Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль 18.06.01 Химическая технология / 2.6.14 Технология силикатных и тугоплавких неметаллических материалов Инженерная школа новых производственных технологий Научно-образовательный центр Н.М. Кижнера

Научный доклад об основных результатах подготовленной научно-квалификационной работы

 Тема научного доклада
Синтез сиалонсодержащих композиций на основе ферросиликоалюминия с добавками
оксидов методом СВС и технология материалов на их основе

УДК 666.3.016.091.3:546.28:546.72:546.62

Аспирант

Группа	ФИО	Подпись	Дата
A9-53	Регер Антон Андреевич	jey.	18.05.2023

Руководитель профиля подготовки

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор НОЦ Н.М. Кижнера ИШНПТ	Петровская Татьяна Семеновна	Д.т.н., Доцент	Recefica	07.06.23

Руководитель отделения

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Заведующий кафедрой – руководитель НОЦ Н.М. Кижнера на правах кафедры	Краснокутская Елена Александровна	Д.х.н., Профессор	sufis	04.06.23

Научный руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Старший научный сотрудник, заведующий лабораторией новых металлургических процессов ТНЦ СО РАН	Болгару Константин Александрович	к.т.н.	M	18.05.223

В диссертационной работе изложены результаты исследований по разработке составов и технологии синтеза сиалонсодержащих композиций методом CBC азотированием ферросиликоалюминия добавками дисперсных оксидов кремния и алюминия и материалов на их основе. Сиалон обладает уникальными физико-химическими свойствами и имеет широкий (абразивный спектр применения материал, носитель катализатора, фотокатализатор, люминофор, огнеупор, материал для производства стойких к агрессивным средам изделий и многое другое). Наиболее подходящим способом получения сиалоновых материалов является самораспространяющейся высокотемпературный синтез (СВС). В качестве исходных материалов для получения сиалона методом СВС может быть использован дешевый и доступный ферросплав – ферросиликоалюминий с дисперсными кислородсодержащими добавками, которые содержат в своём составе элементы необходимые для формирования сиалоновой фазы. Получение сиалоновых материалов методом СВС с использованием ферросиликоалюминия с дисперсными оксидами является актуальным.

В первой главе диссертационной работы представлен литературный обзор научных и практических разработках по синтезу и применению сиалоновых материалов. Обобщены сведения о структуре, свойствах и применению сиалона и материалов на его основе. Описаны способы получения сиалона. Подробно изложено получение сиалоновых материалов методом самораспространяющегося высокотемпературного синтеза с применением различных исходных материалов, в частности ферросплавов.

Во второй главе диссертационной работы приведены характеристики используемых материалов. Описаны методики синтеза и исследования исходных материалов и продуктов синтеза. Представлена методологическая схема исследования.

В третьей главе диссертационной работы представлено исследование процессов азотирования ферросиликоалюминия в режиме горения при различных условиях газовой среды и характеристик компакта порошка.

Изучен механизм азотирования ферросиликоалюминия марки ФС45А15 в режиме горения в условиях естественной фильтрации азота при помощи азотирования в трубчатой печи в атмосфере азота при заданной температуре и дифференциально сканирующей калориметрии. Проведен анализ фазового состава и содержания азота в продуктах горения на основе ферросиликоалюминия и получены значения максимальных температур горения. Определены критические и оптимальные параметры горения ферросиликоалюминия.

В четвертой главе диссертационной работы представлено исследование влияния азот- и кислородсодержащих добавок на процесс азотирования, химический и фазовый состав продуктов горения. Проведен анализ на содержание азота и кислорода в продуктах синтеза, определен фазовый состав и представлены микроструктуры продуктов горения. Определен состав исходной порошковой смеси, использование которой позволяет получить двухфазный материал — β-SiAlON и α-Fe с содержанием азота приближенным к максимальному теоретически рассчитанному значению.

В пятой главе представлены технология получения сиалоновых материалов методом СВС в полупромышленном реакторе объёмом 20 литров, дисперсных чистых порошков сиалона и сиалоновых материалов с заданной пористостью. Получение чистых сиалоновых порошков производили путем кислотного обогащения двухфазных продуктов СВС на основе сиалона. Получение пористых сиалонсодержащих композитов проводили путем предварительного структурирования образцов, используемых в процессах СВС. Показано применение полученных по разработанной технологии материалов в качестве фотокатализаторов, носителей катализаторов и абразивов.

