Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

Школа Инженерная школа информационных технологий и робототехники Направление подготовки 15.03.06 Мехатроника и робототехника ООП/ОПОП Интеллектуальные робототехнические и мехатронные системы Отделение школы (НОЦ) Отделение автоматизации и робототехники

#### ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

|                      | Тема работы                                                   |         |      |  |
|----------------------|---------------------------------------------------------------|---------|------|--|
| Mo,                  | Модернизация учебно-исследовательского стенда «Робот-бабочка» |         |      |  |
| УДК 007.52:004.415.2 |                                                               |         |      |  |
| Обучающийся          | Обучающийся                                                   |         |      |  |
| Группа               | ФИО                                                           | Подпись | Дата |  |
| 8E92                 | Го Цзыцзюнь                                                   |         |      |  |

Руководитель ВКР

| Должность        | ФИО           | Ученая степень,<br>звание | Подпись | Дата |
|------------------|---------------|---------------------------|---------|------|
| Доцент ОАР ИШИТР | Леонов Сергей | к.т.н.                    |         |      |
|                  | Владимирович  |                           |         |      |

#### КОНСУЛЬТАНТЫ ПО РАЗДЕЛАМ:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

| Должность                              | ФИО             | Ученая степень,<br>звание | Подпись | Дата |
|----------------------------------------|-----------------|---------------------------|---------|------|
| Доцент ОСГН ШБИП                       | Былкова Татьяна | к.э.н.                    |         |      |
|                                        | Васильевна      |                           |         |      |
| To partery (Comparing other ctremport) |                 |                           |         |      |

 Должность
 ФИО
 Ученая степень, звание
 Подпись
 Дата

 Старший преподаватель ООД
 Мезенцева Ирина леонидовна

Нормоконтроль

| Должность     | ФИО         | Ученая степень,<br>звание | Подпись | Дата |
|---------------|-------------|---------------------------|---------|------|
| Ассистент ОАР | Поберезкина | -                         |         |      |
| ИШИТР         | Екатерина   |                           |         |      |
|               | Евгеньевна  |                           |         |      |

#### ДОПУСТИТЬ К ЗАЩИТЕ:

| Руководитель ООП | ФИО               | Ученая степень,<br>звание | Подпись | Дата |
|------------------|-------------------|---------------------------|---------|------|
| Доцент ОАР ИШИТР | Киселев Александр | к.т.н.                    |         |      |
|                  | Викторович        |                           |         |      |

#### ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ООП

| Код компетенции | Наименование компетенции                                                                                                                                                                                                                                                                                                            |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Универсальные компетенции                                                                                                                                                                                                                                                                                                           |
| УК(У)-1         | Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач                                                                                                                                                                                                      |
| УК(У)-2         | Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений                                                                                                                                                          |
| УК(У)-3         | Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде                                                                                                                                                                                                                                                 |
| УК(У)-4         | Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской Федерации и иностранном(-ых) языке(-ах)                                                                                                                                                                                 |
| УК(У)-6         | Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни                                                                                                                                                                                         |
| УК(У)-7         | Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности                                                                                                                                                                                            |
| УК(У)-8         | Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов                                          |
| УК(У)-9         | Способен проявлять предприимчивость в практической деятельности, в т.ч. в рамках разработки коммерчески перспективного продукта на основе научно-технической идеи                                                                                                                                                                   |
| УК(У)-10        | Способен принимать обоснованные экономические решения в различных областях жизнедеятельности                                                                                                                                                                                                                                        |
| УК(У)-11        | Способен формировать нетерпимое отношение к коррупционному поведению                                                                                                                                                                                                                                                                |
|                 | бщепрофессиональные компетенции                                                                                                                                                                                                                                                                                                     |
| ОПК(У)-1        | Способен представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики                                                                                                                                                              |
| ОПК(У)-2        | Владеет физико-математическим аппаратом, необходимым для описания мехатронных и робототехнических систем                                                                                                                                                                                                                            |
| ОПК(У)- 3       | Владеет современными информационными технологиями, готовностью применять современные средства автоматизированного проектирования и машинной графики при проектировании систем и их отдельных модулей, а также для подготовки конструкторско-технологической документации, соблюдать основные требования информационной безопасности |

| ОПК(У)-4 | Готов собирать, обрабатывать, анализировать и                                                        |
|----------|------------------------------------------------------------------------------------------------------|
| OHK(*)-4 | систематизировать научно-техническую информацию по                                                   |
|          | тематике исследования, использовать достижения                                                       |
|          | отечественной и зарубежной науки, техники и технологии в                                             |
|          | своей профессиональной деятельности                                                                  |
| ОПК(У)-5 | Способен использовать основы экономических знаний при                                                |
| ,        | оценке эффективности результатов своей профессиональной                                              |
|          | деятельности                                                                                         |
| ОПК(У)-6 | Способен решать стандартные задачи профессиональной                                                  |
|          | деятельности на основе информационной и                                                              |
|          | библиографической культуры с применением информационно-                                              |
|          | коммуникационных технологий и с учетом основных                                                      |
|          | требований информационной безопасности                                                               |
|          | Профессиональные компетенции                                                                         |
| ПК(У)-1  | Способен составлять математические модели мехатронных и                                              |
|          | робототехнических систем, их подсистем и отдельных                                                   |
|          | элементов и модулей, включая информационные,                                                         |
|          | электромеханические, гидравлические,                                                                 |
|          | электрогидравлические, электронные устройства и средства                                             |
|          | вычислительной техники                                                                               |
| ПК(У)-2  | Способен разрабатывать программное обеспечение,                                                      |
|          | необходимое для обработки информации и управления в                                                  |
|          | мехатронных и робототехнических системах, а также для их                                             |
| TIL(V) 2 | проектирования Способен разрабатывать экспериментальные макеты                                       |
| ПК(У)-3  | Способен разрабатывать экспериментальные макеты управляющих, информационных и исполнительных модулей |
|          | мехатронных и робототехнических систем и проводить их                                                |
|          | экспериментальное исследование с применением современных                                             |
|          | информационных технологий                                                                            |
| ПК(У)-4  | Способен осуществлять анализ научно-технической                                                      |
|          | информации, обобщать отечественный и зарубежный опыт в                                               |
|          | области средств автоматизации и управления, проводить                                                |
|          | патентный поиск                                                                                      |
| ПК(У)-5  | Способен проводить эксперименты на действующих макетах,                                              |
|          | образцах мехатронных и робототехнических систем по                                                   |
|          | заданным методикам и обрабатывать результаты с                                                       |
|          | применением современных информационных технологий и                                                  |
|          | технических средств                                                                                  |
| ПК(У)-6  | Способен проводить вычислительные эксперименты с                                                     |
|          | использованием стандартных программных пакетов с целью                                               |
|          | исследования математических моделей мехатронных и                                                    |
|          | робототехнических систем                                                                             |
| ПК(У)-7  | Готов участвовать в составлении аналитических обзоров и                                              |
|          | научно-технических отчетов по результатам выполненной                                                |
|          | работы, в подготовке публикаций по результатам исследований                                          |
|          | и разработок                                                                                         |
| ПК(У)-8  | Способен внедрять результаты исследований и разработок и                                             |
|          | организовывать защиту прав на объекты интеллектуальной                                               |
|          | собственности                                                                                        |

| ПК(У)-9   | Способен участвовать в качестве исполнителя в научно-      |  |
|-----------|------------------------------------------------------------|--|
|           | исследовательских разработках новых робототехнических и    |  |
|           | мехатронных систем                                         |  |
| ПК(У)-10  | Готов участвовать в подготовке технико-экономического      |  |
|           | обоснования проектов создания мехатронных и                |  |
|           | робототехнических систем, их подсистем и отдельных модулей |  |
| ПК(У)-11  | Способен производить расчёты и проектирование отдельных    |  |
|           | устройств и подсистем мехатронных и робототехнических      |  |
|           | систем с использованием стандартных исполнительных и       |  |
|           | управляющих устройств, средств автоматики, измерительной и |  |
|           | вычислительной техники в соответствии с техническим        |  |
|           | заданием                                                   |  |
| ПК(У)-12  | Способен разрабатывать конструкторскую и проектную         |  |
|           | документацию механических, электрических и электронных     |  |
|           | узлов мехатронных и робототехнических систем в             |  |
|           | соответствии с имеющимися стандартами и техническими       |  |
|           | условиями                                                  |  |
| ПК(У)-13  | Готов участвовать в проведении предварительных испытаний   |  |
|           | составных частей опытного образца мехатронной или          |  |
|           | робототехнической системы по заданным программам и         |  |
| Tr. 1     | методикам и вести соответствующие журналы испытаний        |  |
|           | Профессиональные компетенции университета                  |  |
| ДПК (У)-1 | Способен проводить проверку технического состояния         |  |
|           | оборудования, обоснование экономической эффективности      |  |
|           | внедрения проектируемых модулей и подсистем мехатронных    |  |
|           | и робототехнических устройств, настройку системы           |  |
|           | управления и обработки информации с использованием         |  |
|           | соответствующих инструментальных средств                   |  |

Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

Школа <u>Инженерная школа информационных технологий и робототехники</u> Направление подготовки <u>15.03.06</u> «Мехатроника и робототехника» Отделение школы (НОЦ) <u>Отделение автоматизации и робототехники</u>

| <b>УТВЕРЖ</b> Д | ЦАЮ:    |              |
|-----------------|---------|--------------|
| Руководит       | ель ООП |              |
|                 |         | Киселев А.В. |
| (Подпись)       | (Дата)  | (Ф.И.О.)     |

#### ЗАДАНИЕ на выполнение выпускной квалификационной работы

#### Обучающийся:

| Группа                                                        |  | ФИО                    |  |
|---------------------------------------------------------------|--|------------------------|--|
| 8E92                                                          |  | Го Цзыцзюнь            |  |
| Тема работы:                                                  |  |                        |  |
| Модернизация учебно-исследовательского стенда «Робот-бабочка» |  |                        |  |
| Утверждена приказом директора (дата, номер)                   |  | №34-87/с от 03.02.2023 |  |
|                                                               |  |                        |  |
| Срок сдачи обучающимся выполненной работы: 04.06.20           |  | 04.06.2023             |  |

#### ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

| исходные данные к раооте                                                                                                                                                                                                                                                                                                                                                          | Ооъектом исследования является учеоно-                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (наименование объекта исследования или проектирования;                                                                                                                                                                                                                                                                                                                            | исследовательского стенда «Робот-бабочка».                                                                                                                                                                     |
| производительность или нагрузка; режим работы (непрерывный, периодический, циклический и т. д.); вид сырья или материал изделия; требования к продукту, изделию или процессу; особые требования к особенностям функционирования (эксплуатации) объекта или изделия в плане безопасности эксплуатации, влияния на окружающую среду, энергозатратам; экономический анализ и т. д.). | Разработка системы управления учебно-<br>исследовательского стенда «Робот-бабочка»<br>должна производится с учетом имеющейся базы<br>оборудования в существующем стенде:  — промышленный камер Basler acA1300- |
|                                                                                                                                                                                                                                                                                                                                                                                   | 200uc;                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                   | - двигатель постоянного тока Maxon DC RE                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>50;</li> <li>блок питания MEAN WELL NES-350-27;</li> <li>энкодер Scancon SCA50;</li> <li>сервоконтроллер Maxon ESCON 70/10.</li> </ul>                                                                |

# Перечень разделов пояснительной записки подлежащих исследованию, проектированию и разработке

(аналитический обзор по литературным источникам с целью выяснения достижений мировой науки техники в рассматриваемой области; постановка задачи исследования, проектирования, конструирования; содержание процедуры исследования, проектирования, конструирования; обсуждение результатов выполненной работы; наименование дополнительных разделов, подлежащих разработке; заключение по работе).

- 1. Литературный обзор стенда «Робот-бабочка».
- 2. Разработка структурной и функциональной схем для стенда.
- 3. Выбор основных компонентов.
- 4. Разработка алгоритма обнаружения шарика.
- 5. Разработка алгоритмов передачи данных между Python и STM32.
- 6. Разработка алгоритмы для ПИД-регуляторов по скорости и по положению.

#### Перечень графического материала

(с точным указанием обязательных чертежей)

- 1. Структурная схема.
- 2. Блок-схема алгоритма.
- 3. Конфигурация параметров STM32CubeMX.
- 4. Конфигурация параметров Escon Studio.

#### Консультанты по разделам выпускной квалификационной работы

(с указанием разделов)

| Раздел                                                          | Консультант                                                    |
|-----------------------------------------------------------------|----------------------------------------------------------------|
| Финансовый менеджмент, ресурсоэффективность и ресурсосбережение | Былкова Татьяна Васильевна, доцент ОСГН ШБИП, к.э.н.,          |
| Социальная ответственность                                      | Мезенцева Ирина Леонидовна, старший преподаватель ООД,<br>ШБИП |

| Дата выдачи задания на выполнение выпускной  | 03.02.2023 |
|----------------------------------------------|------------|
| квалификационной работы по линейному графику |            |

Задание выдал руководитель:

| Должность        | ФИО                           | Ученая степень,<br>звание | Подпись | Дата |
|------------------|-------------------------------|---------------------------|---------|------|
| Доцент ОАР ИШИТР | Леонов Сергей<br>Владимирович | к.т.н.                    |         |      |

Задание принял к исполнению обучающийся:

| Группа | ФИО         | Подпись | Дата |
|--------|-------------|---------|------|
| 8E92   | Го Цзыцзюнь |         |      |

Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

Школа <u>Инженерная школа информационных технологий и робототехники</u> Направление подготовки <u>15.03.06 «Мехатроника и робототехника»</u> Уровень образования <u>Бакалавриат</u> Отделение школы (НОЦ) <u>Отделение автоматизации и робототехники</u> Период выполнения Весенний <u>семестр 2022 /2023 учебного года</u>

# КАЛЕНДАРНЫЙ РЕЙТИНГ-ПЛАН выполнения выпускной квалификационной работы

Обучающийся:

| обучающийся.                                                  |             |  |  |
|---------------------------------------------------------------|-------------|--|--|
| Группа                                                        | ФИО         |  |  |
| 8E92                                                          | Го Цзыцзюнь |  |  |
| Тема работы:                                                  |             |  |  |
| Модернизация учебно-исследовательского стенда «Робот-бабочка» |             |  |  |

Срок сдачи обучающимся выполненной работы: 04.06.2023

| Дата          | Название раздела (модуля) /               | Максимальный          |
|---------------|-------------------------------------------|-----------------------|
| контроля      | вид работы (исследования)                 | балл раздела (модуля) |
| 27.05.2023 г. | Основная часть ВКР                        | 60                    |
| 30.05.2023 г. | Раздел «Социальная ответственность»       | 20                    |
| 30.05.2023 г. | Раздел «Финансовый менеджмент,            | 20                    |
|               | ресурсоэффективность и ресурсосбережение» |                       |

#### составил:

#### Руководитель ВКР

| Должность        | ФИО           | Ученая степень, | Подпись | Дата       |
|------------------|---------------|-----------------|---------|------------|
|                  |               | звание          |         |            |
| Доцент ОАР ИШИТР | Леонов Сергей | к.т.н.          |         | 03.02.2023 |
|                  | Владимирович  |                 |         |            |

#### СОГЛАСОВАНО:

#### Руководитель ООП

| Должность        | ФИО               | Ученая степень, | Подпись | Дата       |
|------------------|-------------------|-----------------|---------|------------|
|                  |                   | звание          |         |            |
| Доцент ОАР ИШИТР | Киселев Александр | к.т.н.          |         | 03.02.2023 |
|                  | Викторович        |                 |         |            |

Обучающийся

| Группа | ФИО         | Подпись | Дата       |
|--------|-------------|---------|------------|
| 8E92   | Го Цзыцзюнь |         | 03.02.2023 |

#### Реферат

Выпускная квалификационная работа состоит из 101 страниц, 37 рисунков, 23 таблиц, 27 источников и 6 приложений.

Ключевые слова: учебно-исследовательский стенд «Робот-бабочка», микроконтроллер *STM32*, последовательная передача данных, ПИД-регулятор, компьютерное зрение, управление двигателем, модернизация.

Объектом исследования является учебно-исследовательский стенд «Робот-бабочка».

Цель работы – разработка системы управления стендом «Робот-бабочка» на основе системы *Windows*.

В процессе исследования был проведен литературный обзор. Также была разработана структурная схема, функциональная схема управления к стенду «Робот-бабочка». После этого разработали алгоритм обнаружения шарика, алгоритм передачи данных с компьютера на микроконтроллер *STM32* через *Python* и разработали ПИД-регуляторы по скорости и по положению для управления вращения двигателя.

В результате исследования был разработаны алгоритмы для управления учебно-исследовательского стенда «Робот-бабочка», которые позволяют управлять стендом «Робот-бабочка» на персональном компьютере с системой *Windows*, что снижает сложность использования стенда.

Область применения: Образовательные исследования, Разработка высокоточных алгоритмов.

Экономическая эффективность/значимость работы заключается в снижении стоимости использования учебно-исследовательского стенда «Роботбабочка».

Выпускная квалификационная работа подготовлена в текстовом редакторе Microsoft Word 2019, графический материал – в пакете Microsoft Visio 2019.

Для выполнения выпускной квалификационной работы использовались следующие основные программы: Pycharm Community 2022.2.1, Escon Studio, STM32CubeMx, Keil uVision5.

## Содержание

| Введение                                                    | 13           |
|-------------------------------------------------------------|--------------|
| Определения, обозначения, сокращения                        | 15           |
| 1 Литературный обзор                                        | 17           |
| 1.1 Теоретическая часть                                     | 17           |
| 1.2 Обзор аналогов                                          | 18           |
| 2 Описание технологического процесса                        | 19           |
| 2.1 Общая информация о стенде «Робот-бабочка»               | 19           |
| 2.2 Автоматизированные задачи работы                        | 20           |
| 2.3 Используемые технические средства                       | 20           |
| 2.3.1 Промышленная камера                                   | 20           |
| 2.3.2 Энкодер                                               | 21           |
| 2.3.3 Микроконтроллер                                       | 24           |
| 2.3.4 Двигатель постоянного тока                            | 25           |
| 2.3.5 Сервоконтроллер                                       | 26           |
| 3 Модернизация аппаратной и программной части учебно-исслед | овательского |
| стенда «Робот-бабочка»                                      | 28           |
| 3.1 Краткое описание                                        | 28           |
| 3.1.1 Модернизация аппаратной части стенда                  | 28           |
| 3.1.2 Модернизация программной части стенда                 | 28           |
| 4 Реализация и описания алгоритмов и методов                | 30           |
| 4.1 Распознавание шарика                                    | 30           |
| 4.1.1 Анализ существующих алгоритмов                        |              |
| 4.1.2 Реализация алгоритма в проекте                        |              |
| 4.2 Формирование потока данных для STM32                    | 35           |
| 4.2.1 Реализация алгоритма на стороне Python                | 35           |

| 4.2.2 Реализация алгоритма на стороне STM32                           | 37    |
|-----------------------------------------------------------------------|-------|
| 4.3 Обратная связь – Отображение состояния вращения двигателя         | 38    |
| 4.4 Блок управления двигателем – Использование ПИД-регулятора         | 39    |
| 4.4.1 ПИД-регулятор                                                   | 39    |
| 4.4.2 Реализация технологии ПИД-регулятора                            | 41    |
| 5 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение     | 47    |
| 5.1 Потенциальные потребители результатов исследования                | 47    |
| 5.2 Анализ конкурентных технических решений                           | 48    |
| 5.3 SWOT-анализ                                                       | 49    |
| 5.4 Планирование научно-исследовательских работ                       | 53    |
| 5.4.1 Структура работ в рамках научного исследования                  | 53    |
| 5.4.2 Определение трудоемкости выполнения работ и диаграмма Ганта     | 54    |
| 5.5 Бюджет научно-технического исследования (НТИ)                     | 57    |
| 5.5.1 Расчет материальных затрат НТИ                                  | 57    |
| 5.5.2 Расчет амортизационных отчислений на реализацию проекта         | 58    |
| 5.5.3 Основная заработная плата исполнителей темы                     | 59    |
| 5.5.4 Дополнительная заработная плата исполнителей темы               | 60    |
| 5.5.5 Отчисления во внебюджетные фонды                                | 61    |
| 5.5.6 Накладные расходы                                               | 62    |
| 5.5.7 Формирование бюджета затрат научно-исследовательского проек     | та 62 |
| 5.5.8 Определение ресурсной, финансовой и экономической               |       |
| эффективности исследования                                            | 63    |
| 5.6 Выводы по разделу «Финансовый менеджмент, ресурсоэффективност     | ъи    |
| ресурсосбережение»                                                    | 66    |
| 6 Социальная ответственность                                          | 69    |
| 6.1 Введение                                                          | 69    |
| 6.2 Правовые и организационные вопросы обеспечения безопасности<br>11 | 69    |

| 6.2.1 Особенности законодательного регулирования проектных решений 69    |
|--------------------------------------------------------------------------|
| 6.2.2 Организационные мероприятия при компоновке рабочей зоны 70         |
| 6.3 Производственная безопасность                                        |
| 6.3.1 Превышение уровня шума                                             |
| 6.3.2 Отсутствие или недостаток необходимого естественного освещения 72  |
| 6.3.3 Отклонение показателей микроклимата в рабочей зоне                 |
| 6.3.4 Производственные факторы, связанные с напряженностью               |
| электрического поля                                                      |
| 6.3.5 Производственные факторы, связанные с электрическим током 75       |
| 6.3.6 Производственные факторы, связанные со статическим                 |
| электричеством75                                                         |
| 6.4 Экологическая безопасность                                           |
| 6.5 Безопасность в чрезвычайных ситуациях                                |
| 6.6 Вывод по разделу «Социальная ответственность»                        |
| Заключение                                                               |
| Список использованных источников                                         |
| Приложение А (обязательное) Структурная схема система                    |
| Приложение Б (рекомендуемое) Программный код на стороне Python 84        |
| Приложение В (рекомендуемое) Код основного файла App.c на стороне STM32. |
|                                                                          |
| Приложение Г (рекомендуемое) Код основного файла Арр1.с на стороне       |
| STM3292                                                                  |
| Приложение Д (обязательное) Конфигурация параметров STM32CubeMX 97       |
| Приложение E (обязательное) Конфигурация параметров Escon Studio 100     |

#### Введение

Современная робототехника становится все более и более продвинутой, и робототехника проникает в различные сферы повседневной жизни. Роботы могут заменить людей для работы в сложных условиях и работать с высокой точностью.

