THE PERSON NAMED IN THE PROPERTY OF THE PARTY OF THE PART

Изменение мощности паромашин.

many ranguages in a manages and be accept to an and the control of the and

Мощность паромашины, как известно, выражатся в л. с. в виде: $N_0 = \eta \cdot \frac{1.\,\mathrm{n}}{30.75}$ О. рі . При неизменных в данной машине: О — полезной площади поршня в кв. сант. и 1 — длине хода поршня в мет. эффективная мощность Ne могла бы меняться при изменении: п — числа оборотов в мин. и рі — среднего индикаторного давления, ибо η — мех. к. п. практически величина постоянная. Но изменения п для заданных условий производства не представляется удобным, так как исполнительные механизмы, приводимые в движение от данной паромашины, имеют определенные наивыгоднейшие скорости движения, нарушение коих ведет к понижению качественной и количественной стороны выработки продукта. С другой стороны, это именно число оборотов п учтено при проектировании самой паромашины в части, касающейся ее динамики. Так., обр. в сущности остается одна возможность к изменению мощности Ne данной паромашины—это изменение рі , сохраняя п постоянным.

Среднее индикаторное давление всякой паромашины можно представить так: pi = σ (kp — ke pe)...(1), где p и pe — давления впуска и выпуска в аб. атм., k и ke — усредняющие коэффициенты переднего и заднего давлений и σ — коэффициент надежности, характеризующий потери в действительной индикаторной диаграмме вследствие парораспределения и теплообмена со

стенками цилиндра, $\sigma = 0.90 - 0.95.$ —

Из формулы (1) для рі ясно, что можно получать изменения рі, менял величину р, что имеет место в действительных паромашинах при регулировке дроссель—клананом. В этом случае изменение рі в зависимости от р будет происходить по закону прямой линии, проведенной от начала координат. на расстоянии— σ ке ре под углом к оси р, тангенс коего равен σ к. На чер. 1 изображен этот закон для частного примера: p=6,15; pe=1,1; k=0,58: ke=1,13 и $\sigma=0,93$, причем для p=6,15 атм. pi=2,2 атм., а для p=4 атм. pi=1,05 атм.

Снособ изменения мошности машины при посредстве «мятия пара» довольно распространен в небольших нароманинах. Он обладает, однако, следующими общеизвестными недостатками: 1) пусть в теоретической индикаторной днаграмме (чер. 2) начальное давление АС понижение до AC^1 , а степень наполнения $\frac{CD}{AB} = \frac{C^1D^1}{AB}$ оставлена прежней. Получим диаграмму $C^1D^1E^1GKC^1$. Продолжив линию расширения E^1D^1 до встречи с прямой CD получим теоретическую диаграмму $KCFE^1GK$ при первоначальном давлении AC и при степенивпуска $\frac{CF}{AB} < \frac{CD}{AB}$ Расход пара по весу одинаков в обоих последних диаграммах, между тем как во второй получается избыток работы, изображаемый плошалкой CFC^1D^1 A так как лобавочный расход тенла на прижаемый плошалкой CFC^1D^1

диаграммах, между тем как во второй получается изоыток рассты, изооражаемый площадкой С F С¹ D¹. А так как добавочный расход тепла на приготовление нара более высокого давления ничтожен, то ясно, что мощность машины выгоднее уменьшать более ранней отсечкой, чем мятием пара, что и подтверждается опытом. 2) Существуют паромашины, у которых переход равнодействующих горизонтальных усилий чрез ноль, происходит после мертвого положения. При проссель—клапанах увеличение р в этом случае вызывает приближение нуля давлений к мертвой точке до возможного совпадения с ней, результатом чего могут быть удары в сочленениях машины.

3) При уравновешивании сил инерции механизма достаточным сжатием давление последнего в конце рс ограничивает дальнейшее понижение р, так как при р с рс будет появляться петля в конце сжатия, и наступает искажение вида индикаторной диаграммы, чем суживаются пределы регулирования, или же, в случае большого понижения мощности, приходится мириться с потерями в индикаторной диаграмме.

Естественно поэтому, что способ изменения мощности Ne при посредстве изменения степени в наполнения, т. е, при изменении k в формуле (1) для рі,

является наиболее рациональным.

Коэффициент переднего давления k выражается чрез степень наполнения ϵ в следующем виде: $k = \epsilon + (\epsilon + m) \ln \frac{1+m}{\epsilon+m}$, где m— величина вредного пространства в ${}^0/{}_0{}^0/{}_0$ рабочего объема парового цилиндра. Положивши $\mathbf{x} = \epsilon + m$, преобразовываем: $\mathbf{k} = \alpha \mathbf{x} - \mathbf{x} \mathbf{m} + \beta \mathbf{x} \ln (1+m) - \beta \mathbf{x} \ln \mathbf{x}$. Чтобы избавиться от $\ln \mathbf{x}$, прибегнем \mathbf{k} разложению в строку, при чем для возможности игнорирования всех членов разложения, начиная со второго, \mathbf{x} под знаком $\ln \mathbf{y}$ множим на некоторый множитель $\gamma > 1$, прибавив одновременно величину + $+ \beta \mathbf{x} \ln \gamma$. Тогда: $\mathbf{k} = \mathbf{x} \left[\alpha + \beta \ln (1+m) + \beta \ln \gamma \right] - \alpha \mathbf{m} - 2\beta \mathbf{x} \frac{\gamma \mathbf{x} - 1}{\gamma \mathbf{x} + 1}$, откуда: $\gamma \left[\alpha + \beta \ln (1+m) + \beta \ln \gamma - 2\beta \right] \mathbf{x}^2 - \gamma \mathbf{k} \mathbf{x} - \mathbf{k} + \left[\alpha + \beta \ln (1+m) + \beta \ln \gamma - \alpha \mathbf{m} \gamma + 2\beta \right] \mathbf{x} - \alpha \mathbf{m} = 0$. Таким образом имеем уравнение кривой второго порядка вида: $\mathbf{A} \mathbf{x}^2 - \mathbf{k} \mathbf{x} + \mathbf{k} + \mathbf{k} \mathbf{k} + \mathbf{k}$

Таким образом имеем уравнение кривой второго порядка вида: А x^2 — В xy+D x-y-F=0, при чем A $C-B^2=-(-\gamma)^2<0$, т. е. кривая — имербола. Для выбора значения γ заметим, что второй член разложения в строку $\ln \gamma x$ равен $^2/_3$ β x $\left(\frac{\gamma x-1}{\gamma x+1}\right)^3$ и обращается в ноль при $\gamma=\frac{1}{x}$, для

