В. Чубик // Стекло и керамика. 2013. N 9. C. 24-28.
- 17. ГОСТ10134.1-2017 Стекло и изделия из него. Методы определения химической стойкости. Определение водостойкости при 98 °C.
- 18. Современное состояние производства и применения пеностекла для тепловой изоляции / Н. С. Шелихов, Р. З. Рахимов, Д. А. Зарезнов, Р. Р. Сагдиев // Известия Казанского государственного архитектурно-строительного университета. 2018. N = 4(46). C. 319-325.
- 19. Карпенко, М. А. Эффективный тепло- и звукоизоляционный материал на основе гранулированного пеностекла и минерального связующего / М. А. Карпенко, И. Н. Тихомирова // Успехи в химии и химической технологии. 2017. Т. 31. № 3(184). С. 43-45.

- 20. Пат. RU 2682635С1 Российская Федерация. Способ получения жидкого стекла / Бархатов В.И., Головачев И.В., Добровольский И.П., Капкаев Ю.Ш. Заявлено 18.01.2018. Опубликовано 19.03.2019. Бюл. № 8. 6 с.
- 21. Пат. RU 2171221С1 Российская Федерация. Способ получения высокомодульного жидкого стекла / Радина Т.Н., Калинина М.А. Заявлено 20.03.2000. Опубликовано 27.07.2001. Бюл. № 21. 5 с.
- 22. Пат. RU 2171222C1 Российская Федерация. Способ получения жидкого стекла специального назначения / Шарова В.В., Подвольская Е.Н. Заявлено 11.05.2000. Опубликовано 27.07.2001 Бюл. № 21. 7 с.
- 23. Пат. RU 2374177С1 Российская Федерация. Способ получения жидкого стекла / Русина В. В., Метляева А. В., Меркель Е. Н. Заявлено 25.06.2008. Опубликовано 27.11.2009 Бюл. № 33. 5 с.
- 24. Пат. RU 2189941С1 Российская Федерация. Способ получения жидкого стекла / Сырых В.А., Залдат Г.И. Заявлено 10.03.2000. Опубликовано 27.09.2002 Бюл. № 27. 7 с.
- 25. Пат. RU 2177921С2 Российская Федерация. Способ получения гранулированного теплоизоляционного материала / Радина Т.Н., Бормотина Е.А. Заявлено 10.04.2000. Опубликовано 10.01.2002 Бюл. № 1. 5 с.
- 26. Пат. RU 2177462C2 Российская Федерация. Способ получения гранулированного теплоизоляционного материала / Радина Т.Н., Карнаухов Ю.П., Калинина М.А. Заявлено 20.03.2000. Опубликовано 27.12.2001 Бюл. № 36. 5 с.
- 27. Пат. RU 2264363C1 Российская Федерация. Сырьевая смесь и способ получения гранулированного теплоизоляционного материала / Кудяков А.И., Радина Т.Н., Иванов М.Ю. Заявлено 30.03.2004. Опубликовано 20.11.2005 Бюл. № 32. 5 с.
- 28. Пат. RU 2220927С1 Российская Федерация. Сырьевая смесь и способ получения гранулированного теплоизоляционного материала / Радина Т.Н., Иванов М.Ю. Заявлено 19.04.2002. Опубликовано 10.01.2004 Бюл. № 1. 6 с.