«Робот-бабочка» представляет собой учебно-исследовательский стенд, который в основном состоит из двигателя постоянного тока, сервоконтроллера, источника питания, промышленной камеры, микроконтроллера и энкодера. Объектив промышленной камеры направлен на панели в форме бабочки, что и послужило причиной ее названия «робот-бабочка». При вращении панели положение шара также будет меняться. Шарик каждый раз находится на разном расстоянии от центра и в каждый момент имеет разное ускорение. Промышленная камера фиксирует информацию о положении шарика, и информация будет передана в микроконтроллер, который использует встроенный алгоритм для расчета соответствующей скорости вращения для управления панелью, чтобы шарик оставался стабильным при вращении панель.

«Робот-бабочка» — это комплекс программно-аппаратных. Комплекс поможет автоматизировать многие производственные операции и создать роботизированные ячейки для сверления, фрезерования, полировки, сборочных работ. С помощью программно-аппаратного комплекса студенты осваивают компетенции для разработки приложений в таких областях, как телемедицина, реабилитация, авиационная и ракетно-строительная техника и других [1].

Однако исходная система управления может использовать только компьютер с системой Linux для управления стенда «Робот-бабочка». По сравнению со знакомой нам системой Windows, система Linux более сложна, что, несомненно, увеличивает сложность обучения использованию «Роботабабочки». При этом также отсутствуют алгоритмы управления стендом «Роботбабочка» через компьютер с системой Windows.

В связи с чем целью работы является разработка системы управления стендом «Робот-бабочка» на основе системы *Windows*. Для реализации данной цели необходимо выполнить следующие задачи:

- исследовать существующие алгоритмы определения положения шарика;
- разработать алгоритм отправки данных со стороны Python на микроконтроллер STM32;
- исследовать методы управления скоростью двигателя и изучить ПИД-регулятор;
  - реализовать системное управление стендом «Робот-бабочка».

#### Определения, обозначения, сокращения

В данной работе применены следующие термины с соответствующими определениями:

энкодер: Измерительный преобразователь угла поворота вращающегося объекта (например, вала) в цифровые или аналоговые сигналы, которые позволяют определить угол его поворота.

**микроконтроллер:** Микросхема, предназначенная для управления электронными устройствами.

преобразование Серкл Хафа (Circle Hough Transform): Метод извлечения признаков, используемый в цифровой обработке изображений для обнаружения кругов на несовершенных изображениях.

сервоконтроллер: Микропроцессорное устройство, способное управлять движением в реальном масштабе времени. Результатом работы сервоконтроллера является выдача управляющих сигналов на преобразователь частоты в какой-либо форме, которые меняются пропорционально требуемой скорости / перемещению / крутящему моменту.

**ПИД-регулятор**: Устройство в управляющем контуре с обратной связью. Он предназначен для поддержания установленных уровней задаваемых величин, например, температуры воздуха.

универсальный асинхронный или универсальный синхронно/асинхронный приемопередатчик: Удобный и простой последовательный интерфейс для организации информационного канала обмена микроконтроллера с внешним миром.

**двигатель постоянного тока**: Электрическая машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.

промышленная камера: Тип камеры. По сравнению с традиционными гражданскими камерами (камерами), обладают высокой стабильностью изображения, высокой пропускной способностью и высокой помехоустойчивостью и т. д.

В данной работе применены следующие сокращения и советующие им расшифровки:

**ПК** – персональный компьютер;

СУ – система управления;

ПИД – пропорционально-интегрально-дифференцирующий;

**USART** – универсальный синхронно/асинхронный приемопередатчик;

**SWOT** – Strengths (сильные стороны), Weaknesses (слабые стороны), Opportunities (возможности) и Threats (угрозы) – представляет собой комплексный анализ научно-исследовательского проекта.

#### 1 Литературный обзор

#### 1.1 Теоретическая часть

Учебно-исследовательский стенд «Робот-бабочка» относятся к роботам, появившимся в последние годы, поэтому статей об исследования стенда «Робот-бабочка» немного. Большинство статей представляют собой теоретический анализ движения мяча по панели и теоретический метод управления роботом-бабочкой.

Антон Ширяев и Леонид Фредович в своей работе "Кейс по нехватательной манипуляции: планирование и орбитальная стабилизация однонаправленных качения для стенда «Робот-бабочка»" Детально проанализировано движение стенда «Робот-бабочка». В статье указано, что «Робот-бабочка» состоит из двух одинаковых пластин в форме восьмерки, жестко расположенных параллельно друг другу на небольшом расстоянии, предназначен для манипулирования шариком, который может свободно катиться по границам пластин, как по рельсам. Шарик ненадежно прикреплен к раме, и движение шарика обеспечивается за счет силы тяжести. На основании известной информации авторы предлагают в исследовании следующие гипотезы:

- движение шарика, катящегося по раме, можно рассматривать как
   движение шарика по цилиндру;
- в любой момент существует только одна точка контакта между шаром и панелью, и панель не деформируется;
  - шарик не будет скользить при движении по панели [2].

«Робот-бабочка» может помочь техническим специалистам разработать высокоточные алгоритмы для применения в аэрокосмической, медицинской и других областях. Можно сказать, что популярность стенда «Робот-бабочка» довольно важна.

Этот проект разрабатывает алгоритм, который может управлять стендом «Робот-бабочка» на ПК с системой Windows.

#### 1.2 Обзор аналогов

Учитывая, что целью исследовательского проекта было обновление и модернизация исходной системы управления, можно предположить, что первоначальный робот «Бабочка» является наиболее подходящим аналогом. Ниже приведена сравнительная таблица характеристики двух приборов (разрабатываемое устройство и первоначальный робот).

Таблица 1 – Обзор аналогов разрабатываемого устройства

|                 |         |                  |              | Язык               |
|-----------------|---------|------------------|--------------|--------------------|
|                 | Система | Микропроцессор   | Язык для     | микроконтроллера   |
| Поморожату      |         |                  | определения  | для чтения и       |
| Показатели      |         |                  | положения    | вычисления         |
|                 |         |                  | мяча         | информации об      |
|                 |         |                  |              | изображении        |
|                 |         |                  |              |                    |
| Разрабатываемое | W7: 1   | CTN 422          | D41          | G/G                |
| устройство      | Windows | STM32            | Python       | C/C++              |
|                 |         |                  |              |                    |
| Первоначальный  | T ·     | D 1D D1 1        | Язык на базе | a                  |
| робот «Бабочка» | Linux   | BeagleBone Black | Linux        | Язык на базе Linux |
|                 |         |                  |              |                    |

Как видно из таблицы 1, по сравнению с первоначальным роботом «Бабочка», разрабатываемое устройство имеет больше преимуществ. Например, Система управления на базе Windows, позволяет управлять роботом «Бабочка» со своим компьютером. Это снижает барьеры для работы и повышает удобство использования. Языки Руthon и С/С++ менее сложны, чем языки на базе Linux.

#### 2 Описание технологического процесса

#### 2.1 Общая информация о стенде «Робот-бабочка»

«Робот-бабочка» — это платформа для разработки и обучения алгоритмов. Пользователи могут использовать учебно-исследовательский стенд «Робот-бабочка» для изучения и разработки адаптивных и нечетких алгоритмов управления. Мы можем использовать роботов-бабочек для разработки высокоточных алгоритмов, таких как разработка высокоточных алгоритмов управления медицинскими роботами для выполнения хирургических операций.

Стенд «Робот-бабочка» состоит из следующего оборудования и конструкций: панель в форме «Бабочка», двигатель постоянного тока maxim, промышленная камера Basler, энкодер sch50f, микроконтроллер BeagleBone Black, сервоконтроллер Escon 70/10 и система управления системой Linux. Стоит отметить, что в исходной системе управления для управления стенда «Робот-бабочка» должен использоваться компьютер с системой Linux.

Принцип работы робота-бабочки понять нетрудно: промышленная камера получает информацию о положении шарика и передает информацию на микроконтроллер, а микроконтроллер отправляет сигнал напряжения на двигатель постоянного тока для управления скоростью двигателя, так что шарик движется по панели оставаться стабильным [3-6].

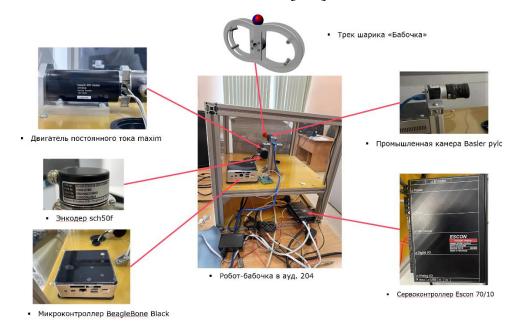



Рисунок 1 — Состав учебно-исследовательского стенда «Робот-бабочка»

#### 2.2 Автоматизированные задачи работы

Как упоминалось ранее, стенд «Робот-бабочка» может работать только в системе Linux, что, несомненно, усложняет использование «Робот-бабочка». По сравнению с системой Windows, система Linux более сложна с точки зрения порога использования и сложности работы, а уровень ее использования также ниже по сравнению с системой Windows.

Это определило автоматизированные задачи: обновление оригинального учебно-исследовательской платформы «Робот-бабочка». Система управления была модернизирована с системы Linux до системы Windows, что позволяет пользователям управлять стендом «Робот-бабочка» через персональный ноутбук. Кроме того, микроконтроллер заменен с оригинального BeagleBlack на микроконтроллер STM32. Студенты и техники лучше знакомы с контроллером STM32, чем с исходным микроконтроллером, а микроконтроллер STM32 менее сложен в использовании. STM32 также обладает такими характеристиками, как высокая производительность, низкая стоимость, низкое энергопотребление и многофункциональность.

#### 2.3 Используемые технические средства

#### 2.3.1 Промышленная камера

В задаче требует получения информации о положении мяча в режиме реального времени, но обычные камеры не могут снимать быстро движущиеся объекты. Для получения качественных и стабильных изображений промышленная камера на стенде, несомненно, лучший выбор. Промышленная камера Basler acA1300-200ис была использована в проекте. Промышленные камеры Basler отличаются высокой стабильностью изображения, широкой полосой пропускания и высокой помехоустойчивостью по сравнению с другими камерами.

Технические характеристики промышленной камеры *Basler acA1300-200ис* представлены в таблице 2:

Таблица 2 – Технические характеристики промышленной камеры

| Сенсор промышленного камера |                 | Характеристики камеры            |                          |
|-----------------------------|-----------------|----------------------------------|--------------------------|
| Сенсор                      | PYTHON 1300     | Интерфейс                        | USB 3.0                  |
| Размер пикселя (Г x B)      | 4.8 μm x 4.8 μm | Цифровой вход                    | 1                        |
| Частота кадров              | 203 fps         | Цифровой выход                   | 1                        |
| Тип сенсора                 | CMOS            | Общий ввод/вывод                 | 2                        |
| Монохромная / цветная       | Color           | Источник питания                 | Via USB 3.0<br>interface |
| Разрешение                  | 1.3 MP          | Требования к мощности (типичные) | 3 W                      |



Рисунок 2 – Промышленная камера *Basler acA1300-200ис* 

#### **2.3.2** Энкодер

Чтобы получить информацию о положении и скорости вращения двигателя, в проекте был использован энкодер *Scancon sch50f* [10-11]. Этот энкодер представляет собой высокоточный промышленный энкодер.

Технические характеристики энкодера *Scancon sch50f* представлены в таблице 3 [12]:

Таблица 3 – Технические характеристики энкодера Scancon sch50f

| Вид        | Значение/Диапазон                                              | Вид                | Значение/Диапазон                                                                       |
|------------|----------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------|
| Диаметр    | 50 мм                                                          | Код                | инкрементный                                                                            |
| Разрешение | от 1 до 12 500<br>импульсов на оборот<br>(импульсов на оборот) | Напряжение питания | 4,5 В постоянного тока мин. до 30 В постоянного тока макс. (макс. 35 мА - без нагрузки) |

Продолжение таблицы 3 — Технические характеристики энкодера Scancon sch50f

| Вид                    | Значение/Диапазон                                                                                     | Вид              | Значение/Диапазон                                               |
|------------------------|-------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------|
| Выходное<br>напряжение | Низкий: 500 мВ макс. при 10 мА Высокий: (Vin – 0,6) при -10 мА (Vbx – 1,3) при -25 мА                 | Выходной ток     | 30 мА макс. нагрузка<br>на выходной канал                       |
| Выходной<br>формат     | Двухканальный (A, B) квадратурный с индексным (Z) и опциональным дополнительным (A-, B-, Z-) выходами | Чувство<br>фазы  | А ведет В по часовой стрелке (CW) от монтажного конца энкодера. |
| Macca                  | Энкодер: ~ 120 г (4,23 унции) Кабель: 60 гр/метр (2,12 унции/метр)                                    | Скорость<br>вала | 12 000 об/мин (макс.)                                           |

Другая информация показана на рисунке ниже:

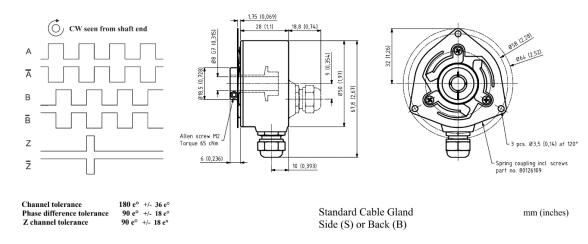



Рисунок 3 — Выходной сигнал и Механические размеры



Рисунок 4 – Энкодер Scancon sch50f

Сигналы, посылаемые прямым и обратным вращением двигателя, показаны на рисунке ниже (Красный — фаза A, желтый — фаза B):



Рисунок 5 – Выходные сигналы (Вращение против часовой стрелки)

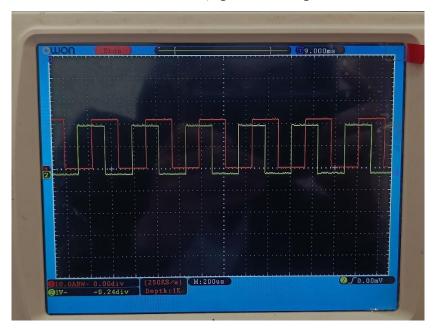



Рисунок 6 – Выходные сигналы (вращение по часовой стрелке)

#### 2.3.3 Микроконтроллер

Ключевой частью исследовательской проекта является микроконтроллер, который должен получать информацию о положении мяча от компьютера и управлять вращением двигателя на основе этой информации. Учитывая применимость, удобство и эффективность микроконтроллера, в проекте был выбран микроконтроллер серии *STM32F3-Discovery* [13].

STM32F3-DISCOVERY позволяет пользователям легко разрабатывать приложения с помощью микроконтроллера смешанных сигналов серии STM32F3 на основе Arm® Cortex®-M4. Он включает в себя все необходимое для быстрого начала работы как новичков, так и опытных пользователей.

Основанный на микроконтроллер *STM32F303VCT6*, он включает в себя встроенный инструмент отладки ST-LINK/V2 или ST-LINK/V2-B, акселерометр, гироскоп и электронный компас ST MEMS, USB-соединение, светодиоды и кнопки.

Плата STM32F3-DISCOVERY предлагает следующие функции:

- STM32F303VCT6 Микроконтроллер на базе Arm®(a) с 256 Кбайт флэшпамяти, 48 Кбайт ОЗУ в корпусе LQFP100;
- Встроенный ST-LINK/V2 для печатной платы версии А или В или ST-LINK/V2-В для печатной платы версии С и новее;
- Питание платы: по шине USB или от внешнего источника питания 3 В или 5 В;
  - Питание внешнего приложения: 3 В и 5 В;
  - Датчик движения ST MEMS, 3-осевой гироскоп с цифровым выходом;
- Комплексная система ST MEMS с трехмерным цифровым датчиком линейного ускорения и трехмерным цифровым магнитным датчиком;
  - Десять светодиодов:
    - LD1 (красный) для включения питания 3,3 B;
    - LD2 (красный/зеленый) для связи по USB;
- Восемь пользовательских светодиодов: LD3/10 (красный), LD4/9
   (синий), LD5/8 (оранжевый) и LD6/7 (зеленый).



Рисунок 7 – Макетная плата STM32F3-Discovery

#### 2.3.4 Двигатель постоянного тока

Двигатель является важной частью системы управления, он заставляет панель вращаться по часовой стрелке или против часовой стрелки. В этом проекте использовался двигатель постоянного тока *Maxon RE 50 Ø50 mm*. Этот двигатель постоянного тока имеет характеристики небольшого размера и мощного привода.

Технические характеристики и параметры промышленного камера представлены ниже, Рисунок 8-10.

| Значения при номинальном напряжении          |                         |
|----------------------------------------------|-------------------------|
| Стадия жизненного цикла                      | Не для новых разработок |
| Номинальное напряжение                       | 48 B                    |
| Скорость холостого хода                      | 4900 об/мин             |
| Ток холостого хода                           | 88.4 MA                 |
| Номинальная скорость                         | 4630 об/мин             |
| Номинальный момент (макс. длительный момент) | 407 мНм                 |
| Номинальный ток (макс. длительный ток)       | 4.44 A                  |
| Пусковой момент                              | 7370 мНм                |
| Пусковой ток                                 | 78.9 A                  |
| Максимальный КПД                             | 94 %                    |

Рисунок 8 – Значения при номинальном напряжении двигателя

#### Параметры

| Сопротивление между выводами         | 0.608 Ом              |
|--------------------------------------|-----------------------|
| Индуктивность между выводами         | 0.423 мГн             |
| Моментная постоянная                 | 93.4 мНм/А            |
| Скоростная постоянная                | 102 об/мин/В          |
| Крутизна механической характеристики | 0.666 об/мин/мНм      |
| Механическая постоянная времени      | 3.78 мс               |
| Инерция ротора                       | 542 г·см <sup>2</sup> |

Рисунок 9 – Параметры двигателя

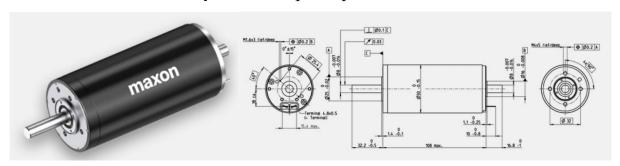



Рисунок 10 – Двигатель *Maxon Maxon RE 50 Ø50 mm и его структура* 

#### 2.3.5 Сервоконтроллер

Сервоконтроллер представляет собой микропроцессорное устройство, способное управлять движением в реальном масштабе времени. Результатом работы сервоконтроллера является выдача управляющих сигналов на преобразователь частоты в какой-либо форме. В проекте использовался сервоконтроллер maxon типа ESCON 70/10. Сервоконтроллер Escon 70/10 представляет собой высокопроизводительный сервоконтроллер небольшого размера, который может эффективно управлять двигателями постоянного тока мощностью около 700 Вт.