чего пришлось бы давать переменные значения γ для каждого x, что, очевидно, невозможно. В одноцилиндровой машине при работе на холодильник обычные колебания для x=0,1-0,5, а при работе на атмосферу x=0,2-0,7, чему соответствуют значении γ в первом случае $\gamma=10-2$, а во втором $\gamma=5-1,43$, поэтому, держась ближе к нормальным степеням наполнения, выберем для первого случая $\gamma=5$, а для второго еще и с тем расчетом, чтобы множитель Λ при x^2 обратить в ноль для упрощения задачи. Если принять $\beta=0,85$: $\beta=0,92$; $\beta=0,08$, получим $\beta=0,85$. гогда $\beta=0,08$, получим $\beta=0,85$. Тогда: $\beta=0,08$, получим $\beta=0,08$

ассимтот гиперболы $\psi \tau = 0$, т. е. $y = \frac{D}{B}$ и $x = -\frac{1}{B}$. Имеем численные зна-

чения для вышеуказанного частного примера:

Коэффици- енты.	Их буквенные выражения.	Их численные значения.
A. A.	$\gamma \left[\alpha + \beta \ln (1 + m) + \beta \ln \gamma - 2\beta\right].$	White of O. St.
B. un	designation are greatly by many us also use treat	2,3
D.	$\alpha + \beta \ln (1 + m) + \beta \ln \gamma - \alpha m \gamma + 2\beta$.	3,23
orr. pass	scourage has bounded for a m. whose dissistance being	0,074

Таким образом для ассимтот имеем $k = \frac{3,23}{2,3} = 1,4$ и $x = -\frac{1}{2,3} = -0,43$.

Необходимую точку для построения гиперболы найдем, полагая $\mathbf{x} = 0$, при

чем k = -F = -0.074. Построение гиперболы сделано, на чер. 3.—

Переходя ко второму случаю работы на холодильник, заметим, что A нолю не ровно. Тогда уравнение нашей гиперболы можно представить B виде: $\left[0.5 \text{ By} - \left(0.5 \text{ D} - \frac{A}{B}\right)\right]^2 - \left[A \text{ x} - 0.5 \left(B \text{y} - D\right)\right]^2 + 0.25 \text{ D}^2 + A \text{ F} - \left(0.5 \text{ D} - \frac{A}{B}\right)^2 = 0$, так что уравнение для ассимтот: $\left[0.5 \text{ By} - \left(0.5 \text{ D} - \frac{A}{B}\right)\right]^2 - \left[A \text{ x} - 0.5 \left(B \text{y} - D\right)\right]^2 = 0$, откуда, по разложении разности квадратов на произведение суммы их на их разность, имеем: $x = -\frac{1}{B}$, а уравнение другой ассимтоты: $By - D + \frac{A}{B} - Ax = 0$, что при x = 0 дает $y = \frac{D}{B}$

 $-\frac{A}{B^2}$ и при x=1 дает $y=\frac{D}{B}-\frac{A}{B^2}+\frac{A}{B}$.

Коэффициенты в численных значениях нашего частного примера будут для данного случая:

Коэффици-	их оуквенные выражения.	
A.	$\gamma' [\alpha + \beta \ln (1 + m) + \beta \ln \gamma - 2\beta].$	3,3
В.	The second of the second of the second	5,0.
D.	$\alpha + \beta \ln (1 + m) + \beta \ln \gamma - \alpha m \gamma + 2 \beta$.	3,7
F.	am.	0,074

Так. обр. : $\mathbf{x} = -\frac{1}{B} = -\frac{1}{5} = -0.20$; для другой ассимтоты при $\mathbf{x} = 0$ имеем $\mathbf{y} = \frac{D}{B} - \frac{A}{B^2} = \frac{3.7}{5} - \frac{3.3}{25} = 0.61$ и при $\mathbf{x} = 1$ имеем $\mathbf{y} = \frac{D}{B} - \frac{A}{B^2} + \frac{A}{B} = \frac{3.7}{5} - \frac{3.3}{25} + \frac{3.3}{5} = 1.27$. Точка, нужная для построения гиперболы, получается при $\mathbf{x} = 0$, когда $\mathbf{k} = -\mathbf{F} = -0.074$. Гипербола построена на чер. 4 способом секущих.

Неточности от игнорирования второго члена разложения $\frac{2}{3}$ $3 \times \left(\frac{\gamma \times -1}{\gamma \times +1}\right)^3$ выразятся для крайних значений х:

X	γ=5	$\gamma=2.3$
0.1	0,002	
0,2	6 3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0,006
0,5	- 0,02	PARTITION OF
0.7	up Han	0,004

Изменение рі в основном уравнении (1) в зависимости от к изобразится в виде прямой рі $= \sigma p \, k - \sigma k_e \, p_e$, проходящей от начала координат на растоянии — $\sigma k_e \, p_e$ под углом к оси k, тангенс коего $= \sigma p$. Для вышеуказанного частного примера машины: рі $= -0.93.6.15.\ k-0.93.1.13.1.1:\ для \, k=0$ имеем рі $= -0.93.1.13.1.1=1.15:\ для \, k=1.0$ имеем: рі = 5.7-1.15=4.55. На чер. 5 изображена эта прямая. По найденному

к для любого рі легко найти $x = \varepsilon + m$, пользуясь той или другой гиперболой для k (чер. 3-4) в зависимости от обстоятельств. Так, для рі = 2,2 атм.

находим k = 0.57, чему на чер. 3 отвечает $\mathbf{x} = 0.33$ и след. $\epsilon = 0.25$. Легко решается и обратная задача: по заданному $\epsilon = \mathbf{x} - \mathbf{m}$ найти рі при помощн гипербол $\mathbf{k} = \mathbf{f}(\mathbf{x})$ и прямой рі $= \mathbf{f}(\mathbf{k})$.