- 29. Пат. RU 2246462C1 Российская Федерация. Сырьевая смесь и способ получения гранулированного теплоизоляционного материала / Радина Т.Н., Кудяков А.И., Иванов М.Ю. Заявлено 06.08.2003. Опубликовано 20.02.2005 Бюл. № 5. 5 с.
- 30. Пат. RU 2151121 С1 Российская Федерация. Сырьевая смесь и способ получения гранулированного теплоизоляционного материала / Радина Т.Н., Стефанишин А.В. Заявлено 11.06.1998. Опубликовано 20.06.2000 Бюл. № 24. 7 с.
- 31. Пат. RU 2283292С1 Российская Федерация. Способ приготовления микрогранул комплексной добавки в цементные композиты / Белых С. А., Фадеева А. М., Мясникова А. Ю., Попова В. Г. Заявлено 12.04.2005. Опубликовано 10.09.2006 Бюл. № 25. 6 с.
- 32. Пат. RU 2214977С2 Российская Федерация. Сырьевая смесь и способ производства легкого заполнителя / Патраманская С.В., Лохова Н.А. Заявлено 18.07.2001. Опубликовано 27.10.2003 Бюл. № 30. 5 с.
- 33. Кудяков, А. И. Исследование процессов получения зернистого теплоизоляционного материала на основе высокомодульной жидкостекольной композиции из микрокремнезема / А. И. Кудяков, Н. А. Свергунова // Вестник Томского государственного архитектурно-строительного университета. − 2008. № 1(18). С. 130-137.
- 34. Пат. RU 2220927С1 Российская Федерация. Сырьевая смесь и способ получения гранулированного теплоизоляционного материала / Радина Т.Н., Иванов М.Ю. Заявлено 19.04.2002. Опубликовано 10.01.2004 Бюл. № 1. 6 с.
- 35. Пат. RU 2246462C1 Российская Федерация. Сырьевая смесь и способ получения гранулированного теплоизоляционного материала / Радина Т.Н., Кудяков А.И., Иванов М.Ю. Заявлено 06.08.2003. Опубликовано 20.02.2005 Бюл. № 5. 5 с.
- 36. Технология получения легкого зернистого материала на основе микрокремнезема / А. И. Кудяков, Т. Н. Радина, Н. А. Свергузова, Н. А. Свергунова // Строительные материалы. 2002. № 10. С. 34.

- 37. Пат. RU 2703032C1 Российская Федерация. Способ получения пеносиликатного материала / Манакова Н. К., Суворова О. В. Заявлено 05.02.2019. Опубликовано 15.10.2019 Бюл. № 29. 7 с.
- 38. Пат. RU 2209803С1 Российская Федерация. Способ получения ячеистых строительных материалов / Карнаухов Ю.П., Кудяков А.И., Белых С.А., Лебедева Т.А., Зиновьев А.А. Заявлено 06.02.2002. Опубликовано 10.08.2003 Бюл. № 22. -5 с.
- 39. Пат. RU 2128633C1 Российская Федерация. Сырьевая смесь и способ получения теплоизоляционного материала / Радина Т.Н., Карнаухов Ю.П., Невмержицкий И.П., Евсин А.В., Сазонов Д.С. Заявлено 29.07.1996. Опубликовано 10.04.1999. 5 с.
- 40. Пат. RU 2317961С1 Российская Федерация. Сырьевая смесь для изготовления теплоизоляционно-конструкционного материала / Лебедева Т.А., Белых С. А., Малунова В. М., Малунова Г. М. Трофимова О. В. Заявлено 11.07.2006. Опубликовано 27.02.2008 Бюл. № 6. 4 с.
- 41. Пат. RU 2214977С2 Российская Федерация. Сырьевая смесь и способ производства легкого заполнителя / Патраманская С.В., Лохова Н.А. Заявлено 18.07.2001. Опубликовано 27.10.2003 Бюл. № 30. 5 с.
- 42. Пат. RU 2278087С1 Российская Федерация. Сырьевая смесь для изготовления жаростойкого ячеистого материала / Белых С. А., Лебедева Т. А., Зайцева Ю. В., Красичкова К. В. Заявлено 25.01.2005. Опубликовано 20.06.2006 Бюл. № 17. 4 с.
- 43. Пат. RU 2442760C1 Российская Федерация. Сырьевая смесь и способ получения пеносиликатного теплоизоляционного материала / Левашов А. С., Буков Н. Н., Горохов Р. В., Ревенко В. В. Заявлено 19.07.2010. Опубликовано 20.02.2012 Бюл. № 5. 11 с.
- 44. Пат. RU 2332386C2 Российская Федерация. Шихта для изготовления огнеупоров / Ляхов Н. З., Коротаева З. А., Булгаков В. В., Иванов Ф. Ф., Комиссаров В. Н., Бебко А. Н., Готфрид В. Э. Заявлено 06.03.2006. Опубликовано 27.08.2008 Бюл. № 24. 7 с.