Технические характеристики и параметры промышленного камера представлены ниже, Рисунок 11.

#### Электрические характеристики

| Рабочее напряжение $V_{cc}$ , мин.                                  | 10 B          |
|---------------------------------------------------------------------|---------------|
| Рабочее напряжение $V_{cc}$ , макс.                                 | 70 B          |
| Макс. выходное напряжение (коэффициент к $V_{cc}$ )                 | 0.95          |
| Макс. импульсный выходной ток                                       | 30 A          |
| Макс. время импульсного выходного тока                              | 2 c           |
| Макс. ток в продолжительном режиме, для режима постоянного тока     | 10 A          |
| Частота ШИМ силового каскада                                        | 53.6 кГц      |
| Частота дискретизации ПИ регулятора тока                            | 53.6 кГц      |
| Частота дискретизации ПИ регулятора скорости                        | 5.36 кГц      |
| Максимальный КПД                                                    | 98 %          |
| Макс. скорость (коллекторный)                                       | 150000 об/мин |
| Макс. скорость (бесколлекторный, 1 пара полюсов) блочная коммутация | 150000 об/мин |
| Встроенный дроссель двигателя, на фазу                              | 15 мкГн       |
|                                                                     |               |

Рисунок 11 – Электрические характеристики



Рисунок 12 — Сервоконтроллер Escon 70/10

### 3 Модернизация аппаратной и программной части учебноисследовательского стенда «Робот-бабочка»

#### 3.1 Краткое описание

Модернизация учебно-исследовательского стенда «Робот-бабочка» нашла отражение в обновлении программного и аппаратного обеспечения [9].

#### 3.1.1 Модернизация аппаратной части стенда

В этом проекте вместо оригинального микроконтроллера *BeagleBone Black* для управления стендом «Робот-бабочка» использовалась отладочная плата микроконтроллера STM32. Программное обеспечение STM32CubeMX — это программное обеспечение, разработанное ST для настройки макетной платы STM32. Мы можем легко настроить макетную плату STM32 с помощью этого программного обеспечения.

#### 3.1.2 Модернизация программной части стенда

Изначально для управления стендом «Робот-бабочка» требовался компьютер на базе Linux. Этот проект переводит систему управления из системы Linux в систему Windows, что позволяет персональным компьютерам управлять стендом «Робот-бабочка». Внедрение системы Windows повысило практичность различных устройств и снизило порог обучения на стенде.



Рисунок 13 – Встроенная платформа BeagleBone Black

Следующие два рисунка могут более интуитивно увидеть разницу между до и после обновления:

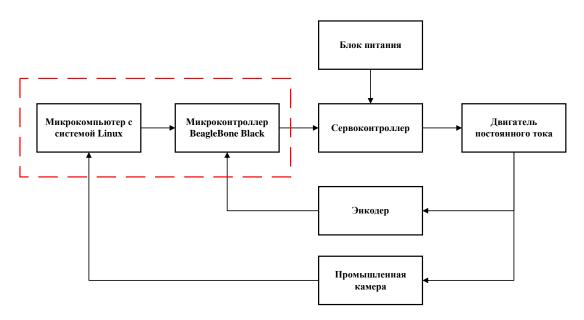



Рисунок 14 – Технический состав до обновления

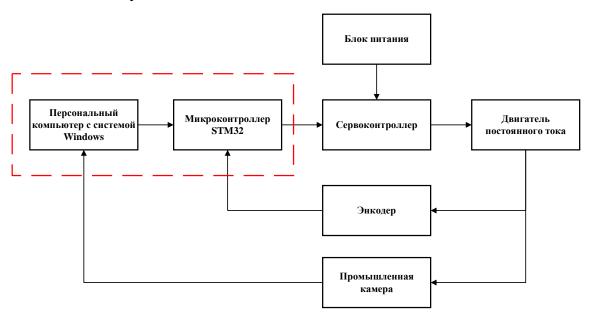



Рисунок 15 – Технический состав после обновления

#### 4 Реализация и описания алгоритмов и методов

Разработку системы управления учебно-исследовательским стендом «Робот-бабочка» можно разделить на следующие четыре основные части:

- Распознавание шарика;
- Формирование потока данных для STM32;
- Обратная связь;
- Блок управления двигателя.

Отношения между четырьмя частями показаны на рисунке 16 ниже:



Рисунок 16 – Отношения между четырьмя частями

#### 4.1 Распознавание шарика

В качестве первой части этого исследовательского проекта был разработан алгоритм определения положения шарика. Алгоритм распознавания мяча пропущен через библиотеку *Opency* в среде *Python*.

#### 4.1.1 Анализ существующих алгоритмов

Существует два основных метод, используемых для распознавания шарика в проекте: *Преобразование Хафа по кругу (СНТ)* и *Сегментация цветного изображения*. Оба метода могут реализовать распознавание шариков на изображении [7].

Преобразование Хафа по кругу – это базовый метод извлечения признаков, используемый в цифровой обработке изображений для обнаружения кругов на несовершенных изображениях. Кандидаты на круг создаются путем "голосования" в пространстве параметров Хафа, а затем выбора локальных

максимумов в матрице аккумуляторов. Преобразование Хафа по кругу — это процесс преобразования окружности в двумерном пространстве изображения в точку в трехмерном пространстве параметров, определяемую радиусом окружности и горизонтальными и вертикальными координатами центра окружности. Окружность, определяемая любыми тремя точками на окружности, преобразуется по Хафу. Последнему должна соответствовать точка в трехмерном пространстве параметров [8].

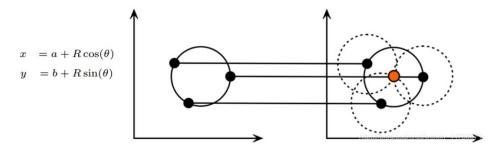



Рисунок 17 – Преобразование Хафа по кругу

```
1. CVAPI(CvSeq*) cvHoughCircles( CvArr* image, void* circle_storage,
2. int method, double dp, double min_dist,
3. double param1 CV_DEFAULT(100),
4. double param2 CV_DEFAULT(100),
5. int min_radius CV_DEFAULT(0),
6. int max_radius CV_DEFAULT(0));
```

Рисунок 18 – Функция HoughCircles в библиотеке Opencv в среде Python

Сегментация цветного изображения — используется в Орепсу для распознавания конкретных объектов / областей, имеющих определенный цвет. Для цветовой сегментации все, что нам нужно, это пороговые значения или знание нижней границы и верхней границы диапазона цветов в одном из цветовых пространств.



Рисунок 19 – Сегментированный теннисный мяч

В проекте использовались два метода для написания кода и запуска программы в программном обеспечении Pycharm и получил следующие результаты:

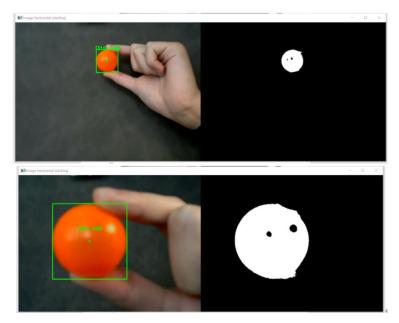



Рисунок 20 — Результат методом Сегментация цветного изображения (Процесс приближения мяча к камере)

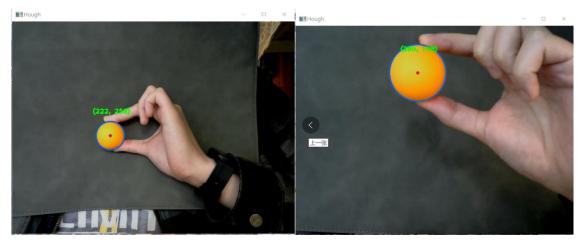



Рисунок 21 — Результат распознавания методом Преобразования Хафа по кругу (Процесс приближения мяча к камере)

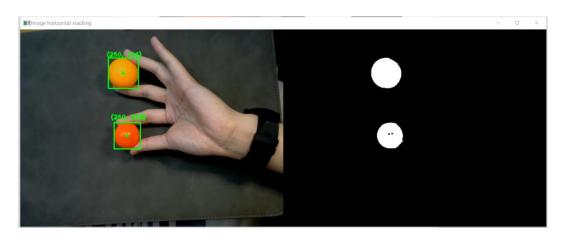



Рисунок 22 — Результат распознавания методом Сегментация цветного изображения (Распознавание 2 шарика одновременно)

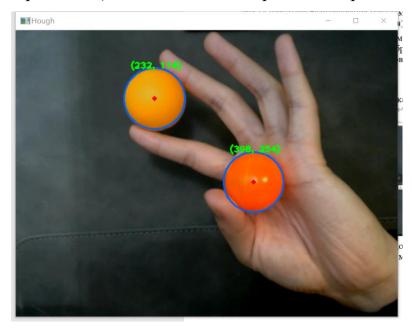



Рисунок 23 — Результат распознавания методом Преобразования Хафа по кругу (Распознавание 2 шарика одновременно)

**Вывод**: Оба метода могут распознавать шарик на изображении. Однако, учитывая, что в последующем нам необходимо получить координаты шарика на фоне разного цвета, чтобы исключить интерференцию цвета фона, выбрал метод **Преобразования Хафа по кругу** в качестве метода распознавания проекта.

#### 4.1.2 Реализация алгоритма в проекте

На блок-схеме показана реализация алгоритма для распознавания шарика:

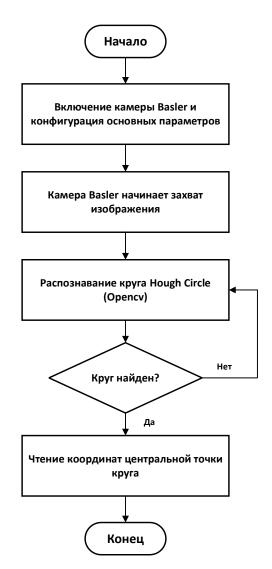



Рисунок 24 – Блок схема программы для распознавания шарика

Идентифицированная информация о координатах не является той информацией, которую необходимо отправить. Информация об угле и расстоянии, которую необходимо отправить, рассчитывается на основе положения шарика.

В соответствии с размером изображения и центральным положением панели выберите точку А (640,1080) в качестве начала координат. Горизонтальная правая сторона является положительным направлением по оси X, а вертикальная нисходящая сторона положительна по оси Y. Вычислите угол между положением шара и осью Y и расстояние между шаром и началом координат по формулам (3.1) и (3.2):

Угол между шаром и осью Ү:

$$\varphi = \arctan \frac{x - 660}{|1080 - v|} \tag{3.1}$$

Расстояние между двумя точками:

$$R = \sqrt{(x - 660)^2 + (y - 1080)^2}$$
 (3.2)

Результат показан на рисунке ниже:

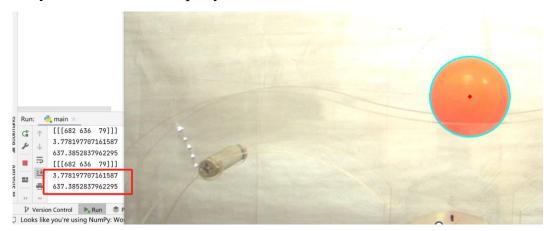



Рисунок 25 – Полученный результат

Из рисунка 25 видим, что программа может определить шарик на изображении. Координаты центральной точки шарика печатаются в окне Run.

#### 4.2 Формирование потока данных для STM32

Чтобы отправить информацию о положении шарика на микроконтроллер STM32, необходимо найти метод для передачи данных со стороны Python на микроконтроллер STM32 [14].

#### 4.2.1 Реализация алгоритма на стороне Python

В *Pycharm* используем библиотеку *pyserial* для передачи данных. Чтобы успешно отправить данные на STM32, необходимо установить ту же скорость передачи данных (115200).

Кроме того, также необходимо обработать отправленные данные перед отправкой. Pyserial отправляет данные в виде строк, так как каждое число в Python занимает один байт, одновременная отправка двух данных с плавающей запятой будет занимать много памяти, поэтому STM32 не может принимать такие данные [15].

Библиотека *Struct* — это модуль для упаковки и распаковки двоичных данных. Он позволяет вам связывать двоичные данные с различными типами данных, такими как целые числа, числа с плавающей запятой и т. д., а также сохранять и считывать их. Функция *struct.pack()* упаковывает два данных в двоичные данные, а после отправки их в STM32 распаковывает данные на стороне STM32, чтобы получить два данных типа с плавающей запятой. При упаковке данных заголовок и конце кадра вставляются для идентификации и проверки полученных данных на стороне STM32.

Блок-схема программы представлена на рисунке ниже:



Рисунок 26 – Блок-схема (передача данных: *Python -> STM32*)

Результат, полученный после запуска программы, показан на рисунке 26 ниже:



Рисунок 27 – Полученный результат в *Pycharm* 

#### 4.2.2 Реализация алгоритма на стороне STM32

На стороне STM32 нужно только разделить данные на две части (два данных) в соответствии с положением заголовка кадра и хвоста кадра, а затем сохранить их в две переменные соответственно. Блок-схема показана ниже:



Рисунок 28 – Блок-схема на стороне STM32 (Получение данных)

Программы на стороне Python и на стороне STM32 запускаются одновременно, и можно получить следующие результаты:

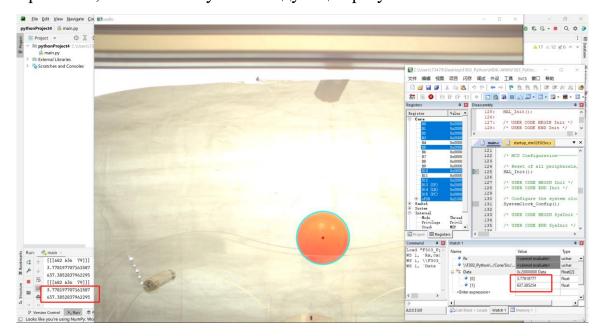



Рисунок 29 – Полученный результат передачи данных

Из результатов видим, что STM32 может получать данные, отправленные со стороны Python, что указывает на то, что поток данных между Python и STM32 успешно установлен. Положение шарика меняется, поэтому отправляемые данные тоже меняются. Данные, полученные терминалом STM32, изменяются по мере изменения положения шарика.

## 4.3 Обратная связь – Отображение состояния вращения двигателя

На плате *STM32F3-Discovery* имеется восемь светодиодных индикаторов, которые расположены по кругу, поэтому положение вращения двигателя можно наблюдать с помощью светодиодных индикаторов в соответствующих положениях.

Согласно техническим характеристикам энкодера, энкодер способен выдавать 8192 импульса на один оборот ротора двигателя. Следовательно, мы можем разделить эти 8192 импульса на восемь частей, и каждая лампочка светодиода соответствует одной части, то есть 1024 импульсам. Когда ротор двигателя поворачивается в соответствующее положение, соответствующий

светодиод горит, а другие светодиоды остаются выключенными. Когда двигатель продолжает вращаться, светодиоды также будут «вращаться» в соответствии с положением ротора двигателя.

Блок-схема алгоритма показана на рисунке ниже:



Рисунок 30 – Блок-схема раздела обратной связи

Энкодер подключен к двум последовательным портам платы STM32, а два последовательных порта подключены к фазе A и фазе B. Когда импульс фазы A поступает быстрее, чем импульс фазы B, двигатель вращается по часовой стрелке, в противном случае двигатель вращается против часовой стрелки. Последовательность включения светодиодов также будет последовательно загораться по часовой стрелке или против часовой стрелки.

# 4.4 Блок управления двигателем — Использование ПИД-регулятора 4.4.1 ПИД-регулятор

В этом проекте двигателю присваивается целевое значение положения в соответствии с положением шарика, а система обратной связи возвращает фактическое значение положения, но между ними возникает ошибка. Поэтому

нам нужен ПИД-регулятор, чтобы уменьшить ошибку. ПИД-регулятор регулирует входное значение на основе этой ошибки до тех пор, пока выходное значение не достигнет заданного значения [16].

Пропорционально-интегрально-дифференцирующий (ПИД) регулятор — устройство в управляющем контуре с обратной связью.

ПИД-регулятор состоит из трех компонентов: Пропорциональная составляющая, интегрирующая составляющая и дифференцирующая составляющая. У каждой части своя роль:

- пропорциональная: Пропорциональная составляющая вырабатывает выходной сигнал, противодействующий отклонению регулируемой величины от заданного значения, наблюдаемого в данный момент времени;
- интегрирующая: Интегрирующая составляющая пропорциональна интегралу по времени от отклонения регулируемой величины;
- дифференцирующая: Дифференцирующая составляющая
   пропорциональна темпу изменения отклонения регулируемой величины и
   предназначена для противодействия отклонениям от целевого значения, которые
   прогнозируются в будущем.

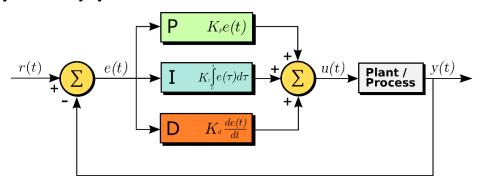



Рисунок 31 – Принципиальная схема ПИД-регулятора

## 4.4.1.1 ПИД-регулятор позиционного типа

ПИД-регулятор позиционного типа на самом деле является ПИДрегулятором, основанным на отклонении между фактическим положением текущей системы и положением, которого вы ожидаете достичь [17]. Формула расчета выглядит следующим образом (4.1):

$$U_k = K_p * e_k + K_i \sum_{i=0}^k e_k + K_d (e_k - e_{k-1})$$
(4.1)

где  $K_p, K_i, K_d$  — коэффициенты усиления пропорциональной, интегрирующей и дифференцирующей составляющих регулятора соответственно.

Из приведенной выше формулы видно, что выход каждой операции ПИДрегулятора связан с прошлым состоянием, и ошибка интегрального члена будет накапливаться.

#### 4.4.1.2 Инкрементальный ПИД-регулятор

Выход инкрементного ПИД-регулятора — это просто приращение управляющей величины. Когда количество управления, требуемое исполнительным механизмом, является инкрементным, тогда мы можем использовать алгоритм инкрементного ПИД-регулирования для управления. Формула расчета выглядит следующим образом (4.2):

$$\Delta U_k = K_p * \big( e(k) - e(k-1) \big) + K_i * e_k + K_d * [e(k) - 2e(k-1) + e(k-2)] \qquad (4.2)$$
 где  $K_p, K_i, K_d$  — коэффициенты усиления пропорциональной, интегрирующей и дифференцирующей составляющих регулятора соответственно.

Для инкрементного PID при заданном входном значении отклонение между возвращаемым системой значением и установленным значением равно Err, а последнее отклонение  $Last\_Err$  и последнее отклонение  $Previous\_Err$  сохраняются в системе. Эти три входных значения можно использовать для расчета приращения  $\Delta U_k$  вышеупомянутых управляющих переменных через инкрементный ПИД. Полученная управляющая переменная  $\Delta U_k$  соответствует приращению последней ошибки положения, а не отклонению от фактического положения, то есть накопления ошибки нет. То есть контрольная сумма должна увеличиваться на основе последней контрольной суммы.

## 4.4.2 Реализация технологии ПИД-регулятора

Учитывая, что ключ проекта заключается в управлении положением вращения двигателя, выбран ПИД-регулятор позиционного типа.

В этом исследовательском проекте были разработаны два алгоритма для двух разных сценариев: шарик остается стабильным на панели и движение шарика по вращающейся панели.

#### 4.4.2.1 Шарик остается стабильным на панели

Подобно самобалансирующемуся автомобилю, система должна управлять двигателем, чтобы он вращался в соответствующем положении в соответствии с положением шарика, чтобы качающийся шарик оставался стабильным и опирался на панель.

Для этого сценария была разработана двухконтурная система управления по положению и скорости. Контур скорости вложен в контур положения. Принципиальная схема показана на рисунке 32 ниже.