Если бы желательно было установить непосредственную зависимость между рі и $\mathbf{x} = \varepsilon + \mathbf{m}$, то нетрудно убедиться, исходя из основного уравнения (1) рі $= \sigma \mathbf{kp} - \sigma \mathbf{ke}$ ре, что для любого \mathbf{x} для рі получаем значения, как разность между ординатами той или иной гиперболы \mathbf{k} (чер. 3—4) и ординатами прямой, проведенной параллельно оси \mathbf{x} на расстоянии от нее $= \sigma \mathbf{ke}$ ре ,при чем масштаб для тех и других ординат должен быть взят сравнительно с чер. 3—4 в σ р раз менее. Так, для упоминавшегося частного примера имеем значение рі для $\mathbf{x} = 0.5$ при работе на атмосферу (чер. 3): рі $= \frac{6.15.0.93}{100}$ (51.5—20) = 2.95 атм.

Таким образом неносредственная зависимость $p_i = f(x) - \imath unep болическая.$ Основное уравнение (1) рі = с (кр - ке ре) показывает возможность изменения рі при изменении ке. Коэффициент заднего давления ке выражается чрез с—степень сжатия—в виде: $k_e = 1 - c + \varphi$ (c+m) $\ln \frac{c + m}{m} = 1 - c + \varphi$ $Z(1+\varphi \ln m)+m+\varphi Z \ln Z$, если обозначить Z=c+m и чрез $\varphi-$ коэффициент, характеризующий мятие пара в момент начала сжатия = 1,1. Зная. что Z обычно находитсяв пределах Z=0.1-0.5, и что, следовательно, множитель при Z под знаком In при разложении в строку с игнорированием второго члена разложения может быть $\gamma_1 = 10 - 2$, можно принять $\gamma_1 = 5$. Тогда имеем: $\gamma_1 \left[2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z^2 - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \left[\gamma_1 \left(1 + m \right) - 2 \varphi - 1 - \varphi \ln \left(m \gamma_1 \right) \right] Z - \gamma_1 \ker Z + \gamma_$ - ke + 1 + m = 0, т. е. онять для зависимости между ке и Z имеем имерболу, ибо $AC - B^2 = -(-\gamma_1)^2 < 0$. Координаты центра гиперболы будут : z = - $= -0.2 \text{ и ke} = -\frac{2\gamma_1 \left[2 \varphi - 1 - \varphi \ln \left(m \gamma_1\right)\right]}{\gamma_1^2} + \frac{\gamma_1 \left(1 + m\right) - 2\varphi - 1 - \varphi \ln \left(m \gamma_1\right)}{\gamma_1} = -\frac{2.11}{25} + \frac{3.2}{5} = -0.24,$ при чем уравнение второй ассимтоты ке = -0.24 + 1 $+[2\varphi-1-\varphi\ln(m\gamma_1)]Z$, что для Z=1 дает $k_0=2,4$. Необходимую для построения гиперболы точку найдем, полагая Z=0, так что $k_e=1+m=1,08$. Гипербола способом секущих построена на чер. 6. Заметим, что относительная исгрешность от игнорирования второго члена разложения здесь будет менее, чем в случае к, ибо ке всегда > 1.

Пользование изменениями ке для изменения мощности пароманин на практике обычно не применяется, ибо имеет следующие невыгоды: 1) давление ре в конце сжатия принято выбирать достаточным для уравновенивания сил инерции частей с попеременно-возвратным движением: это обезпечивает плавность хода. При уменьшении ре легко могут получиться удары в сочленениях машины; 2) при увеличении ре увеличивается работа противодавления, при чем возрастание ре от компрессии пара получается невыгодным путем, как превращение механической работы в теплоту, а в случае значительных мертвых пространств может иметь место даже предварительная конденсация. Термически наивыгодное давление в конце сжатия не должно превосходить средней температуры стенок концов цилиндра: отступление от этого ведет к увеличению расхода пара; 3) пределы регулирования мощности гораздо шире в случае изменения степени наполнения или применения дроссель клапана. Если к изменению степени сжатия, как к самостоятельному средству изменения мощности, не принято прибегать на практике, тем не менее в машинах с кулисным парораспределением, а также в случаях плоских регуляторов вместе с изменением степени наполнения изменяется и степень сжатия в обратном направлении, т. е. увеличение, напр., степени наполнения влечет за собой уменьшение степени сжатия и наоборот. Так. обр. изменение мощности про-

мсходит в этих случаях с двух сторон одновременно, отчего мощность машины изменяется быстрее. Для возможности выяснения закона изменения р; в зависисимости от в (или х = в + т) необходимо в каждом отдельном таком случае знать зависимость c = f(z). Если ограничиваться грубо приближенным решением задачи, то окажется, что иногда эта зависимость может быть выражена крайне простым линейным уравнением вида: $c = a - b \epsilon$. Такая зависимость имеет место, например, в некоторых типах паровозов 1). Так, для паровоза сер. К в численных значениях она будет: $C = 0.38 - 0.42 \epsilon$. Выражая чрез x и Z, получим: Z = a + m + bm - bx и Z = 0.49 - 0.42 x, полагая т = 0.08. Пользуясь этой зависимостью, находим график зависимости p_i от **x** для данного частного случая, как разность ординат кривой k=f(x)с уменьшенным в эр раз масштабом (чер. 3), ибо в паровозах отсечки ранее x = 0.2 неупотребительны, и ординат кривой $k_e = f(Z)$ (чер. 6) с уменьинением масштаба в р/ре раз, имея в ввиду, что масштабы чер. 3 — 6 одинаковы, при чем ординаты последней кравой (чер. 6) берутся для тех значений Z, которые огвечают соответственным значениям х из линейного графика (чер. 7): Z=0,49-0,42 х. Искомая зависимость $p_i=f^i$ (х) выстроена на чер. 8, где для x=0,5 имеем p_i , как разность ординат а $\delta-a$ д $=(71-10.5)\frac{0.93.12.5}{100}\cong 6.9$ atm., при чем p=12.5 atm. и $p_e=1.2$ атм. Само собой разумеется, что влияние скорости движения наровоза на рі здесь

не учитывается.