Список литературы

- 1. Oyama, Y. Solid solubility of some oxide in Si_3N_4 / Y. Oyama, O. Kamigaito // Japanese Journal of Applied Physics. -1971. Vol. 10. N 11. P. 1637.
- 2. Jack, K. H. Ceramics based on Si-Al-O-N / K. H. Jack, W.I. Wilson // Physical Science. 1972. Vol. 238. P. 28-29.
- 3. Jack, K. H. Sialons and related nitrogen ceramics / K.H. Jack // Journal of materials science. 1976. Vol. 11. P. 1135.
- Григорьев, О. Н. Горячепрессованный сиалон-перспективный материал для создания слоистых ударопрочных композитов / О.Н. Григорьев, Т.В. Дубовкин // Огнеупоры и техническая керамика. 2007. № 2. с. 10-14.
- Гриценко, В. А. Электронная структура нитрида кремния / В. А. Гриценко // Успехи физических наук. 2012. Т. 182. № 5. С. 531-541.
- 6. Боровинская, И. П. Самораспространяющийся высокотемпературный синтез сиалоновой керамики / И. П. Боровинская, К.Л. Смирнов // Наука производству. 1998. № 8. с. 39-45.
- 7. Seniz R. Kushan Akin A comparetive study of silicon nitride and SiAlON ceramics against E. coli / Seniz R. Kushan Akin, Caterina Bartomeu Garcia, Thomas J. Webster // Ceramics international. 2021. Vol. 47. P. 1837-1843.
- 8. Oxidation kinetics of bauxite-based β-SiAlON with different particle sizes / Y. Qin, X. Liu, Q. Zhang, et al. // Corrosion Science. 2020. Vol. 166. P. 108446.

- 9. Effects of various sintering additives on the properties of β-SiAlON-SiC ceramics obtained by liquid phase sintering / X. Lao, X. Xu, W. Jiang et al.// Ceramics international. 2021. Vol. 47. P. 13078-13092.
- 10. Effect of SiC addition on the thermal diffusivity of SiAlON ceramics / S.R.K. Akin, S. Turan, P. Gencoglu et al. // Ceram. Int. 2017/ Vol. 43. P. 13469–13474.
- Hard sialon ceramics reinforced with SiC nanoparticles / Q. Liu, L. Gao,
 D.S. Yan, D.P. Thompson // Mat. Sci. Eng. A-Struct. 1999. Vol. 269. P. 1–7.
- 12. Li, Y. Enchanced mechanical properties of mechinable Si₃N₄/BN composites by spark plasma sintering / Y.-L. Li, R.-X. Li, J.-X. Zhang // Materials Science and Engineering: A. 2008. Vol. 483-484.– P. 207-210.
- 13. Thermal shock resistance of rare-earth doped in-situ SiAlON reinforced h-BN matrix ceramics under vacuum thermal cycling / Z. Tian, Y. P. Yang, Y. Wang et al.// ceramics international. 2019. V 45. Issue 16. P. 20121-20127.
- 14. Synthesis of β-SiAlON/h-BN nanocomposite by a precursor infiltration and pyrolysis (PIP) route / Y. Li, H. Yu, Z. Shi et al. // Materials Letters. 2015. Vol. 139. P. 303-306.
- 15. Смирнов, К. Л. Получение гетеромодульных керамических композитов SiAlON-BN методами фильтрационного горения и искрового плазменного спекания / К. Л. Смирнов, Е. Г. Григорьев // Новые материалы и перспективные технологии. 2020. с. 210-213.
- 16. Sarkar, S. Densification, microstructure and tribomechanical properties of SPS processed β-SiAlON bonded WC composites / S. Sarkar, R. Halder, M. Biswas, S. Bandyopadhyay // International journal of refractory metals and hard materials. – 2020. – Vol. 92. - P. – 105318.