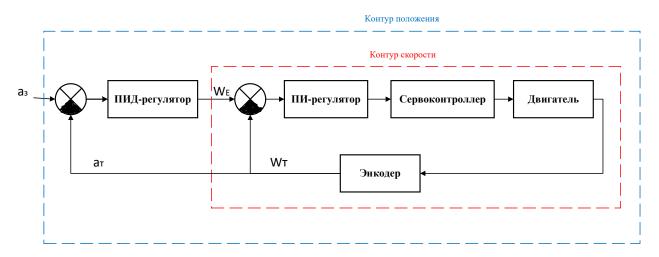



Рисунок 32 – Структурная схема двухконтурной системы управления

Описание: а<sub>3</sub> - целевой угол, который входит в контур положения как вход, и после действия ПИД-регулятора может быть получена ожидаемая скорость W3 для достижения целевого положения. После этого в контур скорости входят скорость W3 и силовая скорость двигателя, а после действия ПИД-регулятора снова регулируются скорость и положение вращения двигателя. Промышленные камеры и энкодеры используются в качестве обратной связи для определения положения шарика.

Запустим программу и осторожно переместите шарик рукой, чтобы он качался влево и вправо на панели. Система постоянно регулирует положение

вращения двигателя в соответствии с положением шарика и, наконец, стабилизирует шарик на панели (покое). Результат показан на рисунке 33 ниже.



Рисунок 33 – Результат работы алгоритма

### 4.4.2.2 Движение шарика по вращающейся панели

В этой части устанавливается начальная скорость, чтобы двигатель вращался. Когда положение шарика распознано, двигатель изменит скорость в соответствии с различными положениями шарика, чтобы заставить шарик двигаться по панели.

Для этого сценария был разработан алгоритм ПИД-регулятора контура по скорости. Структура схема этой части показана на рисунке 34.



Рисунок 34 — Структурная схема управления двигателем

Так как движение мяча по панели очень сложное, это выходит за рамки моих возможностей на данном этапе, поэтому в этом проекте не разработан алгоритм, чтобы мяч двигался по вращающейся панели, не падая.

Алгоритм, разработанный в этом проекте, заставляет мяч двигаться 1,5 оборота по доске, а затем мяч падает. Конкретный метод алгоритма состоит в том, чтобы установить разные скорости для позиций с разными углами с

помощью нескольких попыток. Результат работы программы показан на рисунке 34 ниже:

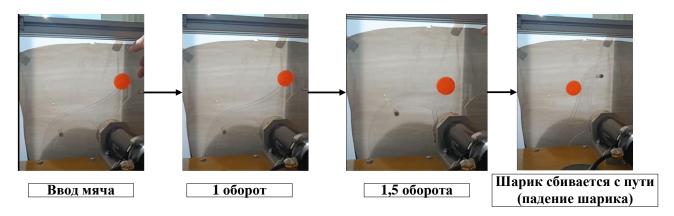



Рисунок 35 – Результат работы алгоритма

Математический алгоритм движения шарика слишком сложен, и на данном этапе невозможно реализовать идеальную ситуацию, когда шарик движется по вращающейся панели, не падая. Но цель проекта достигнута.

#### ЗАДАНИЕ К РАЗДЕЛУ «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

| Обучающемуся | <b>F</b> |
|--------------|----------|
|--------------|----------|

| Группа |      | ФИО         |
|--------|------|-------------|
|        | 8E92 | Го Цзыцзюнь |

| Школа               | ИШИТР       | Отделение школы (НОЦ)     | Отделение автоматизации и<br>робототехники |
|---------------------|-------------|---------------------------|--------------------------------------------|
| Уровень образования | Бакалавриат | Направление/специальность | 15.03.06<br>Мехатроника и<br>робототехника |

## Исходные данные к разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»:

| 1. Стоимость ресурсов научного исследования (НИ): материально-технических, энергетических, финансовых, информационных и человеческих | Стоимость материальных ресурсов определялась по средней рыночной стоимости. Оклады в соответствии с окладами сотрудников организации. |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 2. Нормы и нормативы расходования ресурсов                                                                                           | Тариф на электричество $-3,5$ руб./кВт·ч, $30\%$ районный коэффициент, $30\%$ премиальный коэффициент.                                |
| 3. Используемая система налогообложения, ставки налогов, отчислений, дисконтирования и кредитования                                  | Коэффициент отчислений во внебюджетные фонды - 30 %                                                                                   |

#### Перечень вопросов, подлежащих исследованию, проектированию и разработке:

| 1. | Оценка коммерческого потенциала, перспективности и альтернатив проведения НИ с позиции                                   | Оценить коммерческий потенциал и                                                                                               |
|----|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|    | ресурсоэффективности и ресурсосбережения                                                                                 | перспективность проведения научных исследований с позиции ресурсоэффективности и ресурсосбережения.                            |
| 2. | Планирование и формирование бюджета научных исследований                                                                 | Определить трудоемкость выполнения проекта.<br>Разработать план и рассчитать затраты.                                          |
| 3. | Определение ресурсной (ресурсосберегающей), финансовой, бюджетной, социальной и экономической эффективности исследования | Определить интегральный показатель эффективности исследования. Оценить сравнительную эффективность научного исследования (НИ). |

#### Перечень графического материала:

- 1. Оценка конкурентоспособности технических решений
- 2. Mampuųa SWOT
- 3. Альтернативы проведения НИ
- 4. График проведения и бюджет НИ
- 5. Оценка ресурсной, финансовой и экономической эффективности НИ

| Дата выдачи задания к разделу в соответствии с календарным |  |
|------------------------------------------------------------|--|
| учебным графиком                                           |  |

Задание выдал консультант по разделу «Финансовый менеджмент,

ресурсоэффективность и ресурсосбережение»:

| Должность        | ФИО                           | Ученая степень,<br>звание | Подпись | Дата |
|------------------|-------------------------------|---------------------------|---------|------|
| Доцент ОСГН ШБИП | Былкова Татьяна<br>Васильевна | к.э.н.                    |         |      |

Задание принял к исполнению обучающийся:

| Группа | ФИО         | Подпись | Дата |
|--------|-------------|---------|------|
| 8E92   | Го Цзыцзюнь |         |      |

## 5 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение

Целью раздела «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение» является проектирование и создание конкурентоспособно разработанных технологий, отвечающих современным требованиям в области ресурсоэффективности и ресурсосбережения [18].

### 5.1 Потенциальные потребители результатов исследования

Для анализа потребителей результатов исследования необходимо рассмотреть целевой рынок и провести его сегментирование.

Целевым рынком проекта являются университеты, проводящие исследования в области автоматического управления, и центры исследования алгоритмов, разрабатывающие и эксплуатирующие оборудование автоматического управления. Сегментация рынка осуществляется на основе двух основных критериев: направления деятельности и размера организации. Карта сегментирования представлена в таблице 4 ниже:

Таблица 4 – Карта сегментирования

|        |            |   |              | Направления деятельности |                 |                |  |  |
|--------|------------|---|--------------|--------------------------|-----------------|----------------|--|--|
|        |            |   |              | Научные                  | Образовательная | Проектирование |  |  |
|        |            |   | исследования | деятельность             | оборудования    |                |  |  |
| d      | аци        |   | Мелкие       |                          |                 |                |  |  |
| Размер | эрганизаци | И | Средние      |                          |                 |                |  |  |
| L B    | орг        |   | Крупные      |                          |                 |                |  |  |

Согласно карте сегментирования рынка, можно сделать вывод, что для реализации разработки подходят образовательные учреждения, а также крупные организации, проводящие научные исследования и проектирующие оборудование в области автоматического управления. Для образовательных учреждений и технических исследовательских организаций стенд является обязательным аппаратным требованием для проведения исследований.

## 5.2 Анализ конкурентных технических решений

Существуют следующие основные конкуренты:

- Стенд «робот бабочка» компании «Robotikum» (к1);
- Лабораторно-исследовательский комплекс «Робот Бабочка» компании «Образовательная робототехника» (к2).

Позиция разработки и конкурентов оценивается по каждому показателю экспертным путем по пятибалльной шкале, где 1 — наиболее слабая позиция, а 5 — наиболее сильная. Оценка конкурентоспособности технических решений представлена в таблице 5.

Таблица 5 – Оценочная карта для сравнения конкурентных технических решений

| Критерии оценки                      | Вес<br>критер |        | Баллы           | [               |       | онкуре<br>10собн |                 |
|--------------------------------------|---------------|--------|-----------------|-----------------|-------|------------------|-----------------|
|                                      | ия            | Бф     | Б <sub>к1</sub> | Б <sub>к2</sub> | Кф    | К <sub>к1</sub>  | К <sub>к2</sub> |
| 1                                    | 2             | 3      | 4               | 5               | 6     | 7                | 8               |
| Технические критерии                 | оценки р      | ecypco | эффек           | гивнос          | сти   |                  |                 |
| 1. Безопасность                      | 0,06          | 4      | 4               | 5               | 0,24  | 0,24             | 0,30            |
| 2. Простота использования            | 0,06          | 5      | 4               | 3               | 0,30  | 0,24             | 0,18            |
| 3. Улучшение производительности      | 0,10          | 5      | 4               | 3               | 0,50  | 0,40             | 0,30            |
| 4. Надежность                        | 0,04          | 4      | 5               | 5               | 0,16  | 0,20             | 0,20            |
| 5. Энергоэкономичность               | 0,02          | 4      | 4               | 4               | 0,08  | 0,08             | 0,08            |
| 6. Уровень автоматизации             | 0,06          | 5      | 4               | 3               | 0,30  | 0,24             | 0,18            |
| 7. Возможность подключения к ПК      | 0,12          | 5      | 5               | 5               | 0,60  | 0,60             | 0,60            |
| 8. Качество интеллектуального        | 0,04          | 4      | 3               | 3               | 0,16  | 0,12             | 0,12            |
| интерфейса                           |               |        |                 |                 |       |                  |                 |
| Показатели оценки коммо              | ерческого     | потен  | циала           | разраб          | ботки |                  |                 |
| 9. Конкурентоспособность продукта    | 0,12          | 5      | 4               | 4               | 0,60  | 0,48             | 0,48            |
| 10. Цена                             | 0,12          | 5      | 4               | 4               | 0,60  | 0,48             | 0,48            |
| 11. Предполагаемый срок эксплуатации | 0,10          | 4      | 4               | 4               | 0,40  | 0,40             | 0,40            |
| 12. Уровень проникновения на рынок   | 0,06          | 2      | 4               | 4               | 0,12  | 0,24             | 0,24            |
| 13. Срок выхода на рынок             | 0,04          | 3      | 5               | 4               | 0,12  | 0,20             | 0,16            |
| 14. Послепродажное обслуживание      | 0,06          | 4      | 4               | 4               | 0,24  | 0,24             | 0,24            |
| Итого                                | 1             | 59     | 58              | 55              | 4,42  | 4,16             | 3,96            |

По результатам оценочной карты разработанный стенд имеет наивысший общий балл. Основным преимуществом данного стенда перед конкурентами является простота использования, улучшение производительности, уровень автоматизации, конкурентоспособность и цена. Однако, он уступает двум другим продуктам по сроку выхода на рынок и проникновению на рынок.

#### 5.3 SWOT-анализ

SWOT-анализ — это Метод стратегического планирования и стратегического управления, используемый, чтобы помочь человеку или организации определить Сильные и слабые стороны, Возможности и Угрозы, связанные с деловой конкуренцией или планированием проекта.

С помощью этого метода можно обозначить основные проблемы проекта, определить пути решения и перспективу развития. Первым шагом является описание сильных и слабых сторон проекта, а также выявление возможностей и угроз. Результаты первого этапа SWOT-анализа представлены в таблице 6.

Таблица 6 – Матрица SWOT

| Сильные стороны:                   | Слабые стороны:                 |
|------------------------------------|---------------------------------|
| С1. Снижение сложности обучения    | Сл1. Наличие импортных          |
| С2. Низкая стоимость оборудования  | компонентов в системе           |
| С3. Актуальность разработки        | Сл2. Медленный вывод на рынок   |
| С4. Возможность использования в    | разработанного стенда           |
| учебных целях                      | Сл3. Большие габариты установки |
| С5. Наличие разных режимов работы. | стенда                          |
|                                    | Сл4. Медленный вывод на рынок   |
|                                    | разработанного стенда           |

## Продолжение таблицы 6 – Матрица SWOT

| Возможности:                        | Угрозы:                            |
|-------------------------------------|------------------------------------|
| В1. Исследование и разработка более | У1. Отсутствие спроса на рынке     |
| эффективных алгоритмов              | У2. Развивающаяся конкуренция на   |
| В2. Доступ к исследовательским      | рынке                              |
| грантам                             | У3. Малый объем рынка сбыта        |
| В3. Использование стенда для        | У4. Санкции на оборудования стенда |
| исследования автоматизации          |                                    |
| технологических процессов           |                                    |
| В4. Замена сложных компонентов      |                                    |
| стендов                             |                                    |
| В5. Модернизировать оборудование    |                                    |
| стенда «Робот-бабочка»              |                                    |

Вторым этапом является выявление соответствия сильных и слабых сторон научно-исследовательского проекта внешним условиям окружающей среды. Интерактивные матрицы проекта представлены в таблицах 7 – 10.

Таблица 7 – Интерактивная матрица сильных сторон и возможностей проекта

|             | Сильные стороны проекта |    |    |    |    |    |  |  |
|-------------|-------------------------|----|----|----|----|----|--|--|
|             |                         | C1 | C2 | C3 | C4 | C5 |  |  |
|             | B1                      | +  | -  | -  | -  | +  |  |  |
| Возможности | B2                      | -  | -  | -  | +  | -  |  |  |
| проекта     | В3                      | +  | -  | -  | -  | +  |  |  |
|             | B4                      | 1  | +  | 1  | -  | -  |  |  |
|             | В5                      | 1  | +  | +  | -  | -  |  |  |

Таблица 8 – Интерактивная матрица слабых сторон и возможностей проекта

|             | Слабые стороны проекта |     |     |     |     |  |  |  |
|-------------|------------------------|-----|-----|-----|-----|--|--|--|
|             |                        | Сл1 | Сл2 | Сл3 | Сл4 |  |  |  |
|             | B1                     | -   | +   | -   | +   |  |  |  |
| Возможности | B2                     | 0   | -   | -   | -   |  |  |  |
| проекта     | В3                     | +   | -   | -   | +   |  |  |  |
|             | B4                     | +   | -   | -   | -   |  |  |  |
|             | В5                     | +   | +   | -   | 0   |  |  |  |

Таблица 9 – Интерактивная матрица сильных сторон и угроз проекта

|                   | Сильные стороны проекта |    |    |    |    |    |  |  |
|-------------------|-------------------------|----|----|----|----|----|--|--|
|                   |                         | C1 | C2 | C3 | C4 | C5 |  |  |
| Vrnozli           | У1                      | -  | +  | +  | +  | -  |  |  |
| Угрозы<br>проекта | У2                      | -  | +  | -  | -  | -  |  |  |
|                   | У3                      | -  | -  | -  | -  | -  |  |  |
|                   | У4                      | -  | -  | -  | -  | -  |  |  |

Таблица 10 – Интерактивная матрица слабых сторон и угроз проекта

|                   | Слабые стороны проекта |     |     |     |     |  |  |  |
|-------------------|------------------------|-----|-----|-----|-----|--|--|--|
|                   |                        | Сл1 | Сл2 | Сл3 | Сл4 |  |  |  |
| Vrnozli           | У1                     | +   | +   | -   | +   |  |  |  |
| Угрозы<br>проекта | У2                     | -   | 0   | -   | -   |  |  |  |
|                   | У3                     | 0   | 0   | -   | -   |  |  |  |
|                   | У4                     | +   | +   | -   | -   |  |  |  |

В рамках третьего этапа была составлена итоговая матрица SWOTанализа. Итоговая матрица представлена в таблице 11.

Таблица 11 – SWOT-анализ

|                          | Сильные стороны:             | Слабые стороны:            |
|--------------------------|------------------------------|----------------------------|
|                          | С1. Снижение сложности       | Сл1. Наличие импортных     |
|                          | обучения                     | компонентов в системе      |
|                          | С2. Низкая стоимость         | Сл2. Медленный вывод на    |
|                          | оборудования                 | рынок разработанного       |
|                          | С3. Актуальность разработки  | стенда                     |
|                          | С4. Возможность              | Сл3. Большие габариты      |
|                          | использования в              | установки стенда           |
|                          | образовательных целях        | Сл4. Отсутствие прототипа  |
|                          | С5. Наличие разных режимов   |                            |
|                          | работы.                      |                            |
| Возможности:             | Снижение сложности обучения  | Использование импортного   |
| В1. Исследование и       | помогает разработать более   | оборудования может стать   |
| разработка более         | эффективные алгоритмы и      | проблемой для внедрения    |
| эффективных алгоритмов   | автоматизировать процесс     | разработки в отечественную |
| В2. Доступ к             | использования стенда.        | промышленность. В то же    |
| исследовательским        | Невысокая стоимость          | время отсутствие           |
| грантам                  | оборудования позволяет       | прототипов может сказаться |
| ВЗ. Использование стенда | производить замену сложных   | на использовании и         |
| для исследования         | частей стенда и программно-  | модернизации стенда.       |
| автоматизации            | аппаратную модернизацию      |                            |
| технологических          | оборудования на стенде.      |                            |
| процессов                | Поскольку стенд может быть   |                            |
| В4. Замена сложных       | использован для технического |                            |
| компонентов стендов      | образования, он помогает     |                            |
| В5. Модернизировать      | образовательным и            |                            |
| оборудование стенда      | исследовательским            |                            |
| «Робот-бабочка»          | учреждениям получать         |                            |
|                          | исследовательские гранты.    |                            |

Продолжение таблицы 11 – SWOT-анализ

| Угрозы:                        | Низкая стоимость          | Наличие импортных        |
|--------------------------------|---------------------------|--------------------------|
| У1. Отсутствие спроса на рынке | оборудования стенда,      | компонентов, Медленный   |
| У2. Развивающаяся              | актуальность стенда и     | вывод на рынок           |
| конкуренция на рынке           | возможность его           | разработанного стенда и  |
| У3. Малый объем рынка сбыта    | использования в           | отсутствие прототипа     |
| У4. Санкции на оборудования    | образовательных целях     | являются причинами       |
| стенда                         | позволяют повысить        | отсутствия рыночного     |
|                                | спрос на стенды на рынке. | спроса. На использование |
|                                |                           | импортного оборудования  |
|                                |                           | могут повлиять санкции.  |

В результате SWOT-анализа были рассмотрены сильные и слабые стороны модернизации учебно-исследовательского стенда, выявлены возможности, которые позволят систему сделать лучше по сравнению с конкурентами и рассмотрены варианты угроз, которые могут этому помешать. Для уменьшения угроз и борьбы со слабыми сторонами необходимо:

- Снизить зависимость от импортных компонентов оборудования.
   Максимально заменить импортные оборудования системы на отечественные;
- Производить анализ деятельности конкурентов на рынке и действовать на опережение, расширяя функционал системы и повышая качество стенда.

## 5.4 Планирование научно-исследовательских работ

## 5.4.1 Структура работ в рамках научного исследования

Для реализации научного проекта необходимы два исполнителя – руководитель (Р) и инженер (И). Проектная работа делиться на этапы, по каждому виду запланированных работ установлена соответствующая должность исполнителей. Этапы реализации проекта представлены в таблице 12.