Наконец, из основного (1) уравнения $p_i = \sigma$ (kp — ke pe) явствует возможность изменения рі при изменении ре. Невыгоды регулировки мощности при помощи изменения ре заключаются в следующем: 1) меняется давление в конце сжатия, а след. не устранена возможность ударов; 2) при повышеним ре является опасность образования петель на индикаторной диаграмме в конце расширения и сжатия: 3) при изменении ре машина является неэкономичной, ибо каждой степени наполнения отвечает лишь одно наиболее экономичное давление выпуске ре в зависимости от амортизационных и эксплоатационных расходов и стоимости топлива. Как известно, при выборе наивыгоднейшего давления холодильника приходится делать подсчет всех расходов при заданном рі для разных ре, при чем в целях выяснения полезного расхода пара определяется для каждого ре соотвественная степень наполнения э. Так. обр. задача в случае изменения ре в основном (1) уравнении рі = σ (kp - ke ре) видоизменяется: приходится отыскивать $x = \varepsilon + m$, как $x = f(p_e)$ при $p_i = const.$ Аналогичная задача возникает еще и в другом случае практики, когда надлежит найти степень наполнения при изменении противодавления с сохранением мощности, что имеет место в случаях переустройства установки, работавшей на холодильник, для работы на отопление и при обратной переделке Нетрудно видеть, что $\frac{p_i}{\sigma p} + \frac{k_e}{p}$ $p_e = k$, т. е. k изменяется, как k = f (p_e), по закону *прямой*, проведенной от начала координат на расстоянии $\frac{p_i}{\sigma p}$ под углом κ оси p_e , тангенс коего $= \frac{k_e}{p}$. Для нашего частного примера при $p_e = 0$ имеем $k = p_i / \sigma p = 0.38$, а для $p_e = 1$ имеем k = 0.56, что и нанесено на чер. 9 По заданному ре легко находим k, а пользуясь кривыми (чер. 3-4) k=f(x), просто определяем соответственное х. Но можно иметь непосредственное изображение зависимости $p_e=f(x)=\frac{p}{k_e}\,K-\frac{p_i}{\sigma k_e}$, т. е. эта зависимость $\imath unep$ болического вида.

²) Наспорта паровозов: 1—5—0 Е ф (Пгр., 1917, стр. 14); 1—4—0 Ща (Пгр. 1915, стр. 7); 1-3-1 С (Игр. 1915, стр. 7); 2-3-0 Ку (Игр. 1915, стр. 7); 0-5-0 Э (Москва 1918. стр. 7).

Каждое значение ре получается, как разность ординат кривой k=f (x) (чер. 3—4) в уменьшенном в $\frac{p}{k_e}$ раз масштабе и ординат прямой $\frac{p_i}{\sigma k_e}$ параллельной оси x в том же масштабе k. Так. обр. для $p_e=0.3$ атм. имеем на чер. $10: p_e=\frac{0.3}{6,15}\times 1.13\times 100=5.5$ мм., так что x=0.23, откуда $\varepsilon=0.15$.

Все вышесказанное относится к машинам, работающим насыщенным паром. Для машин перегретого пара коэффициент переднего давления имеет вид: $k_n = \alpha \epsilon + \frac{\beta}{n-1} (\epsilon + m) \left[1 - \left(\frac{\epsilon + m}{m+1} \right)^{n-1} \right]$, что может быть представлено, полагая $\mathbf{x} = \epsilon + m$, ввиде: $k_n = \left[\alpha + \frac{\beta}{n-1} - \frac{x \beta \cdot n - 1}{(n-1)(m+1)^{n-1}} \right] \mathbf{x} - \alpha m$.

Осложняющим обстоятельством здесь является то, что показатель и политропы, будучи зависим от температуры перегретого пара, в то же время зависит и

от степени наполнения $\varepsilon = x - m$.

Для характеристики последней зависимости могут служить кривые чер. 11, относящиеся до опытов проф. Schröter'а с машинами двукратного расширення, при чем кривые эти дают зависимость п от ε в ЦВД. Так как в современных машинах температура перегретого пара обычно бывает 300 — 350° Ц. то, допуская приближенную линейную зависимость между п и х = ε + m в пределах х = 0,1, когда п = 1,0, и х = 0,4, когда п = 1,24, получим: п = 0,8 х + 0,92, при чем m принято = 0,08, как часто встречается величина для клапанного и золотникового с цилиндрическими золотниками парораспределения, применяемых при перегретом паре. Очень часто рекомендуется при выборе значения показателя п для давлений 1) р ≥ 9 кил./кв. сант. пользоваться следующей таблицей Вегпег'а:

Средние показатели расширения для ЦВД.					
Температура пара в С.	200	250	300	350	
Малая нагрузка	1,00	1,05	1,10	1,14	
Нормальная нагрузка	1,05	1,10	1,14	1,17	
Усиленная »	1,10	1,15	1,18	1,20	

Но здесь, во-первых, зависимость от степени наполнения существует лишь в скрытом и при том неопределенном виде (малая, нормальная, усиленная нагрузка), а во-вторых, для больших машин значения и рекомендуется повышать на 0.02-0.04 и вместе свидетельствуется, что практически даже большие отклонения от действительных величин имеют обыкновенно мало значения. Вообще в выборе и существует некоторая неопределенность и, надо думать, пользование приближенной формулой n=0.8 х +0.92 в указанных границах не может создать грубых ошибок. Умножим и разделим вычитаемое внутри [] скобок выражения для k_0 на 1.5 n-1 и произведем разложение в строку в числителе вычитаемого $\beta(1.5$ $n)^{n-1}$, а в его знаменателе (n-1) [1.5 $(1+m)]^{n-1}$. Тогда получим: $k_0 = \begin{cases} \alpha + \frac{\beta}{n-1} & \beta[1+(n-1)\ln 1.5$ x] x - x m. Вторые члены разложения можно игнорировать, ибо при x = 0.1 превращается в ноль n-1, а при x = 0.4, вторые члены разложения будут: 0.9. 0.24^2 . $\frac{(\ln 0.6)^2}{2}$. 0.4 = 0.002 и 0.24. 0.24^2 . $\frac{(\ln 0.6)^2}{2} = 0.001$.

¹⁾ Berner. Применение перегретого пара к поршневой паровой машине. Москва. 1908 г. стр. 83.

