Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль <u>04.06.01 / 02.00.02 Аналитическая химия</u>
Школа <u>Инженерная школа природных ресурсов</u>
отделение <u>Химической инженерии</u>

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада

Разработка методики совместного определения платины и родия в сплавах методом инверсионной вольтамперометрии с использованием ГЭ, модифицированного свинцом

УДК <u>543.552.054.1:669.231.5:669.235</u>

Аспирант

	Группа	ФИО	Подпись	Дата
ĺ	A9-18	Егошина А. В.		

Руководителя профиля подготовки

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент ОХИ ИШПР	Дорожко Е.В.	K.X.H.		

Руководитель отделения

J. 10 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ководитель отделения				
Должность	ФИО	Ученая степень,	Подпись	Дата	
		звание			
Профессор зав. кафедрой -	Короткова Е.И.	Д.Х.Н			
руководитель ОХИ на					
правах кафедры					

Научный руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор ОХИ ИШПР	Слепченко Г. Б.	Д.Х.Н.		

Металлы платиновой группы широко применяются во всех сферах науки и техники благодаря своим физико-химическим характеристикам: транспорт, металлургия, военная техника, атомная промышленность, медицина, оптика, сельское хозяйство.

Одна из важных проблем любой сферы драгоценных металлов — аналитический контроль, который является неотъемлемой частью всех этапов технологии и гарантом качества продукции.

В настоящее время для определения содержания платины и родия, как и других платиновых металлов, в твердых объектах традиционно проводят операцию растворения для перевода металлов в раствор, а после определяют концентрацию металлов в растворе различными методами.

На практике при выборе анализа аналитическая лаборатория руководствуется рядом факторов: надежность данных, экспрессность и конкурентная себестоимость анализа.

Определение металлов платиновой группы с помощью инверсионной вольтамперометрии является высокоточным, с возможностью определять элементы на уровне ppm, но в то же время простым и воспроизводимым методом анализа, цена которого в десятки раз ниже дорогостоящих зарубежных приборов.

Однако прямое определение как платины, так и родия с помощью инверсионной вольтамперометрии невозможно. Поэтому применяют техники по модифицированию графитового электрода более электроотрицательным металлом – металлом-модификатором.

В работе проводилось изучение процессов электроокисления свинца из электролитических осадков свинец-платина и свинец-платина-родий методом инверсионной вольтамперометрии. Был выбран анодный пик, имеющие аналитическое значение и позволяющие определять ионы платины (II, IV) совместно с ионами родия (III).

Результатом исследования стала разработка методики совместного определения ионов платины (II, IV) и ионов родия (III) методом инверсионной

вольтамперометрии с использованием графитового электрода, модифицированного свинцом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cowley, A.; Ryan, M.; Brisley, B. PGM Market Report; Johnson Matthey: London, UK, 2019.
- 2. Денисов А. А. Каталитические композиции пространственной конфигурации на металлических носителях в реакции окисления СО кислородом воздуха (Обзор) // Энерготехнологии и ресурсосбережение. 2011.
- 3. Guisnet, M.; Gnep, N.S.; Morin, S. Mechanisms of xylene isomerization over acidic solid catalysts. Microporous Mesoporous Mater. 2000, 35–36, 47–59.
- 4. Theis, J.R.; Ura, J.A.; Li, J.J.; Surnilla, G.G.; Roth, J.M.; Goralski, C.T., Jr. NOx release characteristics of lean NOx traps during rich purges. In Proceedings of the SAE 2003 World Congress & Exhibition, Detroit, MI, USA, 3–7 March 2003; pp. 758–775.
- 5. Janssen, F.J. Environmental Catalysis—Stationary Sources. In Environmental Catalysis; Wiley: Hoboken, NJ, USA, 2008; pp. 119–179.
- 6. Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. Preferential hydrogenation of aldehydes and ketones. J. Am. Chem. Soc. 1995, 117, 10417–10418.
- 7. Böck, R. Use and demand of palladium for the industry. In Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects; Springer: Berlin, Germany, 2006; pp. 39–51.
- 8. Hagen, J. Industrial Catalysis: A Practical Approach; Wiley: Hoboken, NJ, USA, 2015; pp. 1–522.
- 9. Hofmann,R.J., Vlatković, M., Wiesbrock, F. Fifty Years of Hydrosilylation in Polymer Science: A Review of Current Trends of Low-Cost Transition-Metal and Metal-Free Catalysts, Non-Thermally Triggered Hydrosilylation Reactions, and Industrial Applications / Robin J. Hofmann, Matea Vlatković, Frank Wiesbrock. 2017. № 9(10). P. 37.