Таблица 12 – Этапы реализации проекта

| Основные этапы       | N₂ | Содержание работ                  | Исполнитель |
|----------------------|----|-----------------------------------|-------------|
| Выбор направления    | 1  | Выбор направления научного        | Р, И        |
| исследования         |    | исследования                      |             |
|                      | 2  | Постановка основных целей и задач | P           |
| Разработка           | 3  | Составление и утверждение         | Р, И        |
| технического задания |    | технического задания              |             |
| Анализ предметной    | 4  | Обзор технической литературы      | И           |
| области              | 5  | Календарное планирование работ    | Р, И        |
| Теоретические и      | 6  | Подбор оборудования стенда        | И           |
| экспериментальные    |    |                                   |             |
| исследования         |    |                                   |             |
| Теоретические и      | 7  | Разработка алгоритма опроса       | И           |
| экспериментальные    |    | датчика положения шарика          |             |
| исследования         | 8  | Разработка алгоритма программы    | И           |
|                      |    | передачи координат со стороны     |             |
|                      |    | Pthon на STM32                    |             |
|                      | 9  | Разработка алгоритмов для         | И           |
|                      |    | управления двигателям             |             |
|                      | 10 | Отладка параметров                | И           |
|                      | 11 | Оптимизация алгоритмов            | И           |
|                      | 12 | Сборка исследовательского стенда  | И           |
| Дополнительные       | 13 | Написание раздела «Финансовый     | И           |
| разделы              |    | менеджмент, ресурсоэффективность  |             |
|                      |    | и ресурсосбережение»              |             |
|                      | 14 | Написание раздела «Социальная     | И           |
|                      |    | ответственность»                  |             |
| Проверка результатов | 15 | Проверка работы руководителем     | P           |
| Оформление отчета    | 16 | Составление пояснительной записки | И           |
| по НИР               |    |                                   |             |

# **5.4.2** Определение трудоемкости выполнения работ и диаграмма Ганта

В большинстве случаев, затраты на оплату труда составляют большую часть стоимости разработки, поэтому неотъемлемым действием определения ресурсоэффективности является определение трудоемкости работ участников проектирования. Рассчитываем среднее значение трудоемкости  $T_{\text{ож}i}$  по следующей формуле (5.1):

$$T_{\text{OXK}i} = \frac{3 \cdot T_{mini} + 2 \cdot T_{maxi}}{5} \tag{5.1}$$

где  $T_{\text{ож}i}$  – ожидаемая трудоемкость выполнения i-ой работы, чел/дн.;

 $T_{mini}$  — минимальная трудоемкость i-ой работы, чел/дн.;

 $T_{maxi}$  — максимальная трудоемкость і-ой работы, чел/дн.

Далее рассчитываем продолжительность одной работы по формуле (5.2):

$$T_{pi} = \frac{T_{\text{ож}i}}{\mathsf{q}_i},\tag{5.2}$$

где  $T_{pi}$  продолжительность одной работы, раб. дн.;

 $T_{\rm oжi}$ — ожидаемая трудоемкость выполнения одной работы, чел.-дн.;

 ${\sf Y}_i$ — количество исполнителей, выполняющих одновременно одну и ту же работу на данном этапе, чел.

Длительность каждого из этапов работ из рабочих дней необходимо перевести в календарные дни согласно формуле (5.3):

$$T_{ki} = T_{pi} \cdot k_{ka\pi} \tag{5.3}$$

где  $T_{ki}$  – продолжительность выполнения і-й работы, календ. дн.;

 $T_{pi}$  – продолжительность выполнения i-й работы, раб. дн.;

 $T_{\kappa a \pi}$  – коэффициент календарности.

Коэффициент календарности определяется по формуле (5.4):

$$k_{ka\pi} = \frac{T_{ka\pi}}{T_{ka\pi} - T_{nb}},\tag{5.4}$$

Таким образом, коэффициент календарности равен:

$$k_{ka\pi} = \frac{365}{365 - 118} = 1,480$$

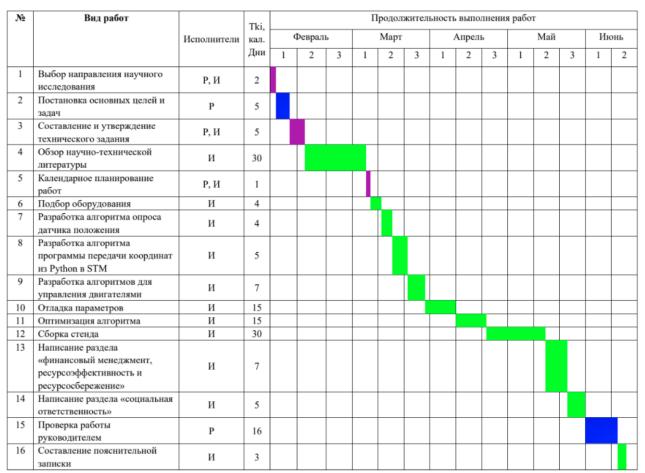

Результаты по трудоемкости выполнения работ представлены в таблице 13.

Таблица 13 – Временные показатели проведения исследования

|          |         | Tŗ           | удоемко |                                       | ьность  | Длител                              | ьность  |                                           |         |              |
|----------|---------|--------------|---------|---------------------------------------|---------|-------------------------------------|---------|-------------------------------------------|---------|--------------|
|          | Tmin, ч | ел- дни      | Tmax,   | T тах, чел- дни $T$ ож $i$ , чел- дни |         | работ в<br>рабочих днях<br>$T_{pi}$ |         | работ в<br>календарных<br>днях <i>Ткі</i> |         |              |
| № работы | Инженер | Руководитель | Инженер | Руководитель                          | Инженер | Руководитель                        | Инженер | Руководитель                              | Инженер | Руководитель |
| 1        | 2       | 2            | 5       | 5                                     | 3,2     | 3,2                                 | 1,6     | 1,6                                       | 2,4     | 2,4          |
| 2        | 0       | 2            | 0       | 5                                     | 0       | 3,2                                 | 0       | 3,2                                       | 0       | 4,7          |
| 3        | 5       | 1            | 10      | 3                                     | 7       | 1,8                                 | 3,5     | 0,9                                       | 5,2     | 1,3          |
| 4        | 14      | 0            | 30      | 0                                     | 20,4    | 0                                   | 20,4    | 0                                         | 30,2    | 0            |
| 5        | 1       | 1            | 3       | 3                                     | 1,8     | 1,8                                 | 0,9     | 0,9                                       | 1,3     | 1,3          |
| 6        | 1       | 0            | 5       | 0                                     | 2,6     | 0                                   | 2,6     | 0                                         | 3,8     | 0            |
| 7        | 1       | 0            | 5       | 0                                     | 2,6     | 0                                   | 2,6     | 0                                         | 3,8     | 0            |
| 8        | 7       | 0            | 14      | 0                                     | 9,8     | 0                                   | 9,8     | 0                                         | 14,5    | 0            |
| 9        | 3       | 0            | 7       | 0                                     | 4.6     | 0                                   | 4.6     | 0                                         | 6.8     | 0            |
| 10       | 7       | 0            | 14      | 0                                     | 9,8     | 0                                   | 9,8     | 0                                         | 14,5    | 0            |
| 11       | 7       | 0            | 14      | 0                                     | 9,8     | 0                                   | 9,8     | 0                                         | 14,5    | 0            |
| 12       | 14      | 0            | 30      | 0                                     | 20,4    | 0                                   | 20,4    | 0                                         | 30,2    | 0            |
| 13       | 3       | 0            | 7       | 0                                     | 4,6     | 0                                   | 4,6     | 0                                         | 6,8     | 0            |
| 14       | 2       | 0            | 5       | 0                                     | 3,2     | 0                                   | 3,2     | 0                                         | 4,7     | 0            |
| 15       | 0       | 8            | 0       | 15                                    | 0       | 10,8                                | 0       | 10,8                                      | 0       | 16           |
| 16       | 1       | 0            | 3       | 0                                     | 1.8     | 0                                   | 1.8     | 0                                         | 2.7     | 0            |
| Итого    | 68      | 14           | 152     | 31                                    | 102     | 21                                  | 96      | 17                                        | 141     | 26           |

Согласно полученным результатам, разработка учебноисследовательского стенда на основе «Робот-бабочка» займет 17 рабочий день у руководителя и 96 рабочих дня у инженера.

Диаграмма Ганта — Это популярный тип столбчатых диаграмм, который используется для иллюстрации плана, графика работ по какому-либо проекту. По полученным данным была построена диаграмма Ганта, представленная на рисунке 36.



■ – Инженер и руководитель; ■ – Инженер; ■ – Руководитель;

Рисунок 36 – Диаграмма Ганта

Как показано на рисунке выше, больше времени было выделено на сборку стенда и обзор литературы.

## 5.5 Бюджет научно-технического исследования (НТИ)

## 5.5.1 Расчет материальных затрат НТИ

Для разработки данного продукта необходимы следующие ресурсы:

- Персональный компьютер (ПК);
- Материальные ресурсы: оборудование для сборки стенда (датчики и энкодеры и т.д.), расходные материалы (канцелярия, провода изоляция и т.д.).

Расчет материальных затрат представлен в таблице 14.

Таблица 14 – Материальные затраты

| Наименование           | Единица     | Количество | Цена за ед., руб. | Цена (всего), руб. |  |  |
|------------------------|-------------|------------|-------------------|--------------------|--|--|
|                        | измерения   |            |                   |                    |  |  |
| Промышленная           | Шт.         | 1          | 39 101.3          | 39 101,3           |  |  |
| камера Basler          |             |            |                   |                    |  |  |
| Двигатель <i>Махоп</i> | Шт.         | 1          | 54 619            | 54 619             |  |  |
| Сервоконтроллер        | Шт.         | 1          | 38 409            | 38 409             |  |  |
| Энкодер                | Шт.         | 1          | 40 983            | 40 983             |  |  |
| Микроконтроллер        | Шт.         | 1          | 11 580            | 11 580             |  |  |
| Кабель для передачи    | Шт.         | 1          | 1 500             | 1 500              |  |  |
| данных с               |             |            |                   |                    |  |  |
| фотоаппарата на        |             |            |                   |                    |  |  |
| компьютер              |             |            |                   |                    |  |  |
| Кабель для передачи    | Шт.         | 2          | 1 500             | 3 000              |  |  |
| данных USB             |             |            |                   |                    |  |  |
| Маленький шарик        | Шт.         | 1          | 50                | 50                 |  |  |
| Оргстекло              | Шт.         | 9          | 1 000             | 9 000              |  |  |
|                        | Итого, руб. |            |                   |                    |  |  |

По расчетам материальные затраты для модернизации стенда «Робот-бабочка» составляет <u>198 242,3</u> рублей.

## 5.5.2 Расчет амортизационных отчислений на реализацию проекта

Разработка проекта производится в течение 5 месяцев с использованием персонального компьютера первоначальной стоимостью 65 000 рублей. Срок его полезного использования составляет 3 года.

Норма амортизации рассчитывается согласно формуле (5.5):

$$H_A = \frac{1}{T}.100\% \tag{5.5}$$

где Т – срок полезного использования, лет.

Тогда для используемого персонального компьютера составит:

$$H_A = \frac{1}{3}.100\% = 33.3\%$$

Годовые амортизационные отчисления:

$$A_{\text{год}} = \frac{65000 \times 33.3}{100} = 21645$$
 руб.

Амортизационные отчисления за 5 месяцев составят:

$$A = \frac{21645 \times 5}{12} = 9018,75 \text{ py6}.$$

По результатам расчетов амортизационные отчисления на реализацию проекта в течение 5 месяцев составили 9018,75 рублей.

### 5.5.3 Основная заработная плата исполнителей темы

В этом разделе рассчитывается основная заработная плата.

Основная плата работников, непосредственно занятых выполнением НТИ равняется произведению среднедневной платы работника и количества рабочих дней (5.6):

$$3_{\text{OCH}} = 3_{\text{ДH}} \times T_{\text{pa6}} \tag{5.6}$$

где Здн – среднедневная заработная плата, руб.;

 ${
m T}_{
m pa6}$  — продолжительность работ, раб. дн.

Среднедневная заработная плата рассчитывается по формуле (5.7):

$$3_{\text{ДH}} = \frac{3_{\text{M}} \times \text{M}}{F_{\text{Д}}} \tag{5.7}$$

где  $3_{M}$  – месячный должностной оклад работника, руб.;

М – количество месяцев работы без отпуска в течение года;

 ${\rm F_{\rm d}}$  — действительный годовой фонд рабочего времени научнотехнического персонала, раб. дн.

Месячный должностной оклад работника рассчитывается согласно следующей формуле (5.8):

$$3_{\mathrm{M}} = 3_{\mathrm{TC}} \times (1 + K_{\mathrm{np}} + K_{\mathrm{A}}) \times K_{\mathrm{P}} \tag{5.8}$$

где Зтс – заработная плата по тарифной ставке, руб.;

 $K_{np}$  – премиальный коэффициент, равный 0,3;

 $K_{\pi}$  – коэффициент доплат и надбавок, равный примерно 0,2 – 0,5;

 ${\rm K_p-}$  районный коэффициент, равный 1,3 (для Томска).

Баланс рабочего времени для руководителя и инженера представлен в таблице 15.

Таблица 15 – Баланс рабочего времени

| Показатели рабочего      | Руководитель | Инженер |
|--------------------------|--------------|---------|
| времени                  |              |         |
| Календарное число дней   | 365          | 365     |
| Количество нерабочих     | 118          | 118     |
| (выходных и праздничных) |              |         |
| дней                     |              |         |
| Потери рабочего времени  | 48           | 72      |
| – отпуск                 |              |         |
| – невыходы по болезни    |              |         |
| Количество месяцев без   | 10,6         | 9,8     |
| отпуска                  |              |         |
| Действительный годовой   | 199          | 175     |
| фонд рабочего времени    |              |         |

Действительный годовой фонд рабочего времени руководителя и инженера составляют 199 и 175 дней соответственно.

Результаты основной заработной платы приводится в таблице 16. Таблица 16 – Расчет основной заработной платы

| Исполнители  | Оклад, руб. | kпр | kД  | Kp  | 3м, руб. | Здн      | Траб, ДНИ | Зосн, руб. |
|--------------|-------------|-----|-----|-----|----------|----------|-----------|------------|
| Руководитель | 38 000      | 0,3 | 0,2 | 1,3 | 74 100   | 3 947,04 | 17        | 136 281,6  |
| Инженер      | 13 000      | 0,3 | 0,2 | 1,3 | 25 350   | 1 419,6  | 96        | 67 099,6   |

Как показано в таблице выше, основная заработная плата составит  $\underline{67}$   $\underline{099,6}$  рубля для инженера и  $\underline{136\ 281,6}$  для руководителя соответственно.

## 5.5.4 Дополнительная заработная плата исполнителей темы

В этом разделе рассчитывается дополнительная заработная плата.

Расчет дополнительной заработной платы ведется по следующей формуле (5.13):

$$3_{\text{доп}} = 3_{\text{осн}} \times K_{\text{доп}} \tag{5.9}$$

где  $K_{\text{доп}}$  – коэффициент дополнительной заработной платы (на стадии проектирования принимается равным 0,12-0,15).

Примем  $K_{\text{доп}} = 0.12$ , тогда дополнительная плата руководителя и инженера будет рассчитываться следующим образом:

$$3_{\text{доп.P}} = 136\ 281.6 * 0,12 = 16353,79 \text{ руб.}$$
  $3_{\text{доп.И}} = 67099,6 * 0,12 = 8051,95 \text{ руб.}$ 

Дополнительная заработная плата составит 16353,79 рубля для инженера и 8051.95 для руководителя соответственно.

Следовательно, итоговая заработная плата для руководителя и инженера:

$$3_{3п.P} = 3_{осн.P} + 3_{доп.P} = 136281,6 + 16353,79 = 152 635,39 руб.$$
  $3_{3п.И} = 3_{осн.И} + 3_{доп.И} = 67099,6 + 8051,95 = 75151,55 руб.$ 

#### 5.5.5 Отчисления во внебюджетные фонды

Величина отчислений во внебюджетные фонды определяется исходя из следующей формулы (5,10):

$$3_{\text{внеб}} = K_{\text{внеб}} * (3_{\text{осн}} + 3_{\text{доп}})$$
 (5.10)

где  $K_{\text{внеб}}$  – коэффициент отчислений на уплату во внебюджетные фонды.

Размер страховых взносов равен 30 % от заработной платы. Сюда включены взносы на пенсионное страхование – 22 %, на медицинское страхование – 5,1 %, а также на соцстрахование – 2,9 %. Отчисления во внебюджетные фонды представлены в таблице 17.

Таблица 17 – Отчисление во внебюджетные фонды

| Исполнитель  | Заработная плата, | Коэффициент   | Отчисления во |
|--------------|-------------------|---------------|---------------|
|              | руб.              | отчислений во | внебюджетные  |
|              |                   | внебюджетные  | фонды, руб.   |
|              |                   | фонды, %      |               |
| Руководитель | 152 635,39        | 30            | 45 790,62     |
| Инженер      | 75 151,55         | 30            | 22 545,47     |
|              | 68 336,09         |               |               |

Сумма отчислений во внебюджетные фонды для руководителя и инженера составит 68336,09 руб.

#### 5.5.6 Накладные расходы

Накладные расходы включают в себя затраты на управление, хозяйственное обслуживание, эксплуатацию и ремонт оборудования и составляют 15-20% от суммы заработной платы и отчислений (5.11):

$$C_{H} = K_{H} \times (3_{3\Pi D} + 3_{3\Pi M}) \tag{5.11}$$

где Сн – накладные расходы, руб.;

Кн – коэффициент накладных расходов;

Ззпи – заработная плата инженера, руб.;

Ззпр – заработная плата руководителя, руб.

Выбираем  $K_H = 20\%$ , и вычислим накладные расходы:

$$C_{H} = 0.2 * (152 635,39 + 75151,55) = 45 557,39 \text{ py}6.$$

Таким образом, накладные расходы проекта составят 45 557, 39 руб.

# 5.5.7 Формирование бюджета затрат научно-исследовательского проекта

Определение бюджета затрат на проект приведен в таблице 18.

Таблица 18 – Расчет бюджета затрат НТИ

| Наименование статьи         | Сумма, руб.             |                     |  |
|-----------------------------|-------------------------|---------------------|--|
| Материальные затраты        | 198 242,3               |                     |  |
| Амортизационные расходы     | Амортизационные расходы |                     |  |
| Наименование статьи         | Сумма, руб.             | Наименование статьи |  |
| Затраты по заработной плате | - руководитель          | 152 635,39          |  |
| работников                  | - инженер               | 75 151,55           |  |
| Отчисления во               | - руководитель          | 45 790,62           |  |
| внебюджетные фонды          | 22 545,47               |                     |  |
| Накладные расходы           | 45 557,39               |                     |  |
| Бюджет затрат НТИ           |                         | 548 941,47          |  |

Согласно расчетам, бюджет затрат научно-исследовательской работы составил 548 941,47 рублей. Соотношение каждой части следующее: материальные затраты -36,1 %, амортизационные расходы -1,6 %, затраты по

заработной плате работников -41,5 %, отчисления во внебюджетные фонды -12.4 % и накладные расходы -8,4 %.

# 5.5.8 Определение ресурсной, финансовой и экономической эффективности исследования

Интегральный финансовый показатель разработки определяется по формуле (5.12):

$$I_{\phi \mu \mu p}^{\mu c \pi \pi. i} = \frac{\Phi_{pi}}{\Phi_{max}} \tag{5.12}$$

где  $I_{\Phi T H p}^{\nu c \pi \pi . i}$  – интегральный финансовый показатель разработки;

 $\Phi_{pi}$ – стоимость і-го варианта исполнения;

 $\Phi_{\text{max}}$  — максимальная стоимость исполнения научноисследовательского проекта (в т.ч. аналоги).

На рынке есть два аналога:

- Стенд «Butterfly» компании «Robotikum» 472 830 рублей;
- Лабораторно-исследовательский комплекс «Butterfly» компании
   «Образовательная робототехника» 747 740 рублей.

Реализация разрабатываемого стенда составит 548 941,47 рублей.

Вычислим интегральный финансовый показатель разработки относительно конкурентов:

$$I_{\Phi}^{\text{pa3p.}} = \frac{548\,941,47}{747\,740} = 0.73$$

$$I_{\Phi}^{\text{a1}} = \frac{472\,830}{747\,740} = 0,63$$

$$I_{\Phi}^{\text{a2}} = \frac{548\,941,47}{747\,740} = 1$$

Видим, что аналог 2 дороже разрабатываемого стенда.

Интегральный показатель ресурсоэффективности вариантов исполнения объекта исследования можно определить по формуле (5.13):

$$I_{pi} = \sum a_i \cdot b_i \tag{5.13}$$

где  $I_{pi}$  — интегральный показатель ресурсоэффективности для і-го варианта исполнения разработки;

 $a_i$  – весовой коэффициент і-го варианта исполнения разработки;

 $b_i$  — бальная оценка і-го варианта исполнения разработки, устанавливается экспертным путем по выбранной шкале оценивания;

n — число параметров сравнения.