Разложим также в строку и β (n — 1) х ln 1,5 х. Второй член разложения при х = 0,4 равен $^2/_3$ $\left(\frac{1.5 \, \mathrm{x} - 1}{1.5 \, \mathrm{x} + 1}\right)^3$ (n — 1) \times β \times х = 0,0008, каковую величину можно также игнорировать, и, следовательно, вместо ln 1,5 надлежит подставить всего лишь $2\left(\frac{1.5 \, \mathrm{x} - 1}{1.5 \, \mathrm{x} + 1}\right)$. Правую часть выражения для k_n приводим теперь к одному знаменателю, подставив вместо n его приближенное значение = 0,8 х + 0,92, и производим фактическое деление многочлена числителя на многочлен знаменателя, после чего имеем:

Таким образом k_n для каждого х получаем, как сумму ординат y_1 и y_2 . Но $y_1 = 0.97x - 3.72$ есть уравнение прямой, а $y_2 = \frac{8.81 \, \text{x} + 3.49}{0.57 \, \text{x}^2 + 1.83 \, \text{x} + 0.94}$ получается, как частное от разделения ординат прямой числителя на соответственные ординаты нараболы 1) знаменателя для одних и тех же абсцисс х.—Все дело сводится, следовательно, к построению двух прямых и одной параболы. Любонытно отметить, что нарабола знаменателя совершенно не вависит от α и β , т. е. не связана с характером нарораспределения и может быть построена раз навсегда, как для клапанного, так и для золотникового нарораспределения. Построение для y_1 и y_2 выполнены на чер. 12, где нанесена и кривая k_n в зависимости от α , при чем масштаб для абсцисс α = 100 мм., а для ординат прямых α = 10 мм. для возможности размещения в пределах чертежа, а для самой кривой α онять α = 100 мм.

За пределами отсечки, когда $x \ge 0.4$, показатель политроны n, повидимому, можно принять постоянным = 1,24. Посему имеем для этого случая:

— 1.67 х—1,11, т. е., в данном случае дело сводится к построению трех прямых, что и выполнено на чер. 13. Совокупная кривая изменений kn от х в пределах от х = 0,1 до x = 0,7 нанесена на том же чер. 13. Эта же кривая может изображать и закон изменения среднего переднего давления kn . р. с для любого р, в зависимости от х, при чем масштаб чертежа, само собой разумеется, должен быть уменьшен в рс раз.

¹⁾ Hốc AC - B² = 0.

Перейдем тепер к машинам двукратного расширения. Совокупное среднее индикаторное давление рі представляется здесь ввиде суммы частных таких же давлений в каждом из цилиндров, при чем р'і в ЦВД должно быть отнесено, конечно, к площади поршня ЦНД, т. е. рі $=\frac{p'i}{\delta}+p''i$, где δ — отношение объемов цилиндров. Можно написать: $p'_i = \sigma (kp - k_r \rho p_r)$, где p_r — среднее ресиверное давление и $p''_i = \sigma(kp_r - k_e p_e)$, при чем чрез о оценивается разница между контр-давлением на поршень ЦВД и давлением на поршень ЦНД. Обычно принимают р в 0,1 рг, т. е. р = 1,1. Таким образом рі, будучи зависимо от к, как в одноцилиндровой машине, при изменении степени пополнения с в ЦВД или Е в ЦНД зависит в то же время и от рг, которое меняется вместе с в и Е. Для весового количества пара, проходящего чрез паромашину, имеем: $\gamma . F_1 \ (m_0 + \epsilon) = \gamma r . F_2 \ (M_0 + E)$. Считая приближенно: $\gamma = \mu$ р, $\gamma_r = \mu$ рг , $m_0 = m - \frac{\rho p_r \ (c + m)}{p}$ и $M_0 =$

 $= M - \frac{p_e(C+M)}{p_r}$), а также полагая $\delta = \frac{F_2}{F_1}$, получаем: $p_r = \frac{p}{\delta M + \delta E + \rho(c+m)}$ $\epsilon + \frac{pm + \delta(C+M)p_e}{\delta M + \delta E + \rho(c+m)}$, т. е. зависимость среднего ресиверного давления от переменной степени в наполнения ЦВД выра-

жается законом прямой линии в предположении, что в то же время степень сжатия ЦВД с остается постоянной так же, как степень наполнения Е и сжатия С в ЦНД. Поставим рг в зависимости от $x = \varepsilon + m$.

Тогда: $p_r = \frac{p}{\delta M + \delta E + \rho(c + m)} x + \frac{\delta (C + M) p_e}{\delta M + \delta E + \rho(c + m)}$. Берем частный пример машины компаунд: $\delta = 2.5$; p = 7; p = 0.2; m = M = 0.08; c = 0.08; $\tilde{C} = 0.12$ и E = 0.6. Имеем: $p_r = 3.8$ х + 0.055. Построение сделано на чер. 14, с масштабом для ординат 1 = 10 мм., где, на пример, для $\mathbf{x} = 0.5$ получаем вначение ординаты 20.5 мм., что дает $\mathrm{pr} = \frac{20.5}{10}$ = 2.05 atm.

Обращаемся сначала к отысканию зависимости среднего индикаторного давления p''_i в ЦНД от х. Подставляя в общее уравнение $p''_i = \sigma$ ($kp_r - k_e p_e$) вместо p_r его выражение чрез x, получаем: $p''_i = \frac{\sigma k p}{\delta M + \delta E + \rho (c + m)} x +$ $+\frac{\delta \, (C+M) \, p_{e} \, . \sigma \, k}{\delta M + \delta E + \rho \, (c+m)} - \sigma \, k_{e} \, p_{e}$. Таким обр. зависимость для ЦНД между средним его индикаторным давлением р"і и х тоже линейного вида.

Выразим эту зависимость в числовых значениях вышеприведенного примера машины компаунд, приняв: $\beta = 0.85$, $\alpha = 0.93$ и $\sigma = 0.93$. Тогда: $p''_1 =$ = 2,9 x - 0,17. На чер. 15 имеем, например, для $\mathbf{x} = 0,5$ значение р" $\mathbf{i} = 0,5$ $\frac{15,3}{10} = 1,35 \text{ arm.}$

В ЦВД изменение р'і обусловлено изменением двух факторов к и рг. Пользуясь чер. 4, легко находим кривую для экр на чер. 16, на котором в его масштабе наносим и прямую окгорг применяя чер. 14. Разность ордопад двух этих линий и дает значение р'ї для любого х. Так. обр., например, для x=0.5 имеем $p'i=(74-33.5).\frac{0.93.7}{100}=2.76$ атм., так что совокупное рі = $1,35 + \frac{2.76}{2,5} = 2,45$ атм.

¹⁾ Объем вредных пространств., заполняемых паром впускного давления.

Из чер. 16 явствует, что при изменениях ϵ мощность ЦВД меняется мало начиная с х $\geq 0,3$.