- 45. Пат. RU 2209803С1 Российская Федерация. Способ получения ячеистых строительных материалов / Карнаухов Ю.П., Кудяков А.И., Белых С.А., Лебедева Т.А., Зиновьев А.А. Заявлено 06.02.2002. Опубликовано 10.08.2003 Бюл. № 22. -5 с.
- 46. Пат. RU 2128633С1 Российская Федерация. Сырьевая смесь и способ получения теплоизоляционного материала / Радина Т.Н., Карнаухов Ю.П., Невмержицкий И.П., Евсин А.В., Сазонов Д.С. Заявлено 29.07.1996. Опубликовано 10.04.1999. 5 с.
- 47. Сопегин, Г. В. Анализ существующих технологических решений производства пеностекла / Г. В. Сопегин, Д. Ч. Рустамова, С. М. Федосеев // Вестник МГСУ. 2019. Т. 14. № 12. С. 1584-1609. DOI 10.22227/1997-0935.2019.12.1584-1609.
- 48. Спиридонов Ю. А., Орлова Л. А. Проблемы получения пеностекла // Стекло и керамика. 2003. № 10. С.10–11.
- 49. Мелконян Г. С. Гидротермальный способ приготовления комплексного стекольного сырья «Каназит» на основе горных пород и продуктов их переработки. Ереван, 1977. 238 с.
- 50. Мелконян Р Г. Аморфные горные породы и стекловарение. М., 2002. 258 с.
- 51. Патент СССР № 1071587. Композиция для получения пеностекла / Г. С. Мелконян, Л. О. Шатирян, Р. Г. Мелконян. Опубл. 07.02.1984, Бюл. № 5. 19
- 52. Патент СССР № 1158550. Состав для пеноматериалов /Л. О. Шатирян, Г. С. Мелконян, Р. Г. Мелконян. Опубл. 1985, Бюл. № 20.
- 53. Кетов А. А., Толмачев А. В. Пеностекло технологические реалии и рынок // Строительные материалы. 2015. № 1. С. 17–31.
- 54. Кетов А. А., Пузанов И. С., Саулин Д. В. Опыт производства пеностеклянных материалов из стеклобоя // Строительные материалы. 2007. № 3. С. 70–72.
- 55. Кетов А. А., Пузанов И. С., Саулин Д. В. Тенденции развития технологии пеностекла // Строительные материалы. 2007. № 9. С. 28–31

- 56. Фиговский, О. Л. Жидкое стекло и водные растворы силикатов, как перспективная основа технологических процессов получения новых нанокомпозиционных материалов / О. Л. Фиговский, П. Г. Кудрявцев // Инженерный вестник Дона. 2014. № 2(29). С. 117.
- 57. Лотов, В.А. Основы управления процессами структурообразования во влажных дисперсных системах : ФЦНТП (2002-2006), 2006-РИ-16.0/019/007 / В. А. Лотов, В. В. Гурин, А. М. Попов. Кемерово; Москва: Российские ун-ты Кузбассвузиздат, 2006. 295 с.: ил.. Литература: с. 277-291.
- 58. Гулоян Ю.А., Технология стекла и стеклоизделий: Учеб. для средних специальных учебных заведений. Владимир: Транзит-Икс, 2003. 480 с
- 59. Павлушкин Н.М., Химическая технология стекла и ситаллов: Учеб. для вузов. М.:Стройиздат, 1983, 432 с.
- 60. Бутт Л.М., Полляк В.В. Технология стекла. М.: Государственное издательство литературы по строительству, архитектуре и строительным материалам, 1960, 419 с.
- 61. Китайгородский И.И, Качалов Н.Н., Варгин В.В. Технология стекла / Под. ред. Китайгородского И.И. М.: Государственное издательство литературы по строительству, архитектуре и строительным материалам, 1961, 623 с.
- 62. Государственный научно-иследовательский институт стекла, Справочник по производству стекла: В 2 т. Т. 2 / Под ред. Китайгородского И.И. и Сильвестровича С.И. М.: Государственное издательство литературы по строительству, архитектуре и строительным материалам, 1963, 816 с
- 63. Гулоян Ю.А., Физико-химические основы технологии стекла: Учеб. для средних специальных учебных заведений. Владимир: Транзит-Икс, 2008. 736 с
- 64. Панкова Н.А., Михайленко Н.Ю. Теория и практика промышленного стекловарения: Учеб. пособие. М.: РХТУ им. Д.И. Менделеева, 2000. 102 с.
- 65. Казьмина О.В. Химическая технология стекла и ситаллов: учебное пособие / О.В. Казьмина, Э.Н. Беломестнова, А.А. Дитц; Томский