Расчет интегрального показателя ресурсоэффективности проводит в таблице 19. (Аналог 1 – стенд «Butterfly-Robot» компании «Robotikum», Аналог 2 – Лабораторно-исследовательский комплекс «Butterfly» компании «Образовательная робототехника»)

Таблица 19 – Сравнительная оценка характеристик проекта

| Критерии / Оценки        | Весовой коэффициент параметра | Текущий<br>проект | аналог 1 | аналог 2 |
|--------------------------|-------------------------------|-------------------|----------|----------|
| 1. Энергоэффективность   | 0.05                          | 4                 | 3        | 3        |
| 2. Помехоустойчивость    | 0.2                           | 3                 | 3        | 4        |
| 3. Надежность            | 0.2                           | 5                 | 4        | 4        |
| 4. Унифицированность     | 0.1                           | 3                 | 4        | 4        |
| 5. Удобство эксплуатации | 0.1                           | 5                 | 4        | 3        |
| 6. Простота эксплуатации | 0.15                          | 5                 | 4        | 3        |
| 7.Безопасность           | 0,2                           | 4                 | 4        | 5        |
| ИТОГО                    | 1                             | 29                | 26       | 26       |

$$I_m^{\text{pasp.}} = 0.05 * 4 + 0.2 * 3 + 0.2 * 5 + 0.1 * 3 + 0.1 * 5 + 0.15 * 5 + 0.2 * 4 = 4.15$$
  
 $I_m^{\text{a1}} = 0.05 * 3 + 0.2 * 3 + 0.2 * 4 + 0.1 * 4 + 0.1 * 4 + 0.15 * 4 + 0.2 * 4 = 3.75$   
 $I_m^{\text{a2}} = 0.05 * 3 + 0.2 * 4 + 0.2 * 4 + 0.1 * 4 + 0.1 * 3 + 0.15 * 3 + 0.2 * 5 = 3.90$ 

По результатам можно делать вывод, что расчетов разрабатываемый проект ресурсоэффективнее обоих аналогов.

Интегральный показатель эффективности вариантов исполнения определяется на основании интегрального показателя ресурсоэффективности и интегрального финансового показателя по формуле (5.14):

$$I_{\text{исп.i}} = \frac{I_{\text{pi}}}{I_{\phi \text{инр}}^{\text{испл.i}}} \tag{5.14}$$

По формуле вычислим и получим:

$$I_{\text{исп.разр.}} = \frac{4,15}{0,73} = 5,68$$

$$I_{\text{исп.a1}} = \frac{3,75}{0,63} = 5,95$$

$$I_{\text{исп.a2}} = \frac{3.90}{1} = 3,90$$

Сравнительная эффективность вариантов исполнения рассчитывается по формуле (5.15):

$$\vartheta_{\rm cp} = \frac{I_{\rm pa3pa6}}{I_{\rm ah.i}} \tag{5.15}$$

где  $\mathfrak{I}_{cp}-$  сравнительная эффективность проекта;

 $I_{\mathsf{разраб}}$  — интегральный показатель эффективности разработки;

 $I_{ah.i}$  – интегральный показатель эффективности аналога.

$$\Im_{\rm cp1} = \frac{5,68}{5,95} = 0,95$$

$$\Im_{\rm cp2} = \frac{5,68}{3,90} = 1,46$$

Расчет сравнительной эффективности разработки представлен в таблице 20.

Таблица 20 – Сравнительная эффективность разработки

| Показатели               | Разрабатываемый | Аналог 1 | Аналог 2 |
|--------------------------|-----------------|----------|----------|
|                          | проект          |          |          |
| Интегральный финансовый  | 0,73            | 0,63     | 1        |
| показатель разработки    |                 |          |          |
| Интегральный по казатель | 4,15            | 3,75     | 3,90     |
| ресурсоэффективности     |                 |          |          |
| разработки               |                 |          |          |
| Интегральный показатель  | 5,68            | 5,95     | 3,90     |
| эффективности            |                 |          |          |
| Сравнительная            | -               | 0,95     | 1,46     |
| эффективность вариантов  |                 |          |          |
| исполнения               |                 |          |          |

# 5.6 Выводы по разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

В ходе разработки данного раздела были выявлены потенциальные потребители стенда «Робот-бабочка». В разделе анализа конкурентных технических решений были определены конкуренты разработки. Также создана диаграмма SWOT-анализа для анализа сильных сторон, слабых сторон, возможностей и угроз проекта. Кроме того, были произведены расчеты трудоемкости НТИ. По диаграмме Ганта больше времени было выделено на сборку стенда и обзор литературы. Согласно расчетам, бюджет затрат научно-исследовательской работы составил 548 941,47 рублей. Соотношение каждой части следующее: материальные затраты — 36,1 %, амортизационные расходы — 1,6 %, затраты по заработной плате работников — 41,5 %, отчисления во внебюджетные фонды — 12.4 % и накладные расходы — 8,4 %.

В процесс анализа ресурсной, финансовой и экономической эффективности демонстрирует преимущества разработанного стенда перед конкурентами.

## ЗАДАНИЕ К РАЗДЕЛУ «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

#### Обучающемуся:

| Группа | ФИО         |
|--------|-------------|
| 8E92   | Го Цзыцзюнь |

| Школа                  | ИШИТР       | Отделение<br>(НОЦ)            | Отделение автоматизации и<br>робототехники |
|------------------------|-------------|-------------------------------|--------------------------------------------|
| Уровень<br>образования | Бакалавриат | Направление/<br>специальность | 15.03.06 Мехатроника и робототехника       |

### Тема ВКР:

| Модернизация учеб                                                                                                                                                                                                                                                                      | Модернизация учебно-исследовательского стенда «Робот-бабочка»                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Исходные данные к разделу «Социальная ответственность»:                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| <ul> <li>Жарактеристика объекта исследования (вещество, материал, прибор, алгоритм, методика, рабочая зона) и области его применения.</li> <li>Описание рабочей зоны (рабочего места) при разработке проектного решения/при эксплуатации</li> </ul>                                    | Объект исследования: учебно-исследовательского стенда «Робот-бабочка». Область применения: учебные задачи и задачи разработки алгоритма. Рабочая зона: лаборатории и аудитории. Размеры помещения: 40 м². Рабочее место: кабинет 204 отделения ОАР, ИШИТР. Количество и наименование оборудования рабочей зоны: Персональный компьютер, учебно-исследовательский стенд «Робот-бабочка» и осциллограф. Рабочие процессы, связанные с объектом исследования, осуществляющиеся в рабочей зоне: замена и использование аппаратного оборудования, написание алгоритма управления и отладка алгоритма на стенде «Робот-бабочка». |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                        | исследованию, проектированию и разработке:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1. Правовые и организационные вопросы обеспечения безопасности при эксплуатации:  - специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нормы трудового законодательства;  - организационные мероприятия при компоновке рабочей зоны. | Трудовой кодекс Российской Федерации от 30.12.2001 N 197-ФЗ (ред. от 19.12.2022).<br>ГОСТ 12.2.032-78 Рабочее место при выполнении работ сидя.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 2. Производственная безопасность при эксплуатации:  — Анализ выявленных вредных и опасных производственных факторов                                                                                                                                                                    | Вредные факторы: 1. Превышение уровня шума; 2. Отсутствие или недостаток необходимого естественного освещения; 3. Отклонение показателей микроклимата в рабочей зоне; 4. Производственные факторы, связанные с напряженностью электрического поля.                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

|                                       | Опасные факторы:                                      |
|---------------------------------------|-------------------------------------------------------|
|                                       | 1. Производственные факторы, связанные со статическим |
|                                       | электричеством;                                       |
|                                       | 2.Производственные факторы, связанные с электрическим |
|                                       | током.                                                |
|                                       |                                                       |
|                                       | Требуемые средства коллективной и индивидуальной      |
|                                       | защиты от выявленных факторов: беруши, защитные       |
|                                       | наушники, защитные очки, устройство защиты питания,   |
|                                       | осветительное устройство, коллективная защита         |
|                                       | (вентиляция, заземление).                             |
|                                       | Воздействие на литосферу: промышленные отходы,        |
| 3. Экологическая безопасность         | образующиеся в процессе производства.                 |
| при эксплуатации:                     | Воздействия на атмосферу: вредный газ, образующийся   |
| · · · · · · · · · · · · · · · · · · · | при потребляемой мощности зарядного устройства;       |
|                                       | выхлопные газы сварочного процесса.                   |
|                                       | Воздействие на селитебную зону: шум при работающем    |
|                                       | двигателе.                                            |
| 4. Безопасность в                     | Возможные ЧС: пожар, взрыв из-за технической аварии.  |
| чрезвычайных ситуациях при            | Наиболее типичная ЧС: пожар из-за неправильной        |
| эксплуатации:                         | эксплуатации.                                         |
|                                       |                                                       |

| Дата выдачи задания к разделу в соответствии с |  |
|------------------------------------------------|--|
| календарным учебным графиком                   |  |

Задание выдал консультант по разделу «Социальная ответственность»:

| ладание выдал консулг | лант по разделу «соци | ulbiiah olbele. | i Dellilloe i D// • |      |
|-----------------------|-----------------------|-----------------|---------------------|------|
| Должность             | ФИО                   | Ученая степень, | Подпись             | Дата |
|                       |                       | звание          |                     |      |
| Старший               | Мезенцева Ирина       | -               |                     |      |
| преподаватель ООД     | Леонидовна            |                 |                     |      |

Задание принял к исполнению обучающийся:

| Груп | па         | ФИО         | Подпись | Дата |
|------|------------|-------------|---------|------|
| 8E9  | <i>'</i> _ | Го Цзыцзюнь |         |      |

#### 6 Социальная ответственность

#### 6.1 Введение

С непрерывным развитием науки и техники с каждым годом увеличивается интенсивность использования компьютерных технологий и технологий компьютерного зрения в сфере жизнедеятельности человека. В этой исследовательской работе в стенде «Робот-бабочка» используются обе эти технологии.

В данной исследовательской работе были проведены аппаратные и программные обновления учебно-исследовательского стенда «Робот-бабочка». Конструкция стенда представляет собой каркас кубической конструкции. На стенде представлено различное оборудование, в том числе промышленная камера, двигатель постоянного тока, блок питания, сервоконтроллер, микроконтроллер и энкодеры. Посередине стенда находится панель в форме бабочки, основной материал панели - оргстекло.

При работе с компьютером и стендом «робот-бабочка» человек подвергается воздействию многих опасных и вредных производственных факторов: коротких замыканий, шума и вибраций. В данном разделе будут рассмотрены и проанализированы эти факторы, влияющие на здоровье человека.

## 6.2 Правовые и организационные вопросы обеспечения безопасности

# 6.2.1 Особенности законодательного регулирования проектных решений

Государственный надзор и контроль за организациями любых организационно-правовых форм и форм собственности проверяются специально уполномоченными государственными органами в соответствии с федеральным законом [19]. Этими специально уполномоченными государственными органами являются: Федеральная инспекция труда, Государственная экспертиза условий труда, Федеральная служба по труду и занятости населения, Федеральная служба по экологическому, технологическому и атомном надзору (Госгортехнадзор, Госэнергонадзор, Госатомнадзор России) Федеральная служба по надзору в

сфере защиты прав потребителей и благополучия человека (Госсанэпиднадзор России) и др. В стране также нормально функционирует Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций (РСЧС), положения которой утверждены Российской Федерацией постановлением Правительства РФ, в соответствии с которым система объединяет органы управления, силы и значит.

#### 6.2.2 Организационные мероприятия при компоновке рабочей зоны

Основным видом работы, выполняемой с использованием учебноисследовательского стенда «Робот-бабочка», была работа на персональном компьютере с небольшим использованием оборудования на стенде или прямыми манипуляциями с стендом. Рабочее место напрямую влияет на производительность. Согласно нормативному документу ГОСТ 12.2.032-78 к рабочему месту предъявляются следующие требования [20]:

- − Рабочее место должно занимать площадь не менее 6 м², высота помещения должна быть не менее 4 м, а объем не менее 20 м³ на человека;
- Высота над уровнем пола рабочей поверхности, за которой работает оператор, составляет 720 м;
- Рабочие стулья должны быть сконструированы таким образом, чтобы поддерживать правильную рабочую осанку при работе с ПК;
  - Оптимальный размер для рабочего стола 1600х1000 кв. мм;
  - Под столом должно быть пространство для ног с глубиной 650 мм.

Также рабочий стол должен быть стабильным.

Рабочее место этого проекта — 204 кабинет корпуса №10 ТПУ. Данное рабочее место соответствует требованиям  $\Gamma OCT~12.2.032-78$ .

В дополнение к этому необходимо держать наиболее часто используемые предметы на расстоянии вытянутой руки, что сведет к минимуму время, затрачиваемое на повседневные операции. на рабочем месте оборудованы рабочие столы, которые соответствуют рисунку 37.



Рисунок 37 – Размещение составляющих ПК

## 6.3 Производственная безопасность

В нормативном документе «ГОСТ 12.0.003-2015 ССБТ. Опасные и вредные производственные факторы. Классификация» даны основания для классификации и метод классификации по некоторым вредным и опасным признакам в производственном процессе [21]. В следующей таблице 21 перечислены возможные вредные и опасные производственные факторы и соответствующие нормативные документы в процессе разработки проекта.

Таблица 21 — Возможные вредные и опасные факторы и соответствующие нормативные документы

|    | Факторы (по <i>ГОСТ 12.0.003-2015</i> ) | Нормативные документы                 |
|----|-----------------------------------------|---------------------------------------|
|    | Вредные                                 | ГОСТ 12.1.003-2014 Система стандартов |
| 1. | Превышение уровня шума                  | безопасности труда. Шум. Общие        |
| 2. | Отсутствие или недостаток необходимого  | требования безопасности.              |
|    | естественного освещения                 | СНиП 23-05-95* Естественное и         |
| 3. | Отклонение показателей микроклимата в   | искусственное освещение.              |
|    | рабочей зоне                            | СанПиН 1.2.3685-21 Гигиенические      |
| 4. | Производственные факторы, связанные с   | нормативы и требования к обеспечению  |
|    | напряженностью электрического поля      | безопасности и (или) безвредности для |
|    | Опасные                                 | человека факторов среды обитания.     |
| 1. | Производственные факторы, связанные со  | ГОСТ 12.1.038-82 ССБТ.                |
|    | статическим электричеством              | Электробезопасность. Предельно        |
| 2. | Производственные факторы, связанные с   | допустимые значения напряжений        |
|    | электрическим током                     | прикосновения и токов.                |
|    |                                         | ГОСТ 12.1.030-81 ССБТ.                |
|    |                                         | Электробезопасность. Защитное         |
|    |                                         | заземление. Зануление.                |

#### 6.3.1 Превышение уровня шума

Одним из важных и распространенных факторов, влияющих на работу, является шум. Оборудование в рабочей зоне является основным источником шума, а работа оборудования сопровождается шумом. Длительное нахождение в шумной обстановке не только снижает качество работы, но и вызывает дискомфортные симптомы, такие как головная боль, раздражительность, ухудшение памяти и повышенная утомляемость, и даже вызывает необратимое поражение ушей и других органов. Было задокументировано, что длительное воздействие громкого шума (выше 80 дБ(А)) вызывает частичную или полную потерю слуха у людей. Допустимые уровни звукового давления на рабочем месте представлены в таблице 22.

Таблица 22 – Допустимые уровни звукового давления на рабочем месте

| Урові                               | ни зв | укового | давлеі | ния, д | Б, в | октавных | полос             | ax co | Эквивалентные     |
|-------------------------------------|-------|---------|--------|--------|------|----------|-------------------|-------|-------------------|
| среднегеометрическими частотами, Гц |       |         |        |        |      |          | уровни звука, дБА |       |                   |
| 31,5                                | 63    | 125     | 250    | 500    | 1000 | 2000     | 4000              | 8000  | уровни звука, држ |
| 107                                 | 95    | 87      | 82     | 78     | 75   | 73       | 71                | 69    | 80                |

Ношение наушников и берушей может уменьшить воздействие шума на организм человека.

Основными источниками шума проекта являются:

- вращение охлаждающего вентилятора персонального компьютера;
- вращение двигателя постоянного тока стенда;
- вращение энкодера.

Уровни шума, издаваемые этими источниками шума, ниже 50 децибел, что намного ниже указанного максимально допустимого уровня шума.

## 6.3.2 Отсутствие или недостаток необходимого естественного освещения

Достаточное необходимое естественное освещение на рабочем месте является одним из необходимых условий труда, а недостаточное освещение

влияет на качество работы. Освещение в основном влияет на зрение людей, а работа при слабом освещении может привести к утомлению, перенапряжению головным болям, что может привести К снижению общей глаз, В работоспособности И производительности труда. рабочих зонах, предназначенных для использования с ПК, система общего освещения должна освещать рабочую поверхность не менее 300 лк.

Способы регулирования освещения на рабочих местах и в производственных помещениях:

- носить защитные очки;
- установить светозащитные устройства;
- установить осветительные приборы и т.д.

Для снижения влияния этого фактора на здоровье и соблюдения требований по освещению необходимо работать в рабочей зоне с достаточным естественным освещением и осветительными приборами. Кроме того, необходимо делать перерывы в работе.

Рабочая зона, где разрабатывался проект, имеет окна, через которые в рабочую зону попадает естественный свет. При этом в рабочей зоне располагаются осветительные приборы типа настольных ламп. Рабочая зона соответствует требованиям.

# 6.3.3 Отклонение показателей микроклимата в рабочей зоне

В рабочей зоне на изменение микроклимата будет влиять количество оборудования в рабочем состоянии, вентиляция, температура за окном и т.д. Состояние внутренней среды на рабочем месте напрямую влияет на здоровье организма человека, а комфортная микроклиматическая среда позволяет повысить эффективность труда.

По тяжести ручного труда работа инженеров стенда «Робот-бабочка» относится к категории 1а, то есть к легкой работе. В таблице 23 приведены допустимые значения показателей микроклимата.

Таблица 23 – Допустимые значения показателей микроклимата на рабочем месте

| Период | Температура |             | Температура   | Относитель | Скорость     | движения   |
|--------|-------------|-------------|---------------|------------|--------------|------------|
| года   | воздуха, °С |             | поверхностей, | ная        | воздуха, м/с |            |
|        | Диапазон    | Диапазон    | °C            | влажность  | Диапазон     | Диапазон   |
|        | ниже        | выше        |               | воздуха, % | ниже         | выше       |
|        | оптимальн   | оптимальн   |               |            | оптимальн    | оптимальн  |
|        | ых величин  | ых величин  |               |            | ых величин   | ых величин |
| Холодн | 20,0 – 21,9 | 24,1 – 25,0 | 19-26         | 15-75      | 0,1          | 0,1        |
| ый     |             |             |               |            |              |            |
| Теплый | 21,0 – 22,9 | 25,1 – 26,0 | 20-29         | 15-75      | 0,1          | 0,2        |

Изменить микроклимат рабочего места помогают следующие устройства и методы:

- открыть окна для проветривания;
- установка системы отопления помещения;
- установка кондиционера.

Кроме того, время пребывания на рабочем месте должно быть ограничено.

# 6.3.4 Производственные факторы, связанные с напряженностью электрического поля

В этом исследовательском проекте работа персонального компьютера и кабины робота-бабочки увеличивает силу окружающего электрического поля и вызывает деионизацию окружающего воздушного пространства.

Повышенная напряженность электрического поля, несомненно, вредна для человеческого организма и может привести к таким симптомам, как дегенерация мозга и потеря памяти.

Согласно «СанПиН 2.2.2/2.4.1340-03 Гигиенические требования к персональным электронно-вычислительным машинам и организации работ» допускается нахождение в течение рабочего дня в электрическом поле напряженностью не более 5 кВ/м [22]. Необходимо время от времени открывать окна, чтобы проветрить комнату, и делать перерыв.

### 6.3.5 Производственные факторы, связанные с электрическим током

Поражение электрическим током является чрезвычайно опасным производственным фактором, поскольку ток не виден человеческому глазу. Преходящие эффекты воздействия относительно высокой интенсивности, вызванные прохождением через организм электрического тока, часто приводят к летальному исходу [23].

Во избежание поражения электрическим током рабочее место должно быть защищено и заземлено в соответствии с техническими требованиями эксплуатации. Кроме того, согласно «ГОСТ Р 12.1.019-2017 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура промышленной видов защиты» Bce, ЧТО питается OT сети, сопровождаться предупредительными знаками, чтобы совершать не неправильных действий и движений персонала. Перед началом работы со стендом «Робот-бабочка» необходимо ознакомиться с инструкцией по эксплуатации стенда и изучить правила электробезопасности, описанные в Требованиях электробезопасности [24].

# 6.3.6 Производственные факторы, связанные со статическим электричеством

Статическое электричество – это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объёме диэлектриков или на изолированных проводниках. Статическое электричество может возникнуть, когда тело соприкасается с устройствами, работающими от электрического тока (например, компьютеры, стенд «Робота-бабочка»). Статическое персональные электричество может привести к травмам и пожару.