- 17. Transparent phosphor ceramic plates for white light emitting diodes applications / B. Joshi, J. S. Hoon, Y. K. Kshetri, et al. // Ceramics international. 2018. Vol. 44. P. 23116-23124.
- 18. Xie, R. J. Silicon-based oxynitride and nitride phosphors for white LEDs-A review / R.-J. Xie, N. Hirosaki // Science and technology of advance materials. 2007. -. Vol. 8. Issues 7-8. P. 588-600.
- 19. Effect of comburent ratios on combustion synthesis of Eu-doped β-SiAlON green phosphors / G.E. Yiyao, Zhaobo Tian, Ying Chen, Siyuan Sun, Jie Zhang, Zhinpeng Xie // Journal of Rare Earths. 2017. V. 35. Issue 5. P. 430-435.
- 20. Nitrogen-rich Ca-Sialon: Eu²⁺ phosphor prepared by freeze drying assisted combustion synthesis / Z. Tian, C. Zuo, Y. Ge et al. // Journal of alloys and compounds. 2019. Vol. 771. P. 1040-1043.
- 21. Self-propagating high temperature synthesis of yellow-emitting $Ba_2Si_5N_8$:Eu2b phosphors for white light-emitting diodes / X. Piao, K.-i. Machida, T. Horikawa et al. //Appl. Phys. Lett. -2007. Vol. -91. P. 041908.
- 22. Preparation of Eu Doped b-sialon phosphors by combustion synthesis / Y. Zhou, Y.-I. Yoshizawa, K. Hirao et al. // J. Am. Ceram. Soc. 2008. Vol. 91. P. 3082-3085.
- 23. Zhou, Y. Combustion synthesis of LaSi₃N₅:Eu2b phosphor powders / Y. Zhou, Y.-I. Yoshizawa, K. Hirao //J. Eur. Ceram. Soc. 2011. Vol. 31. P. 151-157.
- 24. Impact of Si/Al ratio in comburents on the combustion synthesis of Eu^{2+} doped α -SiAlON yellow phosphors / Y. Ge, S. Sun, M. Zhou et al. // Ceramics international. 2016. Vol. 42. P. 19420-19424.

- Nag, A. P. High temperature ceramic radomes (HTCR) A review / A.
 Nag, R. Ramachandra Rao, P. K. Panda // Ceramics International. 2021.
 Vol. 47. P. 20793-20806.
- 26. Sialon-supported catalysts for deep oxidation of carbon monoxide and hydrocarbons / V. N. Borshch, S. Ya. Zhuk, N. A. Vakin et al. // Catalysis in industry. 2009. Vol. 1. № 2. P. 111-116.
- 27. Sialons as a new class of supports for oxidation catalysts / V. N. Borshch,
 S. Ya. Zhuk, N. A. Vakin et al. // Doklady physical chemistry. 2008. –
 Vol. 420. № 2. p. 121-124.
- 28. Волнянко, Е.Н. Влияние смазочной композиции, модифицированной нанодисперсным β-сиалоном, на структуру поверхности трения стали / Е. Н. Волнянко, С. Ф. Ермаков, В. А. Смуругов // Поверхность, рентгеновские, синхронные и нейтронные исследования. 2008. № 9. с. 65-71.
- 29. Superhydrophobic β-Sialon-mullite ceramic membranes with high performance in water treatment / F. Wang, B. Dong, N. Ke et al. // Ceramics international. 2021. Vol. 47. Issue 6. P. 8375-8381.
- 30. Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718 / A. Celik, M. Sert Alagac, S. Turan et al. // Wear. 2017. Vol. 378-379. P. 58-67.
- Bitterlich, B. SiAlON based ceramic cutting tools / B. Bitterlich, S. Bitsch,
 K. Friederich // Journal of the European ceramic society. 2008. Vol. 28.
 P. 989-994.
- 32. Investigation on the performance of SiAlON ceramic drills on aerospace grade / A. Celik, I. Lazoglu, A. Kara et al. // Journal of materials processing technology. 2015. Vol. 223. P. 39-47.

- 33. Зубков, Н. Н. Инструментальные материалы для изготовления лезвийных инструментов / Н. Н. Зубков // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. 2013. № 5. с. 75-100.
- 34. Bal, B. S. Orhopedic applications of silicon nitride ceramics / B. S. Bal, M. N. Rahaman // Actabiomaterialia. 2012. Vol. 8. P. 2889-2898.
- 35. Effect of Y_2O_3 on the physical properties and biocompatibily of β -SiAlON ceramics / M. Li, L. Zhang, C. Zhang et al. // Ceramics International. 2020. Vol. 46. P. 23427-23432.
- 36. SiAlON-Al₂O₃ ceramics as potential biomaterials / H. Xie, L. Zhang, E. Xu et al. // Ceramics international. Vol. 45. P. 16809-16813.
- Деградация диклофенака в водных растворах в условиях совмещенного гомогенного и гетерогенного фотокатализа / Л. Н. Скворцова, К. А. Болгару, М. В. Шерстобаева и др. // Журнал физической химии. 2020. Т. 94. № 6. с. 926-931.
- 38. Фотокаталитическое генерирование водорода при деградации растворимых органических поллютантов с применением металлокерамичечких композитов / Л. Н. Скворцова, Л. Н. Баталова, К. А. Болгару и др. // Журнал прикладной химии. 2019. Т 92. № 1. с. 126-132.
- 39. Железосодержащие металлокерамические композиты для фотокаталитического генерирования водорода из водных растворов органических загрязнителей / Л. Н. Скворцова, Л. Н. Чухломина, К. А. Болгару и др. // Успехи современного естествознания. 2017. № 12. с. 9-15.
- 40. Technical ceramics for the molten non-ferrous industry since 1986. URL: http://www.sialon.com/sialon-ceramics/ (дата обращения 09.03.2023).