- 10. Tarasov B. P., Muradyan V. E., Volodin A. A. Synthesis, properties, and examples of the use of carbon nanomaterials //Russian Chemical Bulletin. 2011. T. 60. C. 1261-1273.
- 11. 2D carbon-supported platinum catalysts f or hydrosilylation reactions Voznyakovskii A.P., Neverovskaya A.Y., Kalinin A.V., Nikolaev G.A., Voznyakovskii A.A. Russian Journal of General Chemistry. 2020. T. 90. № 10. C. 1944-1948.]
- 12. Lojou E. Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces //Electrochimica Acta. -2011. T. 56. N_{\odot} . 28. C. 10385-10397.
- 13. Plenk Jr H. The role of materials biocompatibility for functional electrical stimulation applications //Artificial organs. − 2011. − T. 35. − №. 3. − C. 237-241.
- 14. Замай Т. Н. и др. Снижение токсичности цисплатина путем его конъюгации с арабиногалактаном //Биологические мембраны. 2020. Т. 37. N_2 . 1. С. 69-75.
- 15. Богомильский М. Р. и др. Электрофизиологическая оценка слуховой функции после введения цисплатина //Вестник оториноларингологии. 2010. N₂. 3. C. 24-26.
- Никольская Е. Д. и др. Противоопухолевая активность карбоплатина в составе сополимера молочной и гликолевой кислот //Известия Академии наук. Серия химическая. 2017. №. 10. С. 1867-1872.
- 17. Кузнецова И. В., Сугатов Д. С., Грызлова В. И. Технология получения нанесенного катализатора на основе алюмосиликатной матрицы, модифицированной оксидом европия //Вестник Воронежского государственного университета инженерных технологий. − 2022. − Т. 84. − №. 1 (91). − С. 208-213.
- 18. Сугатов, Д. С. Использование редкоземельных металлов в составе автомобильных катализаторов / Д. С. Сугатов // Всероссийские студенческие ломоносовские чтения : сборник статей Всероссийской научно-практической

- конференции, Петрозаводск, 17 февраля 2022 года. Том Часть 2. Петрозаводск: Международный центр научного партнерства «Новая Наука», 2022. С. 495-500.
- 19. Дубко А.И., Юдин Н.В., Пинчук Ю.А., Обухов Е.О. Исследование активности палладиевых катализаторов на керамических носителях с добавками оксидов редкоземельных элементов (ОРЗЭ)// Успехи в химии и химической технологии. 2017. Т.31. №5. С. 52-53.
- 20. LanyiWanga, XuehuaYub, Yuechang Weia, Jian Liua, ZhenZhao. Research advances of rare earth catalysts for catalytic purification of vehicle exhausts Commemorating the 100th anniversary of the birth of Academician Guangxian Xu // Journal of Rare Earths. 2021. V.39. I. 10. P. 1151-1180
- 21. Севостьянова, Н. Т. Гидроформилирование ненасыщенных соединений с использованием гетерогенных катализаторов на основе родия и кобальта: анализ работ последних лет / Н. Т. Севостьянова, С. А. Баташев // WORLD SCIENCE: PROBLEMS AND INNOVATIONS: сборник статей XLVIII Международной научно-практической конференции, Пенза, 30 ноября 2020 года. Пенза: "Наука и Просвещение", 2020. С. 32-34.
- 22. Бурханова Л. Б. и др. Повышение эффективности работы блока гидроформилирования производства бутиловых спиртов //Башкирский химический журнал. 2019. Т. 26. № 3. С. 48-51.
- 23. Захарян Е. М. Катализаторы гидрирования непредельных соединений на основе полиамидоаминных (РАМАМ) дендримеров и наночастиц палладия и родия : дис. Моск. гос. ун-т им. МВ Ломоносова, 2015.
- 24. Абызбаева А. Б., Конуспаев С. Р. Катализаторы Au+ Rh/SIRAL-40 для селективного гидрирования бензола в присутствии других ароматических соединений //X 463 Химические технологии функциональных материалов. 2017. С. 260.
- 25. Патент № 2536335 C2 Российская Федерация, МПК G01V 5/12. Устройство и способ управляемой скважинной генерации ионизирующего