#### 6.4 Экологическая безопасность

В этом разделе необходимо рассмотреть характер воздействия на окружающую среду при использовании стенда «Робот-бабочка».

В ходе разработки проекта, когда батарея ПК села, его нужно было зарядить. Во время зарядки зарядное устройство потребляет электроэнергию, что представляет опасность для атмосферы. Для работы стенда «Робот-бабочка» также должна быть подключена к источнику питания.

Одним из процессов в проекте является сварка, которая может привести к загрязнению воздуха. При сварке необходимо измерять уровень загрязнения воздуха для соблюдения нормативного документа [25].

Воздействие на литосферу в основном от промышленных отходов. Во время производства может произойти повреждение оборудования или персональных компьютеров. После завершения работ необработанные отходы должны быть переработаны и подвергнуты предварительной обработке, чтобы уменьшить загрязнение почвы [26].

Воздействие на селитеьную зону оказывает шум двигателя, работающего на стенде. Согласно нормативному документу *СанПиН 2.2.1/2.1.1.1200-03* необходимо построить надлежащее рабочее пространство, чтобы уменьшить воздействие на жителей [28].

Воздействие на гидросферу пренебрежимо мало.

### 6.5 Безопасность в чрезвычайных ситуациях

Во время разработки стенда «Робот-бабочка» возможной чрезвычайной ситуацией стал пожар. Короткое замыкание в цепи или неправильная эксплуатация инженером может привести к пожару. Учитывая, что при разработке проекта необходимо паять множество электронных компонентов, существует вероятность возгорания в процессе пайки.

При возникновении пожара сохраняйте спокойствие и примите следующие меры:

- немедленно выключить питание;
- вызвать по телефону пожарную команду;
- покидать помещение необходимо согласно плану эвакуации.

На кабинете 204 десятого корпуса ТПУ установлены датчики дыма. При возникновении пожара срабатывают датчики дыма, которые посылают предупреждающий сигнал на все здание [27].

### 6.6 Вывод по разделу «Социальная ответственность»

В данном разделе были изучены и исследованы государственные стандарты и нормы. Также было выявлено источники вредных и опасных факторов.

На этой основе выявляются и анализируются вредные и опасные факторы. Перечислены актуальные действенные меры помощи инженерам в рабочей зоне от выявленных вредных и опасных факторов.

Наконец, в этом разделе изучаются правовые и организационные аспекты обеспечения безопасности и организационные мероприятия при планировке рабочих мест.

#### Заключение

В ходе выполнения основной части работы был произведен литературный обзор, после которого было проанализировано основное оборудование стенда «Робот-бабочка» и предложен план модернизации стенда.

Вся работа по модернизации стенда «Робот-бабочка» разделена на две основные части. Первая часть — это аппаратная часть. В аппаратной части для замены микроконтроллера Beagle Black на тестовом стенде был выбран микроконтроллер STM32. В то же время был выбран персональный компьютер с системой Windows для замены исходного микрокомпьютера с системой Linux. Вторая часть — исследование алгоритмов управления стендом «Робот-бабочка». В этой части для получения информации о положении мяча выбирается алгоритм обнаружения круга Хафа, между Python и STM32 формируется поток данных, а для управления вращающимся двигателем используется двухконтурный ПИД-регулятор положения и скорости. При этом светодиод на плате STM32 используется для обратной связи, чтобы удобнее было наблюдать за вращением мотора. После запуска программы микроконтроллер STM32 может управлять вращением двигателя в соответствии с информацией о положении шарика, чтобы шарик устойчиво стоял на панели.

«Робот-бабочка» может реализовать разработку высокоточных алгоритмов сенсорных операций в различных областях и предоставляет платформу для обучения алгоритмам для студентов и технических специалистов в области медицины, авиации и других областях.

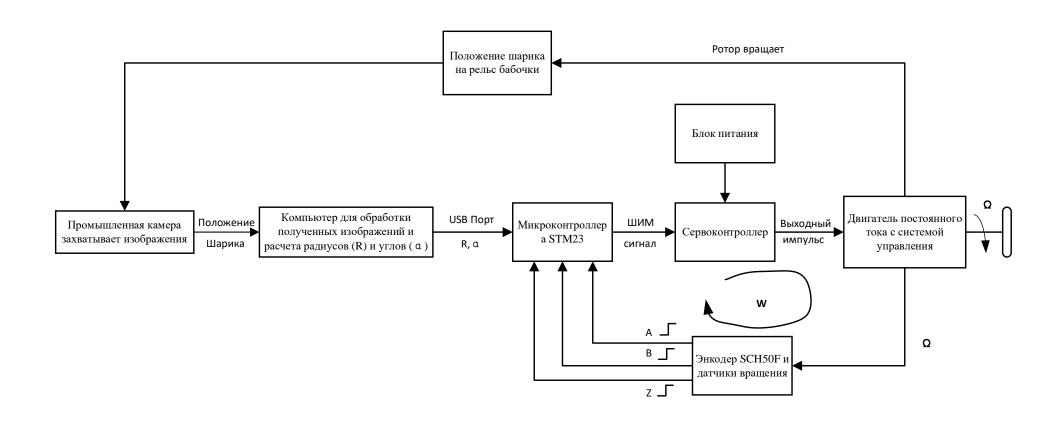
#### Список использованных источников

- 1. «Робот Бабочка» взлетел на мировой уровень [электронный ресурс] / Агентство стратегических инициатив: <a href="https://asi.ru/news/59081/">https://asi.ru/news/59081/</a>
- 2. Maksim Surov, Anton Shiriaev, Leonid Freidovich, Sergei Gusev, Leonid Paramonov Case study in non-prehensile manipulation: planning and orbital stabilization of one-directional rollings for the "Butterfly" robot //Proceedings IEEE International Conference on Robotics and Automation 2015 [электронный ресурс]: https://ieeexplore.ieee.org/document/7139385
- 3. Робот «Бабочка»: как научить машину чувствовать [электронный ресурс] / Итмо News: <a href="https://news.itmo.ru/ru/archive/news/5110/">https://news.itmo.ru/ru/archive/news/5110/</a>
- 4. Роман Усатов-Ширяев, Robotikum: о роботе-бабочке, хирурге и о том, что у них общего [электронный ресурс] / Хайтек: <a href="https://hightech.fm/2020/02/12/robotikum">https://hightech.fm/2020/02/12/robotikum</a>
- 5. С ПОМОЩЬЮ РОБОТА «БАБОЧКИ» ПОЛИТЕХНИКИ УЧАТСЯ УПРАВЛЯТЬ «ЧУВСТВАМИ» РАКЕТ, АВТОМОБИЛЕЙ И ТЕХНИКИ [электронный ресурс] / Научная Россия: <a href="https://scientificrussia.ru/articles/s-pomoshchyu-robota-babochki-politehniki-uchatsya-upravlyat-chuvstvami-raket-avtomobilej-i-tehniki">https://scientificrussia.ru/articles/s-pomoshchyu-robota-babochki-politehniki-uchatsya-upravlyat-chuvstvami-raket-avtomobilej-i-tehniki</a>
- 6. Робот-бабочка поможет заменить вредный ручной труд в российском авиапроме [электронный ресурс] / Тасс наука: <a href="https://nauka.tass.ru/nauka/4010654">https://nauka.tass.ru/nauka/4010654</a>
- 7. Преобразование круга Хафа [электронный ресурс] / Opency-Python Tutorials:

  <a href="https://opency24-python">https://opency24-python</a>

  tutorials.readthedocs.io/en/latest/py\_tutorials/py\_imgproc/py\_houghcircles/py\_hough

  circles.html
- 8. Преобразование Хафа с помощью OpenCV (C++/Python) [электронный ресурс] / LearnOpenCV: <a href="https://learnopencv.com/hough-transform-with-opency-c-python/">https://learnopency.com/hough-transform-with-opency-c-python/</a>
- 9. Модернизация учебно-исследовательской установки «Роботбабочка» / С.В. Леонов, к.т.н., доцент ОАР, Ян Жун (Китай), ТПУ // XIX


- Международной научно-практической конференции студентов, аспирантов и молодых ученых (Томск, 21–25 марта 2022 г.)
- 10. Что такое энкодер: типы и принцип работы [электронный ресурс] / Инженерная компания 555: <a href="https://ik555.ru/statyi/chto-takoe-enkoder/">https://ik555.ru/statyi/chto-takoe-enkoder/</a>
- 11. Назначение и виды энкодеров [электронный ресурс] / Техпривод: <a href="https://tehprivod.su/poleznaya-informatsiya/naznachenie-i-vidy-enkoderov.html">https://tehprivod.su/poleznaya-informatsiya/naznachenie-i-vidy-enkoderov.html</a>
- 12. Инкрементальный энкодер SCH50F [электронный ресурс] / Willtec: <a href="https://www.scancon.dk/products/incremental/standard-encoders/hollow-shaft/sch50f/">https://www.scancon.dk/products/incremental/standard-encoders/hollow-shaft/sch50f/</a>
- 13. Комплект Discovery с микроконтроллером STM32F303VC [электронный ресурс] / ST: <a href="https://www.st.com/en/evaluation-tools/stm32f3discovery.html">https://www.st.com/en/evaluation-tools/stm32f3discovery.html</a>
- 14. STM32 UART. Прием и передача данных по UART в STM32CubeMx [электронный ресурс] / MicroTechnics: <a href="https://microtechnics.ru/stm32-uart-priem-i-peredacha-dannyh-po-uart-v-stm32cubemx/">https://microtechnics.ru/stm32-uart-priem-i-peredacha-dannyh-po-uart-v-stm32cubemx/</a>
- 15. UART (USART) на STM32L (STM32) [электронный ресурс] / EasyElectrionics: <a href="http://we.easyelectronics.ru/STM32/uart-usart-na-stm32l-stm32.html">http://we.easyelectronics.ru/STM32/uart-usart-na-stm32l-stm32.html</a>
- 16. Проект ПИД-регулятора с микроконтроллером STM32 с использованием балансировочного стола для шариков [электронный ресурс] / ACROME: https://acrome.net/post/pid-controller-design-for-stm32-microcontrollers
- 17. Анализ процесса управления контуром положения щеточного двигателя постоянного тока и двойным контуром управления скоростью положения (позиционный ПИД-регулятор) [электронный ресурс] / CSDN: <a href="https://blog.csdn.net/bugeilunajiusong/article/details/125923912">https://blog.csdn.net/bugeilunajiusong/article/details/125923912</a>
- 18. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение: учебно-методическое пособие / И.Г. Видяев, Г.Н. Серикова, Н.А. Гаврикова, Н.В. Шаповалова, Л.Р. Тухватулина, З.В. Криницына; Томский политехнический университет. Томск: изд-во ТПУ, 2014. 36с. 18. Районный коэффициент.

- 19. Трудовой кодекс Российской Федерации от 30.12.2001 N 197-Ф3 (ред. от 05.02.2018).
- 20. *ГОСТ 12.2.032-78* Рабочее место при выполнении работ сидя. (Дата обращения 30.05.2023)
- 21. ГОСТ 12.0.003-2015 ССБТ. Опасные и вредные производственные факторы. Классификация. (Дата обращения 30.05.2023)
- 22. СанПиН 2.2.2/2.4.1340-03 Гигиенические требования к персональным электронно-вычислительным машинам и организации работ. (Дата обращения 30.05.2023)
- 23. ГОСТ 12.0.003-2015. ССБТ. Опасные и вредные производственные факторы. Классификация. (Дата обращения 30.05.2023)
- 24. ГОСТ Р 12.1.019-2017 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты. (Дата обращения 30.05.2023)
- 25. ГОСТ 17.2.3.01-86 Охрана природы (ССОП). Атмосфера. Правила контроля качества воздуха населенных пунктов: дата введения 1987-01-01. (Дата обращения 30.05.2023)
- 26. ГОСТ 17.4.3.04-85 Охрана природы (ССОП). Почвы. Общие требования к контролю и охране от загрязнения: дата введения 1986-07-01. (Дата обращения 30.05.2023)
- 27. ГОСТ 12.1.004-91 «ССБТ Пожарная безопасность» :дата введения 2014-06-19. (Дата обращения 30.05.2023)

# Приложение А

(обязательное)

Структурная схема система



# Приложение Б

(рекомендуемое)

Программный код на стороне Python

### Листинг 1 – Программный код на стороне Python

```
1 from pypylon import pylon
 2 import cv2 as cv
 3 import numpy as np
 4 import serial
 5 import math
 6 import struct
 7
   ser = serial.Serial(port="com5", baudrate=115200)
 8
10 camera = pylon.InstantCamera(pylon.TlFactory.GetInstance().CreateFirstDevice())
11
12 camera.StartGrabbing(pylon.GrabStrategy LatestImageOnly)
13 converter = pylon.ImageFormatConverter()
14
15 converter.OutputPixelFormat = pylon.PixelType BGR8packed
16 converter.OutputBitAlignment = pylon.OutputBitAlignment MsbAligned
17
18 while camera.IsGrabbing():
      grabResult = camera.RetrieveResult(5000, pylon.
    TimeoutHandling ThrowException)
20
21
      if grabResult.GrabSucceeded():
22
        image = converter.Convert(grabResult)
23
        img = image.GetArray()
24
        grey img = cv.cvtColor(img, cv.COLOR BGRA2GRAY)
25
        mimg = cv.medianBlur(grey img, 7)
26
27
        \#img = cv. GaussianBlur(grev img, (9, 9), 0)
28
29
        canny = cv.Canny(mimg, 50, 100)
30
        circles = cv.HoughCircles(canny, cv.HOUGH GRADIENT, 1, 30, param1=100,
    param2=25, minRadius=70, maxRadius=80)
31
        \#x = circles.astvpe('int')
32
        x = np.array(circles)
33
34
        if x.all(None):
35
           circles = np.uint16(np.around(circles))
36
37
           print(str(circles))
38
39
           numcircle = 0
40
           for i in circles[0, :]:
41
             cv.circle(img, (i[0], i[1]), i[2], (255, 255, 0), 2)
42
             cv.circle(img, (i[0], i[1]), 2, (0, 0, 255), 3)
43
             dx1 = i[0] - 640
44
             dy1 = 1080 - i[1]
           cv.imshow("vedio", img)
45
46
           size = img.shape
47
           h = size[0]
48
           w = size[1]
49
           #print(h)
50
           #print(w)
51
           if cv.waitKey(1) == 27:
```

### Продолжение листинга 1 – Программный код на стороне Python

```
52
              break
53
54
           \#angle1 = math.atan2(dx1,dy1)/(math.pi/180)
           angle1 = math.atan2(dx1, dy1)
55
56
           angle1 r = round(angle1, 3)
57
           #angle_en = struct.pack(' < f', angle 1)
58
           print(angle1 r)
59
           dsquare = pow(dx1,2) + pow(dy1,2)
60
           R=math.sqrt(dsquare)
61
           R r = round(R, 3)
           angle en = struct.pack('<f', angle1 r)
62
63
           R = struct.pack(' < f', R r)
64
           print(R r)
65
           a1 = b' \setminus xfb'
66
           a2 = b' \setminus xbf'
           if abs(angle1) > 0.0:
67
68
              ser.write(a1 + a2 + angle en + R en)
           #tded.write(str(angle1).encode("gbk"))
69
70
         else:
           cv.imshow("vedio", img)
71
72
           # cv.waitKey(0)
73
           if cv.waitKey(1) == 27:
74
              break
75
76
         # cv.namedWindow('title', cv.WINDOW NORMAL)
77
78
         # cv.imshow('title', canny)
79
         #
80
         \# k = cv.waitKey(1)
81
         # if k == 27:
82
         # break
83
      grabResult.Release()
84
85 camera.StopGrabbing()
86
87 cv.destroyAllWindows()
```

# Приложение В

(рекомендуемое)

Код основного файла App.c на стороне STM32

### Листинг 2 – Код основного файла App.c на стороне STM32

```
#include "App.h"
     pid_t Motor_Speed;
pid_t Motor_Position;
 3
 4
 5
     float Speed Max=150.0f;
 6
 8
    #define PI 3.1415926f
9
10
     uint8_t Rx_Buff[10];
11
     uint8 t Rx Data[10];
12
13
     float Data[2]={0.0f,0.0f};
14
     static void Filter_Data(uint8_t _header,uint8_t _id,uint8_t* _input,uint8_t* _output,uint8_t _size)
15
16
17
         if(_input[0]==_header&&_input[1]==_id)
18
             memcpy(_output,_input,_size);
19
20
21
         else
22
23
              if(_input[_size-1] == _header&&_input[0] == _id)
24
25
                   output[ size-1] = input[0];
                  memcpy(_output,_input+1,_size-1);
27
28
29
                   uint8 t i=1;
                  for (\bar{i} = 1; i < _size-1; ++i)
30
31
32
                      if (_input[i] == header&&_input[i+1] == _id)
33
                          memcpy(_output,_input+i,_size-i);
34
35
                          memcpy(_output+_size-i,_input,i);
36
                          break;
37
38
39
40
41
42
43
      void HAL UART RxCpltCallback(UART HandleTypeDef *huart)
44
45
       if(huart->Instance == USART1) //
46
         Filter_Data(0XFB, 0XBF, Rx_Buff, Rx_Data, 10);
47
48
         memcpy(Data, &Rx Data[2], 8);
49
50
     }
51
52
53
54
     void System Init()
55
56
57
       HAL_UART_Receive_DMA(&huart1,Rx_Buff,10);
58
59
       HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_1);
60
       HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_2);
61
       HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
62
63
       TIM3->CNT=Encoder_initial_value;
64
65
       HAL_TIM_Base_Start_IT(&htim6);
66
       PID struct init(&Motor_Speed, POSITION PID, 1000.0f, 200.0f, 7.0f, 0.007f, 0.01f, 10000.0f, 0.01f);
67
       PID struct init(&Motor Position, POSITION PID, Speed Max, 110.0f, 5.0f, 0.00001f, 0.00001f, 1000.0f, 0.01f);
68
69
70
71
72
     int Round Cnt=0;
73
     int64_t Position_Sum=0;
74
     int64_t Position_Sum_Last=0;
75
     int Position_Now=0;
76
     int Position_Last=Encoder_initial_value;
77
78
     float Speed=0.0f;
```

## Продолжение листинга 2 – Код основного файла App.c на стороне STM32

```
float Position radian=0.0f;
 81
      uint64_t Time_Last=0;
 82
 83
     uint64_t Time=0;
 84
 85
     void Get_Motor_Position_Speed()
 86
 87
          Position_Sum_Last=Position_Sum;
Position_Now=(int)(TIM3->CNT);
 88
 89
           if (Position_Now-Position_Last>40000)
 90
 91
            Round_Cnt--;
 92
 93
           }else if (Position Now-Position Last<-40000)
 94
 95
            Round_Cnt++;
           Position Sum=Round Cnt*65535+(Position Now-Encoder initial value);
 98
           Position Last=Position Now;
 99
            Speed=(Position_Sum-Position_Sum_Last) *60000/16384;
100
101
           Position_radian=(float)Position_Sum*2*PI/16384.0f;
102
103
104
105
    float Speed_E=0.0f;
float Speed_W=0.0f;
106
107
108
109
     float PWM=0.0f;
110
111
     float Position E= 0.0f;
112
113
114
     void Motor Speed Control()
115
116
           static uint8_t time=0;
117
            Get_Motor_Position_Speed();
118
119
120
121
            if(time<5)</pre>
122
123
                PWM=pid calc(&Motor Speed, Speed, Speed E+Speed W);
124
            }else
125
126
              Motor_Position.MaxOutput=Speed_Max;
127
128
              Speed_E=pid_calc(&Motor_Position, Position_radian, Position_E);
129
              time=\overline{0};
130
131
            time++;
132
               if(PWM>0.01f)
133
134
                TIM4->CCR1=(uint32 t)PWM;
135
136
                 TIM4->CCR2=0;
137
138
              else if(PWM<-0.01f)</pre>
139
                 TIM4->CCR2=(uint32 t)(-PWM);
140
141
                 TIM4->CCR1=0;
142
143
              else
144
                TIM4->CCR1=TIM4->ARR;
145
146
                TIM4->CCR2=TIM4->ARR;
147
148
149
150
151
      void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
152
153
        if(htim->Instance==TIM6)
154
155
            Motor_Speed_Control();
156
             LED_Step_clockwise((Position_Sum%16384)/2048);
```