- 41. Sialon applications, syalon solutions, history. URL: https://www.syalons.com/resources/articles-and-guides/applications/ (Дата обращения 09.03.2023).
- 42. Spark plasma sintering of SiAlON nanopowder / I. Zalite, N. Zilinska, I. Steins et al. // IOP Conference series: Materials science and engineering. 2011. Vol. 25.
- 43. Yi, X. Fabrication of dense β-SiAlON by a combination of combustion synthesis (CS) and spark plasma sintering (SPS) / X. Yi, Kotaro Watanabe, T. Akiyama // Intermetallics. 2010. Vol. 18. P. 536-541.
- 44. Development and microstructural analysis of ebta-SiAlONs produced by spark plasma sintering / L.J. Letwada, I. Tihabadira, I. A. Daniyan et al. // Materials today: proceedings. 2021. Vol. 38. Part 2. P. 590-594.
- 45. Смирнов, К.Л. Исследование закономерностей искрового плазменного спекания β-сиалоновой керамики / К. Л. Смирнов, Е. Г. Григорьев // Машиностроение: сетевой электронный научный журнал. 2019. Т 7. № 3. С. 36-39.
- 46. Fabrication of single crystalline β'-SiAlON nanowires / D. Ng, T. Cheung, F. L. Kwong et al. // Materials letters. 2008. Vol. 62. P. 1349-1352.
- 47. Синтез оксинитридоалюмосиликатов (SiAlON) золь-гель методом / С.Н. Ивичева, Н. А. Овсянникова, А.С. Лысенков и др. // Журнал неорганической химии. 2020. Т. 65. № 12. С. 1614-1625.
- 48. Yang, Y. Z. Huang Reaction sintered Fe-SiAlON ceramic composite: processing, characterization and high temperature erosion wear behavior / J. Z. Yang, Z. H. Huang // Journal of Asian ceramic societies. − 2013. № 23. − P. 1-7.

- 49. Oxidation kinetics of bauxite-based β-SiAlON with different particle sizes
 / Y. Qin, X. Liu, F. Zhao et al. // Corrosion science. 2020. Vol. 166. –
 P. 108446.
- 50. Guo, Y.Q. Synthesis of bauxite based β-SiAlON by compound reduction nitridation / Y.Q. Guo, H. X. Li //Adv. Mater. Res. 2006. Vol. 591–593. P. 1026–1029.
- 51. Thermal oxidation of SiAlON powders synthesized from coal gangue / X.M. Hou, C.S. Yue, M. Zhang et al. // Int. J. Miner. Metall. and Mater. 2011. Vol. 18. P. 77–82.
- 52. Synthesis of β-SiAlON from coal gangue / X. Y. Luo, J. L. Sun, C. J. Deng et al. // J. Mater. Sci. Technol. 2003. Vol. 19. P. 93–96.
- 53. Effects of processing parameters on the production of β-SiAlON powder from kaolinite / Z. Tatli, A. Demir, R. Yılmaz et al. // J. Eur. Ceram. Soc. 2007. Vol. 27. P. 743–747.
- 54. Effects of synthesis temperature and raw materials composition on preparation of β -SiAlON based composites from fly ash / B.Y. Ma, Y. Li, C. Yan et al. // Trans. Nonferrous Met. Soc. China. 2012. Vol. 22. P. 129–133.
- 55. Elucidation of the formation mechanism of β -SiAlON from a zeolite / F.J. Li, T. Wakihara, J. Tatami et al. // J. Am. Ceram. Soc. 2010. Vol. 90. P. 1541–1544.
- 56. Optimal design and preparation of β-SiAlON multiphase materials from natural clay / L.H. Xu, F. Lian, H. Zhang et al. // Mater. Des. 2006. Vol. 27. P. 595–600.
- 57. Křest'an, J. Carbothermal reduction and nitridation of powder pyrophyllite raw material / J. Křest'an, P. Šajgalík, Z. Pánek // J. Eur. Ceram. Soc. 2004. Vol. 24. P. 791–796.