- излучения без использования радиоактивных изотопов химических элементов: № 2012120609/28 : заявл. 20.10.2010 : опубл. 20.12.2014 / Ф. Теагуэ ; заявитель ВизуРэй Текнолоджи Лтд.
- 26. Колесникова О. П. и др. Скрининг иммуноактивных и противоопухолевых свойств комплексов триэтаноламина с солями биомикроэлементов //Сибирский научный медицинский журнал. 2009. №. 6. С. 73-79.
- 27. Диаграммы состояния двойных металлических систем ред. Лякишева Н.П.Машиностроение, 1996-2000 г.
 - 28. ГОСТ 13498-2010 Платина и сплавы на ее основе.
- 29. Fan X. et al. SnO 2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation //Journal of Materials Chemistry A. -2019. T. 7. No. 48. C. 27377-27382.
- 30. Zhu Y. et al. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis //ACS Catalysis. -2019. T. 9. No. 8. C. 6607-6612.
- 31. Lee J. et al. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review //Separation and Purification Technology. 2020. T. 246. C. 116896.
- 32. Парилов Ю. С. Проблемы благороднометалльного оруденения Казахстана //Промышленность Казахстана. – 2012. – №. 2. – С. 32-40.
- 33. Седельникова, Г. В. Новые методы и методики анализа минерального сырья благородных металлов / Г. В. Седельникова, А. В. Мандругин // Руды и металлы. 2010. № 1. С. 100-103.
- 34. Кубракова, И. В. Определение ЭПГ и золота в геохимических объектах: опыт использования спектрометрических методов / И. В. Кубракова,
 С. Н. Набиуллина, О. А. Тютюнник // Геохимия. 2020. Т. 65. № 4. С. 328-342.
- 35. Пупышев А. А., Данилова Д. А. Использование атомноэмиссионной спектрометрии с индуктивно связанной плазмой для анализа

- материалов и продуктов черной металлургии //Аналитика и контроль. 2007. \mathbb{N} 2/3. -2007. $-\mathbb{C}$. 131-181.
- 36. Манзюк М. В., Авдиенко Т. Н., Супрунович В. И. Определение платины (IV) йодидом калия электрохимическими методами //Приволжский научный вестник. 2016. №. 1 (53). С. 28-31.
- 37. Determination of Au(III) and Ag(I) in Carbonaceous Shales and Pyrites by Stripping Voltammetry / N. A. Kolpakova [et al.] // Minerals . 2019 . Vol. 9, iss. 2 . [78, 13 p.].
- 38. Determination of Platinum Metals in Carbonaceous Mineral Raw Materials by Stripping Voltammetry / N. A. Kolpakova [et al.] // Procedia Chemistry. 2015 . Vol. 15 : Chemistry and Chemical Engineering in XXI century (CCE 2015) . [P. 335-341].
- 39. Колпакова Н. А., Горчаков Э. В., Карачаков Д. М. Определение палладия в золоторудном сырье методом инверсионной вольтамперометрии //Журнал аналитической химии. 2009. Т. 64. №. 1. С. 52-56.
- 40. Колпакова Н.А., Смышляева Е.А., Тузиков С.А. и др. Определение платины методом инверсионной вольтамперометрии в биологических материалах // Журнал аналитической химии. 2003. Т. 60. № 3. С. 303-306.
- 41. Колпакова Н.А., Смышляева Е.А., Завьялов А.А. и др. Определение платины методом инверсионной вольтамперометрии в биологических тканях у больных раком легкого // Известия ТПУ. Химия. 2003. Т. 306. № 4. С. 84-86
- 42. Serrano N. et al. Coating methods, modifiers and applications of bismuth screen-printed electrodes //TrAC Trends in Analytical Chemistry. 2013. T. 46. C. 15-29.
- 43. Житенко Л.П., Хомутова Е.Г., Останина О.И. Некоторые проблемы разработки новых национальных стандартов на методы анализа платиновых металлов и сплавов. Тонкие химические технологии. 2010;5(1):43-46.