- политехнический университет. Томск: Изд-во Томского политехнического университе-та, 2011-170 с.
- 66. Самойленко В. В., Углова Т. К., Татаринцева О. С. Влияние дисперсности стекольной шихты на структуру и свойства пеностекла // Стекло и керамика. 2014. № 6. С. 3–6.
- 67. Самойленко В. В., Татаринцева О. С. Роль рецептурно-технологических факторов в формировании пеностекла // Стекло и керамика. 2013. № 6. С. 3–5.
- 68. Терещенко И. М., Жих Б. П., Кравчук А. П. Получение эффективных теплоизоляционных материалов на основе кремнегеля // Строительные материалы. 2016. № 7. С. 45–48.
- 69. Вайсман Я. И., Кетов Ю. А. Массоперенос раствора силиката при сушке сырцовых гранул в технологии гранулированного пеностекла // Строительные материалы. 2015. № 1. С. 27–29.
- 70. Пат. РФ № 2272006. Пеностеклокристаллический материал и способ его получения / А. А. Кетов , И. С. Пузанов, М. П. Пьянков, Д. В. Саулин. Опубл. 20.03.06, Бюл. № 8.
- 71. Дамдинова Д. Р., Анчилоев Н. Н., Павлов В. Е. Пеностекла системы стеклобой глина гидроксид натрия: составы, структура и свойства // Строительные материалы. 2014. № 8. С. 38–40.
- 72. Свойства пеностекольного материала, модифицированного наноразмерным диоксидом циркония/ О. В. Казьмина [и др.] // Стекло и керамика. 2016. № 2. С. 3–6.
- 73. Preparation and characterisation of diopside-based glass-ceramic foams / S. Hasheminia [et al.] // Ceramics International. 2012. Vol. 38, No. 3. P. 2005–2010.
- 74. Казанцева Л. К., Пузанов И. С. Раскристаллизация аморфной фазы в пеностекле как способ уменьшения щелочно-кремниевой реакции // Стекло и керамика. 2016. № 3. С. 3–8.
- 75. Бобкова Н.М. Физическая химия тугоплавких неметаллических и силикатных материалов: учебник / Н.М. Бобкова. Минск: Выш.шк., 2007 301 с.

- 76. Смирнова, Н. Н. Инфракрасная спектроскопия в химии высокомолекулярных соединений : учеб. пособие / Н. Н. Смирнова, В. Ю. Чухланов ; Владим. гос. ун-т им. А. Г. и Н. Г. Столето-вых. Владимир : Издво ВлГУ, 2021. 84 с.
- 77. Анализ рынка микрокремнезема в Российской Федерации 2018-2019 гг /
- В. В. Потапов, Е. П. Иванова, Д. С. Горев, А. Д. Пахомов // Горный информационно-аналитический бюллетень (научно-технический журнал). 2020. № S46. С. 410-415. DOI 10.25018/0236-1493-2020-12-46-410-415.
- 78. ГОСТ 22551-2019 Песок кварцевый, молотые песчаник, кварцит и жильный кварц для стекольной промышленности. Технические условия.
- 79. ГОСТ 19440-94 Порошки металлические. Определение насыпной плотности. Часть 1. Метод с использованием воронки. Часть 2. Метод Волюмометра Скотта.
- 80. ГОСТ 21043-87 Руды железные и концентраты. Метод определения внешней удельной поверхности.
- 81. Минько, Н. И. Гидроксид натрия в стекольной технологии / Н. И. Минько, Р. В. Лавров // Стекло мира. -2011.-№ 3.- C. 53-57.- EDN QZDNLL.
- 82. Химическая технология стекла и ситаллов: Учебник для вузов/М.В. Артамонова, М.С. Асланова, И.М. Бужинский и др.; Под ред. Н.М. Павлушкина. М.: Стройиздат, 1983. 432 с.
- 83. Патент РФ RU 2 655 499 C1 Российская Федерация. Состав шихты для получения вспененного теплоизоляционного // Кутугин В.А., Лотов В.А., Курсилев К.В. Заявлено 22.06.2017. Опубликовано 28.05.2018.
- 84. ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия.
- 85. ГОСТ 22688-2018 Известь строительная. Методы испытаний.
- 86. Казьмина О.В., Верещагин В. И., Абияка А.Н. Перспективы использования тонкодисперсных кварцевых песков в производстве пеностеклокристаллических материалов // Стекло и керамика. 2008 № 9. С. 28 30.