### Продолжение листинга 2 – Код основного файла Арр.с на стороне STM32

```
158
                   Position_E= - (Data[0]);
159
160
161
          }
162
164
          void LED Step clockwise (uint8 t step)
165
166
             switch (step)
167
168
                case 7:
169
170
                   HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_SET);
                   HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
171
172
                   HAL GPIO WritePin (GPIOE, LED4 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED5 Pin, GPIO PIN RESET);
173
174
                   HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED8 Pin, GPIO PIN RESET);
175
176
177
178
179
                break:
180
181
182
                   HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN SET);
                   HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
183
                   HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED4 Pin, GPIO PIN RESET);
184
185
                   HAL_GPIO_WritePin(GPIOE, LED5_Pin, GPIO_PIN_RESET);
186
                   HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
187
188
189
                   HAL_GPIO_WritePin(GPIOE, LED8_Pin, GPIO_PIN_RESET);
190
191
                break;
192
                case 1:
193
                   HAL_GPIO_WritePin(GPIOE, LED3_Pin, GPIO_PIN_SET);
194
                   HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, LED2_Pin, GPIO_PIN_RESET);
195
196
197
                   HAL GPIO WritePin (GPIOE, LED4 Pin, GPIO PIN RESET);
                   HAL GPIO WritePin (GPIOE, LED5 Pin, GPIO PIN RESET); HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
198
199
                   HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED8 Pin, GPIO PIN RESET);
200
201
202
203
                break;
204
                case 2:
205
                {
                   HAL_GPIO_WritePin(GPIOE, LED4_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, LED2_Pin, GPIO_PIN_RESET);
206
207
208
                   HAL_GPIO_WritePin(GPIOE, LED3_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, LED5_Pin, GPIO_PIN_RESET);
209
210
                   HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED8 Pin, GPIO PIN RESET);
211
212
213
214
215
                break:
216
217
218
                   HAL GPIO WritePin(GPIOE, LED5 Pin, GPIO PIN SET);
                   HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
219
                   HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
220
221
                   HAL_GPIO_WritePin(GPIOE, LED4_Pin, GPIO_PIN_RESET);
222
                   HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
223
224
225
                   HAL GPIO WritePin (GPIOE, LED8 Pin, GPIO PIN RESET);
226
227
                break;
228
                case 4:
229
230
                   HAL_GPIO_WritePin(GPIOE, LED6_Pin, GPIO_PIN_SET);
                   HAL GPIO WritePin (GPIOE, LED1 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
231
232
233
234
                   HAL GPIO WritePin(GPIOE, LED4 Pin, GPIO PIN RESET);
```

### Продолжение листинга 2 – Код основного файла App.c на стороне STM32

```
HAL_GPIO_WritePin(GPIOE, LED5_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, LED7_Pin, GPIO_PIN_RESET);
236
                 HAL GPIO WritePin (GPIOE, LED8 Pin, GPIO PIN RESET);
237
238
239
              break;
240
              case 5:
241
                 HAL_GPIO_WritePin(GPIOE, LED7_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, LED2_Pin, GPIO_PIN_RESET);
242
243
244
245
                 HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
                 HAL GPIO WritePin(GPIOE, LED4 Pin, GPIO PIN RESET);
HAL GPIO WritePin(GPIOE, LED5 Pin, GPIO PIN RESET);
246
247
248
                 HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
249
                 HAL_GPIO_WritePin(GPIOE, LED8_Pin, GPIO_PIN_RESET);
250
251
              break;
252
              case 6:
253
              {
                 HAL_GPIO_WritePin(GPIOE, LED8_Pin, GPIO_PIN_SET);
254
255
                 HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
256
                 HAL_GPIO_WritePin(GPIOE, LED2_Pin, GPIO_PIN_RESET);
                 HAL GPIO WritePin(GPIOE, LED3 Pin, GPIO PIN RESET);
HAL GPIO WritePin(GPIOE, LED4 Pin, GPIO PIN RESET);
257
258
259
                 HAL GPIO WritePin (GPIOE, LED5 Pin, GPIO PIN RESET);
260
                 HAL GPIO WritePin(GPIOE, LED6 Pin, GPIO PIN RESET);
HAL GPIO WritePin(GPIOE, LED7 Pin, GPIO PIN RESET);
261
262
263
264
265
         }
266
```

# Приложение Г

(рекомендуемое)

Код основного файла App1.c на стороне STM32

### Листинг 3 – Код основного файла App1.c на стороне STM32

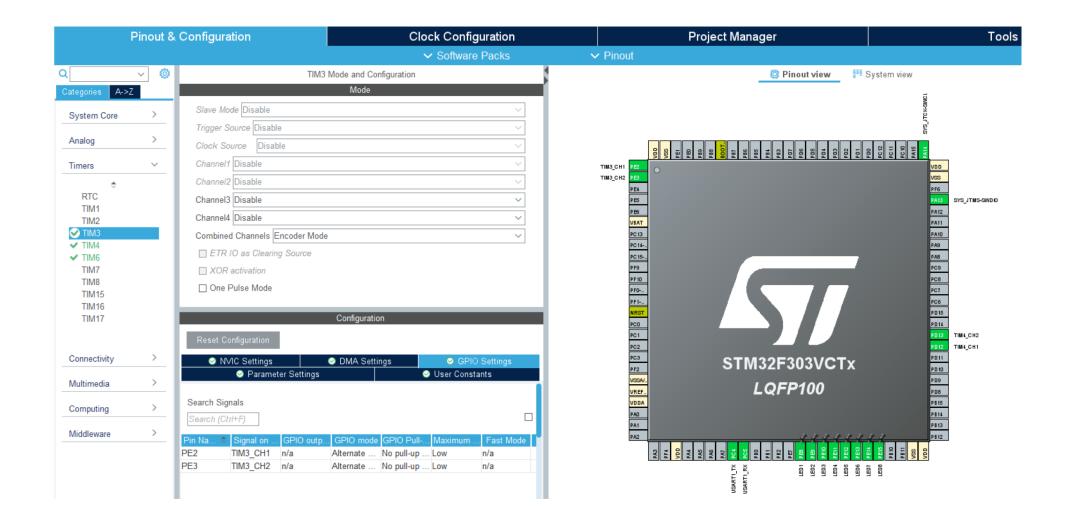
```
#include "App.h'
 3
     pid t Motor;
 4
 5
     uint8_t Rx_Buff[10];
 6
     uint8_t Rx_Data[10];
 8
     float Data[2]={0.0f,0.0f};
 9
10
     static void Filter Data(uint8 t header, uint8 t id, uint8 t* input, uint8 t* output, uint8 t size)
11
12
          if( input[0] == header&& input[1] == id)
13
14
              memcpy(_output,_input,_size);
15
16
         else
17
18
              if(_input[_size-1] == _header&&_input[0] == _id)
19
20
                   output[_size-1]=_input[0];
21
                  memcpy(_output,_input+1,_size-1);
22
23
24
                   uint8 t i=1;
25
                  for (\bar{i} = 1; i < _size-1; ++i)
26
27
                       if(_input[i] == _header&&_input[i+1] == _id)
28
                           memcpy(_output,_input+i,_size-i);
memcpy(_output+_size-i,_input,i);
29
30
31
33
34
             }
35
36
     }
37
38
      void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
39
40
       if(huart->Instance == USART1) //
41
42
         Filter_Data(0XFB, 0XBF, Rx_Buff, Rx_Data, 10);
43
         memcpy(Data, &Rx Data[2], 8);
45
46
47
48
49
     void System_Init()
50
51
52
       HAL_UART_Receive_DMA(&huart1,Rx_Buff,10);
53
54
       HAL TIM PWM Start (&htim4, TIM CHANNEL 1);
55
       HAL TIM PWM Start (&htim4, TIM CHANNEL 2);
56
57
       HAL TIM Encoder Start(&htim3, TIM CHANNEL ALL);
58
       TIM3->CNT=Encoder_initial_value;
59
60
       HAL_TIM_Base_Start_IT(&htim6);
61
       PID_struct_init(&Motor, POSITION_PID, 1000.0f, 200.0f, 2.2f, 0.2f, 0.01f, 10000.0f, 0.01f);
62
63
64
65
66
       STATIC INLINE uint32 t LL SYSTICK IsActiveCounterFlag()
67
68
          return ((SysTick->CTRL & SysTick CTRL COUNTFLAG Msk) == (SysTick CTRL COUNTFLAG Msk));
69
          //SysTick->CTRL
          //SysTick_CTRL_COUNTFLAG_Msk
70
71
72
     uint64_t micros()
73
74
          /* Ensure COUNTFLAG is reset by reading SysTick control and status register */
75
         LL_SYSTICK_IsActiveCounterFlag();
         uint32_t m = HAL_GetTick();
uint32_t tms = SysTick->LOAD + 1;
76
         __IO uint32_t u = tms - SysTick->VAL;
78
```

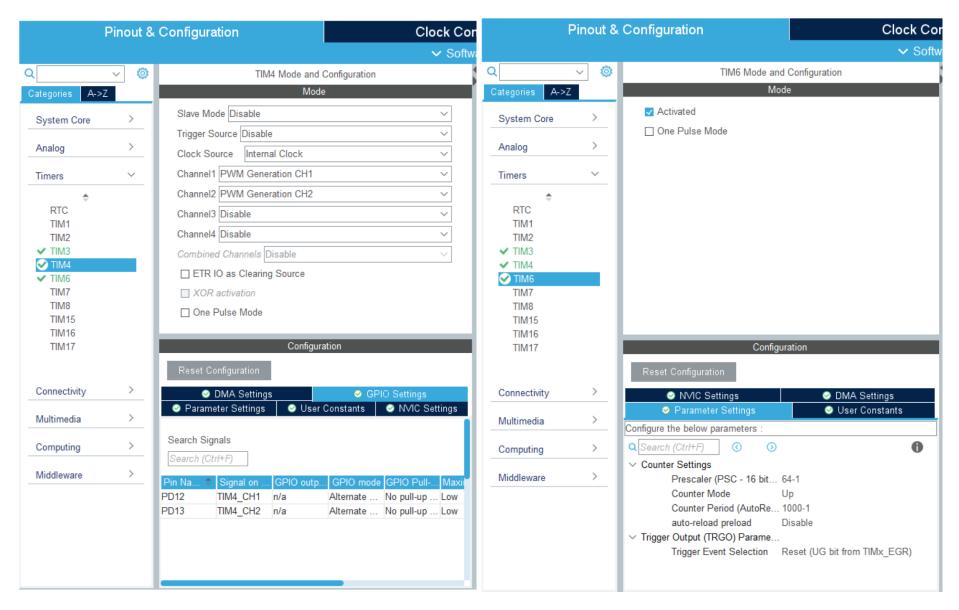
### Продолжение листинга 3 – Код основного файла App1.c на стороне STM32

```
if (LL SYSTICK IsActiveCounterFlag())
 80
 81
              m = HAL_GetTick();
 82
              u = tms - SysTick->VAL;
 83
 84
          return (m * 1000 + (u * 1000) / tms);
 85
      }
 86
 87
 88
     int Round Cnt=0;
 89
     int64_t Position_Sum=0;
 90
     int64_t Position_Sum_Last=0;
 91
      int Position_Now=0;
     int Position_Last=Encoder_initial_value;
 92
 93
     float Speed=\overline{0.0f};
 94
 95
     uint64_t Time_Last=0;
 96
     uint64_t Time=0;
 97
 98
     int flag = 0;
 99
100
101
     void Get_Motor_Position_Speed()
102
103
          Time_Last=Time;
104
          Time=micros();
105
          Position Sum Last=Position Sum;
106
          Position_Now=(int)(TIM3->CNT);
107
           if(Position_Now-Position_Last>40000)
108
109
            Round_Cnt--;
110
           }else if(Position_Now-Position_Last<-40000)</pre>
111
112
            Round Cnt++;
113
114
           Position Sum=Round Cnt*65535+(Position Now-Encoder initial value)
           Position_Last=Position_Now; if(Time-Time Last>=1)
115
116
117
            Speed=(Position_Sum-Position_Sum_Last)*60000/(8192*2);
118
119
120
      }
121
122
123
     float Set Speed=-35.0f;
124
      float PWM=0.0f;
125
     void Motor_Speed_Control()
126
127
            Get_Motor_Position_Speed();
128
            PWM=pid_calc(&Motor, Speed, Set_Speed);
129
              if (PWM>0.01f)
130
131
                TIM4->CCR1=(uint32_t)PWM;
132
                TIM4->CCR2=0;
              }else if(PWM<-0.01f)</pre>
133
134
                TIM4->CCR2=(uint32_t)(-PWM);
135
136
                TIM4->CCR1=0;
137
              }else
138
139
                TIM4->CCR1=TIM4->ARR;
140
                 TIM4->CCR2=TIM4->ARR;
141
142
143
144
      void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
145
146
        if (htim->Instance==TIM6)
147
148
            Motor Speed Control();
149
            if (Position Sum >= 0)
150
151
              LED Step clockwise((Position Sum%(8192*2))/2048);
152
153
            else
154
155
              LED_Step_clockwise(7-(-Position_Sum%(8192*2))/2048);
156
```

### Продолжение листинга 3 – Код основного файла App1.c на стороне STM32

```
158
159
160
161
         void LED Step clockwise (uint8 t step)
162
163
            flag = step;
164
            switch (step)
165
166
               case 7:
167
168
                  HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_SET);
169
                  HAL_GPIO_WritePin(GPIOE, LED2_Pin, GPIO_PIN_RESET);
170
                  HAL_GPIO_WritePin(GPIOE, LED3_Pin, GPIO_PIN_RESET);
                  HAL GPIO WritePin(GPIOE, LED4 Pin, GPIO PIN RESET);
HAL GPIO WritePin(GPIOE, LED5 Pin, GPIO PIN RESET);
171
172
                  HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET); HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
173
174
175
                  HAL_GPIO_WritePin(GPIOE, LED8_Pin, GPIO_PIN_RESET);
176
177
              break;
178
               case 0:
179
180
                  HAL GPIO WritePin(GPIOE, LED2 Pin, GPIO PIN SET);
                  HAL GPIO WritePin(GPIOE, LED1 Pin, GPIO PIN RESET);
181
                  HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED4 Pin, GPIO PIN RESET);
182
183
                 HAL GPIO WritePin (GPIOE, LED5 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
184
185
186
187
                  HAL GPIO WritePin (GPIOE, LED8 Pin, GPIO PIN RESET);
188
189
              break;
190
               case 1:
191
192
                  HAL GPIO WritePin(GPIOE, LED3 Pin, GPIO PIN SET);
                  HAL GPIO WritePin(GPIOE, LED1 Pin, GPIO PIN RESET); HAL GPIO WritePin(GPIOE, LED2 Pin, GPIO PIN RESET);
193
194
                  HAL GPIO WritePin (GPIOE, LED4 Pin, GPIO PIN RESET); HAL GPIO WritePin (GPIOE, LED5 Pin, GPIO PIN RESET);
195
196
197
                  HAL_GPIO_WritePin(GPIOE, LED6_Pin, GPIO_PIN_RESET);
198
                  HAL_GPIO_WritePin(GPIOE, LED7_Pin, GPIO_PIN_RESET);
199
                  HAL_GPIO_WritePin(GPIOE, LED8_Pin, GPIO_PIN_RESET);
200
201
              break:
202
               case 2:
203
                  HAL_GPIO_WritePin(GPIOE, LED4_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
204
205
                  HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN RESET); HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
206
207
208
                  HAL_GPIO_WritePin(GPIOE, LED5_Pin, GPIO_PIN_RESET);
                  HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
209
210
211
                  HAL GPIO WritePin (GPIOE, LED8 Pin, GPIO PIN RESET);
212
213
              break:
214
              case 3:
215
216
                  HAL GPIO WritePin(GPIOE, LED5 Pin, GPIO PIN SET);
217
                  HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
                  HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
218
219
                  HAL GPIO WritePin (GPIOE, LED4 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED6 Pin, GPIO PIN RESET);
220
221
                  HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET); HAL GPIO WritePin (GPIOE, LED8 Pin, GPIO PIN RESET);
222
223
224
225
              break;
226
               case 4:
227
228
                  HAL_GPIO_WritePin(GPIOE, LED6_Pin, GPIO_PIN_SET);
                  HAL GPIO WritePin (GPIOE, LED1 Pin, GPIO PIN RESET); HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN RESET);
229
230
                  HAL GPIO WritePin (GPIOE, LED3 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED4 Pin, GPIO PIN RESET);
231
232
                  HAL GPIO WritePin (GPIOE, LED5 Pin, GPIO PIN RESET); HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
233
234
```

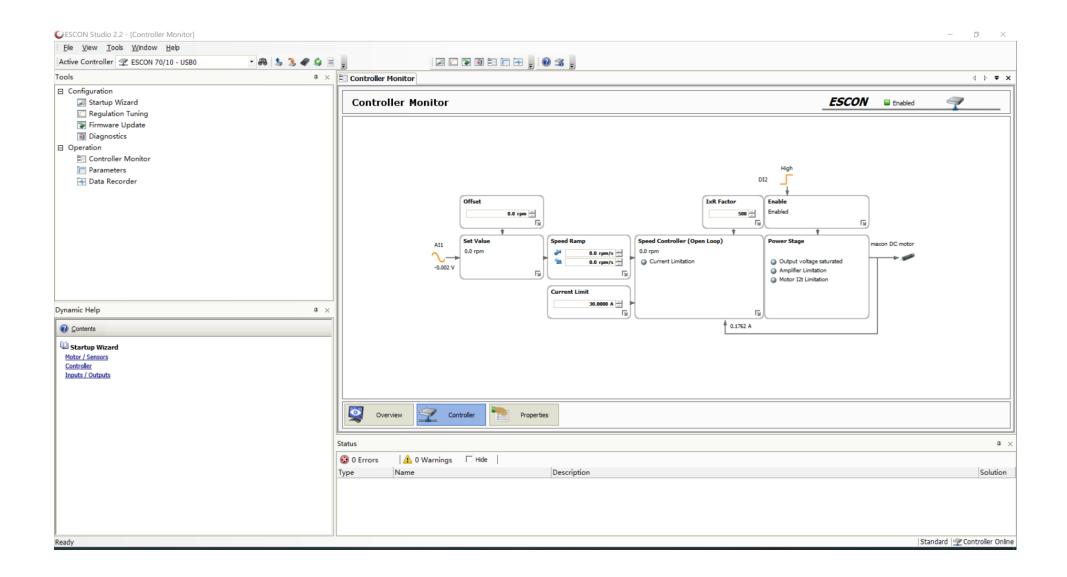

## Продолжение листинга 3 – Код основного файла App1.c на стороне STM32


```
HAL_GPIO_WritePin(GPIOE, LED8_Pin, GPIO_PIN_RESET);
236
237
             break;
238
             case 5:
239
240
                HAL GPIO WritePin(GPIOE, LED7 Pin, GPIO PIN SET);
                HAL_GPIO_WritePin(GPIOE, LED1_Pin, GPIO_PIN_RESET);
241
                HAL_GPIO_WritePin(GPIOE, LED2_Pin, GPIO_PIN_RESET);
242
               HAL GPIO WritePin(GPIOE, LED3 Pin, GPIO PIN RESET); HAL GPIO WritePin(GPIOE, LED4 Pin, GPIO PIN RESET);
243
244
245
                HAL GPIO WritePin (GPIOE, LED5 Pin, GPIO PIN RESET);
246
                HAL_GPIO_WritePin(GPIOE, LED6_Pin, GPIO_PIN_RESET);
247
                HAL_GPIO_WritePin(GPIOE, LED8_Pin, GPIO_PIN_RESET);
248
249
             break;
250
             case 6:
251
252
                HAL GPIO WritePin(GPIOE, LED8 Pin, GPIO PIN SET);
               HAL GPIO WritePin (GPIOE, LED1 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN RESET);
HAL GPIO WritePin (GPIOE, LED2 Pin, GPIO PIN RESET);
253
254
255
256
                HAL_GPIO_WritePin(GPIOE, LED4_Pin, GPIO_PIN_RESET);
               HAL GPIO WritePin(GPIOE, LED5 Pin, GPIO PIN RESET); HAL GPIO WritePin(GPIOE, LED6 Pin, GPIO PIN RESET);
257
258
259
                HAL GPIO WritePin (GPIOE, LED7 Pin, GPIO PIN RESET);
260
261
262
263
        }
```

# Приложение Д

(обязательное)

Конфигурация параметров STM32CubeMX






# Приложение Е

(обязательное)

Конфигурация параметров Escon Studio