- 44. Патент № 2327983 С1 Российская Федерация, МПК G01N 31/22. Способ фотометрического определения родия: № 2007116422/04 : заявл. 02.05.2007 : опубл. 27.06.2008 / Г. В. Волкова, С. И. Метелица, В. Н. Лосев ; заявитель Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет".
- 45. Учеб. пособие для вузов. 3-е изд., испр. /Р. А. Лидин, В. А. Молочко, Л. Л. Андреева; под ред. Р. А. Лидина. М.: Химия, 2000.
- 46. Machado R. C. et al. Complex samples and spectral interferences in ICP-MS: Evaluation of tandem mass spectrometry for interference-free determination of cadmium, tin and platinum group elements //Microchemical Journal. 2017. T. 130. C. 271-275.
- 47. Белоусов О.В., Калякин С.Н., Твердохлебов В.П., Исакова В.Г., Гризан Н.В. Применение методов автоклавного растворения при исследовании катализаторов нефтепереработки. Катализ в промышленности. 2017;17(1):46-50.
- 48. Гамбург Ю.Д. Электрохимическая кристаллизация металлов и сплавов. М.: Янус-К, 1997. С. 384.
- 49. Колпакова Н.А., Борисова Н.В., Невоструев В.А. Природа положительного анодного пика тока на вольтамперной кривой в инверсионной вольтамперометрии бинарных систем платина—металл // Журн. аналит. химии. 2001. № 8. С. 835.
- 50. Shekhovtsova N.S., Glyzina T.S., Romanenko S.V., Kolpakova N.A. Estimation of the composition of electrolytically prepared intermetallic bismuth–platinum deposits // J. Solid State Electrochem. 2012. V. 16. № 7. P. 2419.
- 51. Ustinova E.M., Gorchakov E.V., Kolpakova N.A. Anodic stripping determination of Pt(IV) based on the anodic oxidation of In from electrochemically deposited Pt–In alloy phases // J. Solid State Electrochem. 2012. V. 16. № 7. P. 2455.

- 52. Дрозд Л. Е., Нейман Е. Я. Вольтамперометрия металлов платиновой группы, серебра и золота // Обзор работ за 1984-1987г. ВИНИТИ. Москва. 1989. № 2514-89. Деп. 90 с.
- 53. Колпакова Н.А., Шифрис Б.С., Швец Л.А., Кропоткина С.В. Определение платиновых металлов и золота методом инверсионной вольтамперометрии // Журнал аналитической химии. 1988. T.46. N 10. С. 1910-1914.
- 54. Шайдарова Л. Г., Аль-Гахри М. А., Улахович Н. А., Забиров Н. Г., Будников Г. К. Инверсионно-вольтамперометрическое определение палладия, платины и золота с помощью угольно-пастового электрода, модифицированного краун эфирами // Журнал аналитической химии. 1994. Т. 49. № 5. С. 501-504.
- 55. Barefoot R. R., Van Loon J. C. Recent advances, in the determination of platinum group elements and gold // Talanta. 1999. V. 49. № 1. P. 1-14.
- 56. Майстренко В.Н., Муринов Ю.И. Модифицированные органическими сульфидами угольно-пастовые электроды в электроаналитической химии 83 платиновых металлов // XIV Всесоюзный Черняевский совет по химическому анализу и геополитике платиновых металлов. Новосибирск, 1989. Т. 2. С. 60-61.
- 57. Tanaka S., Yoshida H. Stripping voltammetry of silver(I) with a carbonpaste electrode modified with thiacrown compounds //Talanta. 1989. V. 36. №10. P. 1044-1046.
- 58. Колпакова Н.А., Швец Л.А. Выбор индикаторного электрода при определении осмия методом ИВ // Заводская лаборатория. —1986. Т. 52. N 12. С. 4.
- 59. Носкова Г.Н., Захарова Э.А., Чернов В.И. и др. Микроэлектродные ансамбли. Способ серийного производства углеродных микроэлектродных ансамблей и их применение в анализе вод // Экологические системы и приборы. 2011. № 4. С. 18-25.

- 60. Галкин П.С., Новожилов И.Н. Формирование аналитического сигнала платины в методе анодной вольтамперометрии на электродах из композиционного углеродного материала и углеродного волокна // Материалы IX научной конференции «Аналитика Сибири и Дальнего Востока». 2012. С. 95.
- 61. Колпакова Н.А., Борисова Н.В., Невоструев В.А. Природа положительного анодного пика тока на вольтамперной кривой в инверсионной вольтамперометрии бинарных систем платина металл // Журнал аналитической химии. 2001. №.8. С.835–839.
- 62. Устинова Э.М., Колпакова Н.А., Горчаков Э.В., Глызина Т.С. Оценка фазового состава электролитических осадков, содержащих платину и золото // Журнал структурной химии. 2010. Т. 51. С. 203-208.
- 63. Ustinova E.M., Gorchakov E.V., Kolpakova N.A. Anodic stripping determination of Pt (IV) based on the anodic oxidation of In from electrochemically deposited PtIn alloy phases // J. Solid State Electrochem. 2012. V. 16. № 7. P.2455-2458.
- 64. Устинова Э.М., Колпакова Н. А., Горчаков Э. В. Изучение состава бинарного электролитического осадка индий-платина // Известия ТПУ. Химия. — 2012. — Т. 320. — С. 56-58.
- 65. Устинова Э.М., Колпакова Н.А., Пшеничкин А.Я., Ильенок С.С. Исследование поверхности графитовых электродов с осадками индия и платины // Известия ТПУ. Химия. 2013. Т. 322. № 3. С. 22-25.
- 66. Пакриева Е.Г., Нестеров А.А., Колпакова Н.А. Оценка фазового состава электролитических осадков, содержащих родий, методом инверсионной вольтамперометрии // Фундаментальные исследования. /Российская академия естествознания 2013. Т.3. №8. С. 692-695.
- 67. Колпакова Н. А., Егошина А. В. Селективное электроокисление свинца из бинарного электролитического осадка свинец–платина //Журнал аналитической химии. 2021. Т. 76. № 8. С. 730-735.