Заметим кстати, что чер. 14 дает возможность установить максимальную отсечку в ЦВД, какую мы можем допустить без искажения вида индикаторной диаграммы в ЦВД. Максимальное давление в конце сжатия ре не должно превосходить давления впуска р во избежание образования петли, т. е. приближенно имеем: ре $m = p_r$ (c+m), откуда $p_r = \frac{p_c m}{c+m}$. По найденному этим путем значению p_r и чер. 14 отыскиваем x, а следовательно и max = x-m

Если при прочих неизменных условиях парораспределения будет меняться одна лишь степень наполнения E в ЦНД, то, исходя опять таки из постоянства весового количества пара получаем: δ рг $X+\rho$ (c+m) рг — р ($m+\epsilon$) — $-\delta$ ре (C+M) = 0, где X=E+M. Так. обр. между ресиверным давлением рг и X существует инерболическая зависимость, ибо $Ac-B^2=-\delta^2<0$. Пусть $\tau=\delta$ рг и $\psi=\delta$ $X+\rho$ (c+m). Тогда τ . $\psi=\delta$ [δ X рг $+\rho$ (c+m) рг] = $-\delta$ [р ($m+\epsilon$) $+\delta$ ре (C+M)] = const. Для ассимтот имеем. τ . $\psi=0$, так что δ рг = 0, τ . е. рг = 0 и τ ф = δ τ τ (τ) = 0, τ . е. τ = τ . Возьмем пример; τ = 0,27; τ = τ = 0.08; τ = 11; ре = 1,1; τ = 2,25; τ = 0,09 и τ = 0,12. Имеем для ассимтоты τ = τ = τ = 0,083. Небходимую для построения гиперболы точку найдем, полагая τ = 1, так что рг = τ = τ = τ = τ = 1,78. Построение выполнено на чер. 17.

Займемся далее отыскиванием зависимости среднего индикаторного давления p'i в ЦВД от X. Подставляя в уравнение $p'i = \sigma(kp - \rho k_r p_r)$ вместо p_r его значение из предыдущего, получаем: $p'i = \sigma\{kp - k_r \cdot \frac{\rho[p(m+\epsilon) + \delta p_e(C+M)]}{\rho(c+m) + \delta X}\}$, что приводится к виду: $\rho(c+m)$ $p'i + \delta p'i$ X — $\sigma \delta kp$ X — S = 0, т. е. зависимость p'i от X тоже интерболическая. Имеем уравнения ассимтот: $\tau = \delta p'i$ — $-\sigma \delta kp = 0$ и $\psi = \delta X + \rho(e+m) = 0$, откуда: $pi = \frac{\sigma \delta kp}{\delta} = \sigma p k$ и $X = \frac{\rho(c+m)}{\delta}$, что дает в численных значениях нашего частного примера: p'i = 5.9 и X = 0.083. Необходимую точку получаем для X = 1.0, что дает p'i = 4.6 атм. Графическое изображение этого закона имеем на чер. 18.

Что касается среднего индикаторного давления ЦНД: $p''i = \sigma (k p_r - k_e p_e)$, то, как видно из формулы, при изменении E будем иметь одновременно изменения k и p_r , при чем для зависимости k от X надлежит пользоваться гинерболой чер. 3, ибо в ЦНД X = 0.3 - 0.8. Умножая ординаты этой гиперболы на соответственные ординаты гиперболы $p_r = f(X)$ по чер. 17 для одних и тех же абсцисс, откладывая произведения (чер. 19) для тех же абсцисс ввиде новых ординат в масштабе $\frac{\text{чер. 3} \times \text{чер. 17}}{\text{чер. 3}}$ и вычитая из последних постоянные ординаты прямой — k_e p_e , отложенные в том же масштабе, получим ввиде разности этих ординат значения $p''i\sigma$ между линиями аб и в r. если масштабом для измерения будет служить масштаб чер. 17: σ . Так, для x = 0.5 имеем $p''i = \frac{11.5}{10.0.93} = 1.2$ атм.

Построим, наконец, на чер. 20 кривую изменения суммарного рі $= \mathbf{p'}_i / \delta + \mathbf{p''}_i$ в зависимости от X путем сложения ординат чер. 18 с разностными отрезками между а б и в г чер. 19.

Усматриваем, что максимум мощности получается при X=0,5. Дальнейшее увеличение X ведет к уменьшению мощности машины, что объясняется
возрастанием потери от падения давления при сообщении ЦВД с ресивером
а также возможностью образования петли в конце сжатия в ЦНД. Уменьшение X < 0,5 тоже понижает мощность машины, так как начинает возрастать ресиверное давление, а значит и противодавление в ЦВД, вследствие
чего является увеличение давления в конце сжатия в ЦВД, возникает опасность образования здесь петель в конце сжатия, а также петель в конце
расширения.

Попутно нельзя не отметить одного интересного следствия, вытекающего отсюда, а именно нельзя не отметить возможности использования графика типа чер. 20 для целей распределения мощности между цилиндрами по-равну в машинах компаунд. Здесь надо различать два случая: случай золотникового парораспределения в ЦВД и клапанного. Золотниковое парораспределение обусловливает необходимость получения некоторой определенной степени наполнения в ЦВД, зависящей от типа золотников. Так, например, для простых коробчатых золотников степени наполнения менее 500/0 хода поршня являются невыгодными, как ухудшающие условия выпуска и сжатия и как требующие больших эксцентриситетов, а след., и большой работы трения; для золотников Трика-Вейса можно принять $\epsilon \ge 0.35$, а для двойных золотников обычно принимают $\varepsilon = 0.25$ и т. д. Эти степени наполнения являются как бы поперед заданными. Пусть давление впуска в ЦВД р = 8 атм. Для этого давления и при работе на холодильник наивыгоднейшая степень наполнения, проведенная к ІІНД, скажем, равна $\varepsilon_0 = 0.07 - 0.06$. Тогда для возможности ее получения, например, при двойном золотнике в ЦВД надлежит выбрать отно-0,25 🗠 3,5. Для экономичных золотниковых машение объемов цилиндров шин и постоянной нагрузки большие отношения объемов 3 — 5 являются обычными для Америки. 1) Задаваясь степенями сжатия с и С из условий золотникового парораспределения и плавности хода (возможность разгрузки сил инерции достаточным давлением в конце сжатия), получаем все данные, зная ϵ и ρ и считая меняющейся величину X = E + M, построить кривую $\rho_r = f(X)$, как на чер. 17., кривую p'i = f'(X) и кривую p''i = f''(X) по типу чер. 18 и 19. Строя кривую суммарного рі по чер. 20, определяем Х, при котором р'і = р"і. Это X = Е + М и принимаем за степень наполнения ЦНД, обезпечивающую распределение работ поровну между цилиндрами в машине компаунд. На чер. 20 это случится при X = 0,43. Принятие степени наполнения Х = Е + М вместо Е необходимо, ибо конечный объем ресиверса создает уменьшение площади индикаторной диаграммы ЦВД в машине компаунд ц увеличение таковой же в ЦНД примерно до 10% о 2). Вслучае клапанной мапины кроме приведенной степени наполнения го обычно является заданным отношением объемов с цилиндров, которое можно определить, исходя из теоретической диаграммы соответственной одноцилиндровой машины путем деления площади ее поподам хотя бы методом интегральной кривой, или при помощи таблиц Hrabak'a или Haeder'a. Зная δ , находим $\varepsilon = \varepsilon_0$. δ , носле чего задача отыскания X = Е 4 М для равномерного распределения работы между цилиндрами решается по предыдущему.