- 58. Горячепрессованный сиалон перспективный материал для создания слоистых ударопрочных композитов / О. Н. Григорьев, Т. В. Дубовик, В. Б. Винокуров и т.д. // Огнеупоры и техническая керамика. 2007. № 2. с. 10-14.
- 59. Суворов, С. А. Фазовый состав сиалонсодержащего порошка карботермического синтеза / С. А. Суворов, Н. В. Долгушев, А. И. Поникаровский // Огнеупоры и техническая керамика. 2007. № 6. с. 15-22.
- 60. Пат. 2261838 Российская федерация, МПК С01В 17/04, С01В 3/06 Способ разложения сероводорода и/или меркаптанов / Старцев А. Н., Пашигрева А. В., Ворошина О. В., Захаров И. И., Пармон В. Н.; патентообладатель Институт катализа им. Г. К. Борескова Сибирского отделения Российской академии наук. № 2004109969/15; заявл. 01.04.2004; опубл. 10.10.2005, Бюл. № 28.
- 61. Пат. 2161145 Российская Федерация, МПК С04В 35/599, С01В 21/082. Способ получения β-СИАЛОНА / Тимощук Т. А., Швейкин Г. П.; заявитель и патентообладатель Институт химии твердого тела Уральского отделения РАН. - № 98122474/03; заявл. 11.12.1998; опубл. 27.12.2000, Бюл. № 36.
- 62. Перспективные материалы и технологии самораспростраянющегося высокотемпературного синтеза: учебное пособие / Е. А. Левашов, А.С. Рогачев, В.В. Курбаткина и т.д. М.: Изд. Дом МИСиСю, 2011. 377 с.
- 63. Самораспространяющийся высокотемпературный синтез: Материалы и технологии / ред. В. В. Евстигнеева, Е.М. Белова Новосибирск: Наука, 2001. 284 с.
- 64. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза / Е. А.

- Левашов, А. С. Рогачев, В. И. Юхвид и т.д. М.: Издательство БИНОМ. 176 с.
- 65. Пат. 1774612 СССР, МПК С04В 35/58. Способ получения порошка сиалона / Мержанов А. Г., Боровинская И. П., Лорян В. Э., Смиррнов К. Л.; заявитель и патентообладатель Институт структурной макрокинетики АН СССР. № 4826404/33. заявл. 30.03.1990.
- 66. Oxidation behavior of β-SiAlON powders fabricated by combustion synthesis / Z. Li, Z. Wang, M. Zhu, J. Li et al. // Ceramics international. 2916. Vol. 42. P. 7290-7299.
- 67. Tavassoli, O. Influence of NH₄F additive on the combustion synthesis of β-SiAlON in air / O. Tavassoli, M. Bavand-Vandchali // Ceramics international. 2018. Vol. 44. P. 5683-5691.
- 68. Reaction characteristics of combustion synthesis of β-SiAlON using different additives / J. Niu, T. Nakamura, I. Nakatsugawa et al. // Chemical engineering journal. 2014. Vol. 241. P. 235-242.
- 69. Effects of diluents and NH4F additive on the combustion synthesis of Yb α -SiAlON / G. H. Liu, K. X. Chen, H. P. Zhou et al. // Journal of the European Ceramic Society. 2005. Vol. 25 P. 3361-3366.
- Hwang, C.C. Combustion Synthesis of Boron Nitride Powder / C.C.
 Hwang, S.L. Chung // Journal of Materials Research. 1998. Vol. 13. –
 P. 680-686.
- 71. Lee, W.C. Combustion synthesis of Si₃N₄ powder / W.C. Lee, S.L. Chung // Mater. Res. 1997. Vol. 12. P. 7.
- 72. Salt-assisted combustion synthesis of β-SiAlON fine powder / J. Niu, X. Yi, I. Nakatsugawa et al. // Intermetallics. 2013. Vol. 35. P. 53-59.

- 73. Yeh, C. L. Effects of α and β -Si₃N₄ as precursors on combustion synthesis of $(\alpha + \beta)$ -SiAlON composites / C. L. Yeh, F. S. Wu, Y. L. Chen // Journal of alloys and compounds. 2011. Vol. 509. P. 3985-3990.
- 74. Амосов, А. П. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов / А. П. Амосов, И. П. Боровинская, А. Г. Мержанов. М.: Машиностроение-1. 2007. —567 с.
- 75. Self-propagating high temperature synthesis of SiAlON / A. R. Kheirandish, Kh. A. Nekouee, R. A. Khosroshashi et al. // International journal of Refractory metals and hard materials. Vol. 55. 2016. P. 68-79.
- 76. Aruna, S.T. Combustion synthesis and nanomaterials / S.T. Aruna, A.S. Mukasyan // Curr. Opinion Solid State Mater. Sci. -2008. Vol 12. P. 7.
- 77. Salt-assisted combustion synthesis of silicon nitride with high a-phase content / H.I. Won, C.W. Won, H.H. Nersisyan et al. // J. Alloys Compd. 2010. Vol. 496. P. 4.
- 78. Gas phase nature of Si—N bond formation in the self-propagating high temperature synthesis of silicon nitride by the azide method / N.M. Rubtsova, B.S. Seplyarskiia, V.I. Chernysha, et al. // Teoreticheskie Osnovy Khimicheskoi Tekhnologii. 2010. Vol. 44. P. 458-460.
- 79. Кондратьева, Л. А. Изучение теоретических расчетов и экспериментальных результатов исследований получения порошка сиалона методом СВС-аз / Л. А. Кондратьева // Современные материалы, техника и технологии. 2020. № 3. с. 27-31.
- 80. Combustion of mechanically activated ferrosilicoaluminum in nitrogen: Experiment and theoretical estimates / K. Bolgaru, O. Lapshin, A. Reger et al. // Materials Today Communications. 2022. Vol. 30. P. 103080.