- 68. Колпакова Н.А., Смышляева Е.А. Инверсионновольтамперометрическое определение платины в золоторудном сырье с предварительным фотохимическим восстановлением ионов золота // Известия ВУЗов. Геология и разведка. 2003. N 4. С. 50-52.
- 69. Ustinova E.M., Gorchakov E.V., Kolpakova N.A. Anodic stripping determination of Pt (IV) based on the anodic oxidation of In from electrochemically deposited PtIn alloy phases // J. Solid State Electrochem. 2012. V. 16. № 7. P.2455-2458.
- 70. Нестеров А. А., Горчаков Э. В., Устинова Э. М., Колпакова Н. А., Глызина Т. С. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пикам селективного электроокисления меди из интерметаллического соединения RhxCuy: Патент 2498289 РФ. Опубликовано 10.11.2013.
- 71. Kolpakova N. A., Nesterov A. A. Assessment of phase composition of electrolytic deposits by stripping voltammetry // Procedia Chemistry. 2014 Vol. 10. p. 92-96.
- 72. Kolpakova N.A., Dyachenko, E.N. Determination of rhodium content by the method of Stripping voltammetry in ores and technogenic raw materials // 85 MATEC Web of Conferences, 2016. V.85.: Chemistry and Chemical Technology in XXI Century.
- 73. Оськина Ю. А., Колпакова Н. А. Способ определения родия методом инверсионной вольтамперометрии //Байкальская школаконференция по химии-2017. 2017. С. 344-345.
- 74. Езерская Н.А., Киселева И.Н. Каталитические полярографические токи ионов водорода в растворах платиновых металлов и их применение для определения микроконцентраций этих элементов //Журн. аналит. химии. 1984. Т. 39. № 9. С. 1541.
- 75. Мансуров Г.Н., Петрий О.А. Электрохимия тонких металлических пленок. Монография. М.: МГОУ, 2011. С. 351.

- 76. Козин Л.Ф., Нигметова Р.Ш., Дергачева М.Б. Термодинамика бинарных амальгамных систем. Алма-Ата: Наука Каз. ССР, 1977. 343 с.
- 77. Вол А.Е., Каган И.К. Строение и свойства двойных металлических систем. М.: Наука, 1979. Т. 4. 576 с.
- 78. Андреев Ю.А. Электрохимия металлов и сплавов. М.: Высшее образование и Наука, 2016. С. 314.
- 79. Энергия разрыва химических связей. Потенциалы ионизации и сродство к электрону / Под ред. Кондратьева В.Н. М.: Наука, 1974. 351 с.
- 80. Бокрис Дж., Комуэл Б. Современные проблемы электрохимии / Пер. с англ. под ред. Колотыркина Я.М. М.: Мир, 1971. 450 с.
- 81. Лесник, А.Г. Модели межатомного взаимодействия в статистической теории сплавов. М.: Физматгиз, 1962. 100 с.
 - 82. Полинг Л., Полинг П. Химия. М.: Мир, 1978. 683 с.
- 83. Сухотин А.М. Справочник по электрохимии. Л.:Химия, 1981. С. 488.
- 84. Смагунова А.Н., Карпукова О.М. Методы математической статистики в аналитической химии. Ростов-на-Дону: Феникс, 2012. С. 348.
- 85. Оськина Ю. А. Инверсионно-вольтамперометрическое определение родия в минеральном сырье на модифицированных свинцом графитовых электродах: диссертация на соискание ученой степени кандидата химических наук: спец. 02.00. 02 : дис. 2018.
- 86. Оськина Ю. А., Колпакова Н. А. Способ определения родия методом инверсионной вольтамперометрии //Байкальская школаконференция по химии-2017. 2017. С. 344-345.