Особые случаи представляют машины, у которых одновременно с изменением степеней наполнения в обоих цилиндрах меняются, и степени сжатия, что имеет место, например, в машинах с кулисами, или машинах с плоскими регуляторами, где при изменении степени наполнения ЦВД одновременно ме-

¹⁾ Левенсон. Современные американские паровые машины. СПБ. 1912, стр. 6. 2) Дуббель. Конструирование и расчет паровых машин. 1907. СПБ., стр. 27.

Коэффициенты.	Их буквенные выражения.	Их численные значения.
В.	$\frac{\mathrm{F_i}}{\mathrm{F_2}} \cdot \rho \cdot \mathrm{b-1} \ldots \ldots$	-0,82
D.	$p \frac{F_1}{F_2} - pe \cdot f \dots$	+5,3
F.	$ ho \cdot a \cdot \frac{F_1}{F_2} + i \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	+0,31
N.	d-f·i	+0,55

Здесь $\frac{F_1}{F_2} = \frac{1}{\delta} = 0.47$ — отношение объемов цилиндров паровозов н/т; m = M = 0.08; p = 12.5; p = 1.25; $i = E - \epsilon = 0.09$; $\rho = 1.1$; d и fв ЦНД то же, что а и b в ЦВД, т. е. коэффициенты в зависимости между С. и E. Необходимо иметь ввиду, что с увеличением скорости движения паровоза будет происходить искажение вида индикаторных диаграмм в обоих цилиндрах вследствие изменений ρ , α , β , ϕ и p_e , за чем следить не входит в задачу настоящей работы.

Гипербола для принятых заданий выстроена на чер. 22, при чем для ассимтот ее имеем: $p_r = -\frac{D}{B} = +6,47$ и $x = \frac{F}{B} = -0,38$, а для необходимой точки при x=0 имеем: $p_r = 1,78$.—

Перемножение ординат последней гиперболы p_r на соответственные ординаты гиперболы k_r (чер. 6) для одних и тех же абсцисс х и на σ р даст кривую изменения заднего давления σ р k_r p_r , при чем при пользовании гиперболой k_r (чер. 6) Z определяется предварительно по х из вышеуказанного линейного уравнения (чер. 21). Эта кривая выстроена на чер. 23, где выше ее нанесена кривая переднего давления для тех же абсцисс x, как произведение ординат гиперболы k (чер. 3) на σ р, ибо отсечка в паровозе не бывает обычно меньше x=0,3. Разность ординат кривых чер. 23 (σ p k — σ р, k_r pr.) для любого значения x дает величину среднего индикаторного давления p'_i в ЦВД.—Так, для x=0,6 имеем p'_i = $\frac{40}{100}$. 0,93 . 12,5 = =4,65 атм. Совершенно аналогичным способом ведем построение для кривых

переднего и залнего давлений в ЦНД, что и выполнено на чер. 24, пользуясь линейной зависимостью между E и C в ЦНД: Z=0.48+0.4 X. На чер. 25 выстроена диаграмма изменения совокупного давления; $p_i=\frac{p'_i}{\delta}+p''_i$, при чем при построении этой диаграммы принималось, что степени ϵ наполнения в ЦВД отвечает в ЦНД $E=\epsilon+0.09$, в соответствии ϵ чем и брались ординаты по чер. 24. для переноса на чер. 25.—Например, для x=0.6 имеем $p_i=\frac{36}{100}\cdot 12.5\cdot 0.93$ 24.2 атм.

Разберем еще случай изменения противодавления в ЦНД при сохранении общей мощности паромашины в виду практического значения этого случая, о чем отмечено выше в соответственной части, касающейся одноцилиндровой машины. Из уравнения для ЦНД: $p''_i = \sigma$ ($kp_r - k_e p_e$) имеем: $p_r =$ $=\frac{p''i}{\sigma k}+\frac{ke}{k}$ ре, т. е. при сохранении р''i = const. имеем изменение рг в зависимости от ре по закону прямой линии. Подставляя в уравнение постоянства весового количества пара, проходящего чрез паромашину: ($\epsilon + m_0$) р $\cdot F_1$ $= (E + M_0)$ рг · F_2 вместо m_0 , M_0 ирг значения из предыдущего, получаем: $\epsilon = \left\{ \left[(E + M) \ \delta + \rho \ (c + m) \right] \frac{\mathrm{ke}}{\mathrm{k}} - (C + M) \ \delta \right\} \frac{\mathrm{pe}}{\mathrm{p}} - \mathrm{m} + \left[(E + M) \ \delta + \rho \ (C + M) \ \delta \right] \right\}$ + М) δ + ρ (e + m) $\frac{p^{-1}}{\delta k \rho}$, т. е. изменение наполнения ϵ в ЦВД при изменении ре происходит тоже по закону прямой линии, проведенной от начала координат на расстоянии $\left[(E+M) \, \delta + \rho \, (c+m) \right] \frac{p''i}{\delta \, k \, p} - m$ и под углом на-клона и оси ре , тангене коего $= \frac{1}{p} \left[(E+M) \, \delta + \rho \, (c+m) \right] \frac{ke}{k} - (C+M) \, \delta \right\}$, при чем предполагается, что все условия парораспределения, как то: с, С и Е остаются неизменными. Прямая изображена на чер. 26 для нашего частного примера: p = 7; c = 0.08; C = 0.12; E = 0.6; p''i = 0.9; m = M = 0.08; $\delta = 2.5$. Тогда $\varepsilon = 0.275$ ре +0.23, так что, например, для ре =0.2 атм. ε=0.27. Мощность ЦВД, как мы выше видели (чер. 16), при изменении $\epsilon \ge 0.25$ меняется мало.