- 81. Yi, X. Mechanical-activated, combustion synthesis of β -SiAlON / X. Yi, T. Akiyama, // Journal of Alloys and Compounds. -2010. Vol. 495 P. 144-148.
- 82. Азотированные ферросилиций, феррохром, феррованадий, нитрид кремния. URL: http://www.ntpf-etalon.ru/# (дата обращения 09.03.2023).
- 83. Зиатдинов, М. Х., Опыт разработки, производства и применения СВС-материалов для металлургии / М. Х. Зиатдинов, И. М. Шатохин // Наука, техника, производство. 2008. № 12. с. 50-55.
- 84. In situ nitriding reaction formation of β-Sialon with fibers using transition metal catalysts / M. Zhang, Z. Chen, J. Huang et al. // Ceramics international. 2019. Vol. 45. P 21923-21930.
- 85. О механизме и закономерностях азотирования ферросилиция в режиме горения / Л.Н. Чухломина, Ю. М. Максимов, В.Д. Китлер и т.д. // Физика горения и взрыва. 2006. Т. 42. № 3. № 71-78.
- 86. Гасик, М. И. Электрометаллургия ферросплавов / М. И. Гасик, Б.И. Емлин. Киев: Донецк, Издательство головное. 1983. —344 с.
- 87. Chuchlomina, L. N. Investigation and properties of niobium nitrides obtained from SHS nitrided ferroniobium / L. N. Chuchlomina, M. Kh. Ziatdinov // International journal SHS. 2002. Vol. 11. №1. p. 55-63.
- 88. Получение нитрида ниобия из азотированного СВС-методом феррониобия / Л. Н. Чухломина, М. Х. Зиатдинов, Ю. М. Максимов и д. р. // Цветная металлургия. 2001. № 1. с. 57.
- 89. Пат. 2075870 Российская Федерация, МПК С22С 33/04. Способ получения азотированного феррохрома / Зиатдинов М. Х., Браверман Б. Ш., Максимов Ю. М., Чернега Н. И., Галкин М. В.;

- патентообладатель Томский филиал института структурной макрокинетики РАН. № 9494042483; заявл. 28.11.1994.
- 90. Чухломина Л. Н. Синтез нитридов хрома горением феррохрома и газообразном азоте / Л. Н. Чухломина, Ю. М. Максимов // Материалы межународной конференции «Химия, химическая технология и биотехнология на рубеже тысячелетий». Томск. 2006. с. 159-160.
- 91. Чухломина, Л. Н. Закономерности синтеза нитрида хрома при горении феррохрома в азоте / Материалы общероссийской научной конференции с международным участием, посвященной 75-летию химического факультета Томского гос. Ун-та «Полифункциональные химические материалы и технологии» // Л. Н. Чухломина. Томск, 2007. с. 186-188.
- 92. Зиатдинов М.Х., Шатохин И.М., Леонтьев Л.И. Технология СВС композиционных ферросплавов Часть 1. Металлургический СВС процесс. Синтез нитридов феррованадия и феррохром / М.Х. Зиатдинов, И.М. Шатохин, Л.И. Леонтьев // Известия высших учебных заведений. Черная металлургия. 2018. Т. 61. № 5. с. 339-347.
- 93. Зиатдинов, М. X. Производство СВС-нитрида феррованадия для выплавки высокопрочных низколегированных сталей / М. X. Зиатдинов, И. М. Шатохин // Сталь. 2009. № 11. с. 39.
- 94. Браверман, Б. Ш. Получение азотированного феррованадия при вынужденной фильтрации азота / Б. Ш. Браверман, Ю. В. Цыбульник, Ю. М. Максимов // Химия и химическая технология. 2011. Т. 54. с. 100-102.
- 95. Зиатдинов, М. Х. Развитие теоретических и технологических основ самораспространяющегося высокотемпературного синтеза (СВС) при разработке промышленной технологии производства материалов для