- 87. Казьмина О.В., Верещагин В. И., Абияка А.Н., Поплетнева Ю.В. Оценка вязкости стекла и стеклокристаллической композиции в температурном интервале их вспенивания // Стекло и керамика. 2009. № 7. С. 6 9.
- 88. Горяйнов К.Э., Горяйнова С.К. Технология теплоизоляционных материалов и изделий: Учебник для вузов. М.: Стройиздат, 1982. 376 с.
- 89. Казьмина О.В., Верещагин В. И., Семухин Б.С. Структура и прочность пеностеклокристаллических материалов из низкотемпературного стеклогранулята // Физика и химия стекла, 2011, Т.37, № 4, с. 29-36.
- 90. Каменский С.П. Перлиты. М.: Изд. по строительству, архитектуре и строительным материалам, 1963. 277 с.
- 91. Харченко Е.А., Свидерский В.А., Глуховской И.В. Синтез и свойства низкоосновных гидросиликатов кальция нестабильной кристаллической структуры // World Science/ 2015, № 3, Vol. 1, pp. 50– 54.
- 92. Koopman M., Chawla K.K., Carlisle K.B., Gladysz G.M. Microstructural failure modes in three-phase glass syntactic foams // Journal of Materials Science, 41 (2006), p. 4009–4014.
- 93. Pokorny A., Vicenzi J., Pérez C. Bergmann Influence of heating rate on the microstructure of glass foams Waste Management and Research, 29 (2011), pp. 172–179.
- 94. Борсук П.А., Лясс А.М. Жидкие самоотверждающиеся смеси. М.: Машиностроение, 1979. 255 с.
- 95. Корнеев В.И., Данилов В.В. Растворимое и жидкое стекло. СПб: стройиздат, 1996.-216 с.
- 96. Григорьев П.Н., Матвеев М.А. Растворимое стекло (получение, свойства и применение). М. 1956. 223 с.
- 97. Мелконян Р.Г., Суворова О.В., Макаров Д.В., Манакова Н.К. Производство стеклообразных пеноматериалов: проблемы и решения // Вестник Кольского научного центра РАН. 2018. Т. 10. № 1. С. 133-156.
- 98. Патент № 2439005 С2 Российская Федерация, МПК С03С 11/00. Гранулированная шихта для изготовления пеностекла и способ ее получения:

- № 2009139009/03 : заявл. 22.10.2009 : опубл. 10.01.2012 / В. В. Егоров, С. Б. Родин, С. С. Родин.
- 99. Гольцман, Б. М. Анализ вспенивающей активности различных видов порообразователей при синтезе пеностекла / Б. М. Гольцман // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331, № 12. С. 173-179.
- 100. Использование кремнеземсодержащего сырья для изготовления гранулированных теплоизоляционных материалов по технологии низкотемпературного вспенивания / А. Л. Виницкий, Г. К. Рябов, Н. А. Сеник [и др.] // Современное промышленное и гражданское строительство. − 2012. − Т. 8, № 3. − С. 137-148.
- 101. Жугинисов, М. Т. Аналитический обзор исследований по технологии пеностекла / М. Т. Жугинисов, А. Омарбек // Молодой ученый. -2022. -№ 48(443). С. 51-56.
- 102. Гольцман, Б. М. Анализ вспенивающей активности различных видов порообразователей при синтезе пеностекла / Б. М. Гольцман // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331, № 12. С. 173-179.
- 103. Бухаленко, И. С. Пенообразователи, применяемые для создания оптимальной структуры эффективных теплоизоляционных материалов / И. С. Бухаленко // Традиции, современные проблемы и перспективы развития строительства: Сборник научных статей, Гродно, 13–14 мая 2021 года. Гродно: Гродненский государственный университет имени Янки Купалы, 2021. С. 194-196.
- 104. Патент № 2594416 С1 Российская Федерация, МПК С03С 11/00, С03В 19/08. способ получения блочного пеностекла : № 2015123451/03 : заявл. 15.06.2015 : опубл. 20.08.2016 / К. А. Аблязов, А. Б. Жималов, А. А. Жималов [и др.] ; заявитель Открытое акционерное общество "Саратовский институт стекла".