- сталеплавильного и доменного производств: дис. ... док. техн. наук: 05.16.02. Томск, 2017. 246 с.
- 96. Чухломина, Л. Н. Синтез нитридов элементов III-VI групп и композиционных материалов на их основе азотированием ферросплавов в режиме горения: дис. ... док. техн. наук: 05.17.11. Томск, 2019. 246 с.
- 97. Bolgaru K. A., Reger A. A., Skvortsova L. N. Nitriding of ferrochromium during combustion and evaluation of the photocatalytic activity of obtained composites / K. A. Bolgaru, A. A. Reger, L. N. Skvortsova // IOP Conf. Series: Materials science and engineering. . -2019 Vol. 511. p. 6
- 98. Регер, А. А., Болгару К. А. Азотирование феррохромалюминия в режиме горения / А. А. Регер, К. А.Болгару // Сборник трудов Международной научно-технической молодежной конференции. Томск: изд.-во Томского политехнического университета. 2018. с. 225-227.
- 99. Болгару, К.А. Синтез композиции нитридов кремния, алюминия и циркония азотированием в режиме горения сложного ферросплава ферроалюмосиликоциркония / К.А. Болгару, В. И. Верещагин, А. А. Регер // Известия высших учебных заведений. Химия и химическая технология. 2021. Т 64. № 7. с. 68-74.
- 100. Чухломина Л. Н., Максимов Ю. М., Верещагин В. И. Самораспространяющийся высокотемпературный синтез композиционных нитридсодержащих керамических материалов / Л. Н. Чухломина, Ю. М. Максимов, В. И. Верещагин. Новосибирск: Наука, 2012. 260 с.
- 101.О механизме и закономерностях азотирования ферросилиция в режиме горения / Л. Н. Чухломина, Ю.М. Максимов, В.Д. Китлер и т.д. // Физика горения и взрыва. 2006. Т. 42. № 3. с. 71-78.

- 102. Производство азотированного ферросилиция в режиме горения / М.
 X. Зиатдинов, И. М. Шатохин, А. С. Бессмертных и т.д. // Вестник МГТУ им. Г. И. Носова. 2007. № 1. с. 41-43.
- 103. Чухломина Л. Н., Витушкина О. Г., Верещагин В. И. Фазовый состав продуктов горения ферросилиция в азоте в присутствии фторсодержащих добавок / Л. Н. Чухломина, О. Г. Витушкина, В. И. Верещагин // Стекло и керамика. 2008. № 7. с 22-24.
- 104.Effect of dilution and additive on direct nitridation of ferrosilicon / Y. Wang, L. Cheng, J. Guan, L. Zhang // Journal of the European ceramic society. 2014. Vol. 34. p. 1115-1122.
- 105. Чухломина, Л. Н. Получение нитрида кремния методом кислотного обогащения продуктов горения ферросилиция в азоте / Л. Н. Чухломина, Ю. М. Максимов, З. С. Ахунова // Известия высших учебных заведений. Цветная металлургия. 2007. № 5. с. 65-69.
- 106. Зиатдинов, М. X. Перспективы производства и применения СВСнитрида ферросилиция / М. X. Зиатдинов, И. М. Шатохин // Сталь. — 2008. - №1. – с. 26-31.
- 107. Шатохин, И. М. СВС-нитрид ферросилиция NITRO-FESILTL новый огнеупорный компонент леточных для доменных печей / И. М. Шатохин, М. Х. Зиатдинов, Э. М. Манашева // Новые огнеупоры. 2013. № 9. с 3-9.
- 108. Зиатдинов, М. Х. Технология СВС композиционных ферросплавов часть 2. Синтез нитрида ферросилиция и борида ферротитана / М. Х. Зиатдинов, И. М. Шатохин, Л. И. Леонтьев // Известия высших учебных заведений. Черная металлургия. 2018. Т 61. № 7. с. 527-535.
- 109. Чухломина, Л. Н. СВС-азотирование ферросилиция в присутствии ильменита / Чухломина Л.Н., Витушкина О. Г. // Известия высших

- учебных заведений. Серия: Химия и химическая технология. 2018. Т 54. № 5. с. 105-108.
- 110. Болгару, К. А. Исследование механизма и закономерностей азотирования комплексного ферросплава ферросиликоалюминия в режиме СВС / К.А. Болгару, Л.Н. Чухломина, Ю.М. Максимова // Известия высших учебных заведений. Порошковая металлургия и функциональные покрытия. 2016. № 4. С. 34-40.
- 111. Чухломина, Л.Н. СВ-синтез композиционной керамики на основе β-сиалона с использованием сплава Fe-Si-Al / Л.Н. Чухломина, К.А. Болгару, Аврамчик А.Н. // Огнеупоры и техническая керамика. 2013. № 1-2. с. 15-19.
- 112.Bolgaru K. A., Skvortsova L. N., Akulinkin A. A. Effect of aluminium oxide and ash microspheres on nitriding of aluminium ferrosilicon in the combustion mode / K. A. Bolgaru, L. N. Skvortsova, A. A. Akulinkin // Journal of Physics: Conf. series. 2018. Vol. 1115. P. 7.
- 113. Дубенский, М. С. Микрокремнезем отход или современная добавка?
 / М. С. Дубенский, А. А. Каргин // Вестник кузбасского государственного технического университета. 2012. Vol. 89. № 1 с. 119-120.
- 114. Верещагин В. И., Мельникова И. Г., Могилевская Н. В. Активация спекания строительной керамики на основе легкоплавкого и тугоплавкого глинистого сырья добавками маршалита / В. И. Верещагин, И. Г. Мельникова, Н. В. Могилевская // Вестник томского государственного архитектурно-строительного университета. 2014. Vol. 47. № 6. с. 109-116.
- 115. Аргынбаев, Т. М. Месторождение каолинов Журавлиный-Лог комплексное сырье для производства строительных материалов / Т.

- М. Аргынбаев, З. В. Стахеева, Е. В. Белогуб // Материалы и t=1 технологии. t=1 t=1 с. t=1 .
- 116. Дитц, А. А. Оксинитридные керамические материалы на основе продуктов сжигания промышленных порошков металлов на воздухе: дис. ... канд. техн. наук: 05.17.11 / Дитц Александр Андреевич. Томск, 2006. с. 163 с.
- 117. Данилевский, К. С., Высокотемпературные термопары / К. С. Данилевский, Н. И. Сведе-Швец. М.: Металлургия, 1977. –232 с.
- 118. Лидин, Р. А. Константы неорганических веществ: справочник / Р. А. Лидин, Л. Л. Андреева, В. А. Молочко. М.: Дрофа, 2008. –685 с.
- 119. Ковба, Л. М. Рентгенофазовый анализ / Л. М. Ковба, В. К. Трунов. М.: изд-во московского университета, 1976. 183 с.
- 120. Теория рентгенофазового анализа: учебно-методическое пособие [Электронный ресурс] / А. О. Дмитриенко, Г. Н. Макушова, М. В. Пожаров, 2016. 51 С.
- 121. Теоретические основы растровой электронной микроскопии и энергодисперсионного анализа наноматериалов / Д. А. Полонянкин, А. И. Блесман, Д. В. Постников и др. Омск: ОмГТУ, 2019. 116 с.
- 122. Введенский, В. Ю. Экспериментальные методы физического материаловедения : монография / В. Ю. Введенский, А. С. Лилеев, А. С. Перминов. Москва: Изд-во МИСиС, 2011. 310 с.
- 123. Болгару, К. А. Синтез сиалонсодержащей композиции на основе ферросиликоалюминия и наноразмерного микрокремнезема в режиме горения / К. А. Болгару, А. А. Регер, В. И. Верещагин // Новые огнеупоры. 2023. № 1. с. 26-30.
- 124. Болгару, К. А. Синтез сиалона и нитридных фаз на основе ферросиликоалюминия с добавками маршалита в режиме горения / К.

- А. Болгару, В. И. Верещагин, А. А. Регер и т.д. // Новые огнеупоры. 2020. № 11. с. 34-37.
- 125. Combustion synthesis of β -SiAlON from a mixture of aluminum ferrosilicon and kaolin with nitrogen-containing additives using acid enrichment / K. Bolgaru, A. Reger, V. Vereshchagin et al. // Ceramics International. 2023. Vol. 49. P. 2302-2309.
- 126. Combustion synthesis of porous ceramic β Si_3N_4 -based composites with the use of ferroalloys / K. Bolgaru, A. Reger, V. Vereshchagin et al. // Ceramics International. 2021. Vol. 47. P. 34765-34773.
- 127. Alexander Akulinkin, Konstantin Bolgaru, Anton Reger, Facile synthesis of porous g- C_3N_4/β -SiAlON material with visible light photocatalytic activity / A. Akulinkin, K. Bolgaru, A. Reger // Materials Letters. 2021. Vol. 305. P. 130788.