Способ регулирования мятием пара в машинах двукратного распирения в настоящее время применяется редко, но в паровозах при езде «на малый клапан» способ этот (вручную) употребителен. Точно также и в стационарных машинах всегда возможны случаи работы машины не при полном начальном давлении вследствие ли постоянных причин (конструктивная слабость котлов и пр.) или временных (плохое топливо, неопытность кочегаров и пр.) Исходя из условия постоянства потока пара по весу имеем: р (ε + m_0) = ε 0 рг (ε + m_0), откуда после подстановки вместо ε 1 м ε 2 м ε 3 (ε + ε 4 м ε 5 г. е. изменение рг при изменениях р происходит по закону *прамой*, как и ε 6 в зависимости от р: р″ ε 1 с ε 4 (ε + ε 7 м ε 8 м ε 9 г ε 9 (ε + ε 9 м) г ε 9 г

 $-\frac{p_{\rm e}\,({
m C}+{
m M})\,\delta\,\sigma\,{
m kr}\,\cdot\,\rho}{
ho\,({
m C}+{
m m})+\delta({
m E}+{
m M})}$. Для нашего численного примера: $y_{\rm i}=0.93$ - \cdot 0,56 \cdot p = 0,52 p и у₂ = 0,186 p — 0,057. Построение выполнено на чер. 29. На чер. 28 верхняя прямая изображает закон изменения суммарного рі = $=\frac{p'}{\delta}$ + p''і при изменении р.—

Теперь в принятом порядке изложения надлежат заняться машинами двухкратного расширения с перегретым паром. Принимается обычно, что в ЦНД пар поступает уже насыщенным или слабо перегретым, почему период расширения здесь, как и периоды сжатия в обоих цилиндрах, происходят так же, как в машинах насыщенного пара. Таким образом в уравнении постоянства весового количества пара, идущего чрез паромашину, изменения будут касаться лишь ЦВД. Называя чрез $=\gamma_n$ — удельный вес перегретого пара, получим: γ_n · F_1 ($\epsilon+m_0$) = γ_r F_2 ($E+M_0$). Удельный объем перегретого пара, как известно, выражается: $V_n=\frac{1}{\gamma_n}=\frac{47,\ 1\cdot T_n}{p}$ — 0,016, где T_n — абс. температура перегретого пара, а р—его давление в кил./кв. м. Но приближенно можно принять, что удельные объемы перегретого пара изменяются, как для газов, т. е. $\frac{1}{\gamma_n}:\frac{1}{\gamma}=T_n: T$, где γ , по предыдущему, удельный вес сухого насыщенного пара того же давления, а T—его абс. температура. Можно написать, следовательно: р $\cdot \frac{T}{T_{\rm n}} (\epsilon + m_{\rm 0}) = \delta \, {\rm pr} \, (E + M_{\rm 0})$. Считая степень наполнения в В ЦВД неизменной, как с и С, а меняющейся лишь степень наполнения E в ЦНД, вставляя вместо m_0 и M_0 их выражения из предыдущего, имеем: $\delta p_r X + \frac{T}{T_n} \rho (c+m) p_r - \frac{T}{T_n} p (m+\epsilon) - \delta p_e (C+M) = 0$, т. е., как и для насыщенного пара, зависимость между рг и Х=Е+М гиперболическая. Необходимая для построения гиперболы точка при X=1 будет: pr =

 $\frac{1}{T_n} p(m+\epsilon) + \delta p_e(C+M)$, что в численных значениях примера чер. 17 $\delta X + \frac{T}{T_n} \rho(c+m)$

при перегреве до 325° д. дает pr =1,43.

Для асимтот имеем: $p_r = 0$ и $X = -\frac{T}{T_n} \rho(c+m) = -0.06$ Гипербола выстроена на чер. 30. Для ЦВД имеем: $p'i = \sigma$, $[k_n \, p - k_r \cdot \rho \, \cdot]$

.
$$\frac{\frac{T}{T_n}\,p\,(m+\epsilon)+\delta\,p_e\,(C+M)}{\delta\,X+\frac{T}{T_n}\,\rho\,(c+m)}
ight]$$
 , where $\frac{T}{T_n}\,p\,(c+m)\,p'_i$ —

 $\sigma k_n p \delta X + Q = 0$, т. е. $p'_i = \varphi$ (X) опять инпербола. Ассимтоты: $p'_i = \frac{T}{T_n} \rho (c + m)$ = -0.06. Необходимая точка при

Х=1 будет р'і = 4,22. Гипербола построена на чер. 31. Построение графика $p''_1 = \psi(X)$ для машины перегретого пара будет отличаться от такового (чер. 19) для малины насыщенного пара лишь тем, что ординаты гиперболы к (чер. 3) надлежит для данного случая умножать на ординаты гиперболы рг на чер. 30, а не на чер. 17. График построен на чер. 32. Совокупный

график для $p_i = \frac{p'_i}{\delta} + p''_i$ дан на чер. 33, из коего усматривается, что в случае перегретого пара равенство работ в цилиндрах будет иметь место при X = 0.38. -

В случае, если меняется одна лишь степень з наполнения в ЦВД, из

равенства р. T/T_n ($\varepsilon + m_0$) = δp_r ($E + M_0$) получаем: $p_r = \frac{p_r T/T_n}{\delta (E - M) + T/T_n} \frac{\delta p_r (E + M)}{\delta (E + M) + T/T_n} \frac{\delta p_r (C + M)}{\delta (E + M) + T/T_n} \frac{\sigma p_r (C + M)}{\delta (E + M) + T/T_n} \frac{\sigma p_r (C + M)}{\delta (E + M) + T/T_n} \frac{\sigma p_r (C + M)}{\delta (E + M) + T/T_n} \frac{\sigma p_r (C + M)}{\delta (E + M) + T/T_n} \frac{\sigma p_r (C + M)}{\delta (E + M) + T/T_n} \frac{\sigma p_r (C + M)}{\delta (E + M) + T/T_n} \frac{\sigma p_r (C + M)}{\delta (E + M) + T/T_n} \frac{\sigma p_r (C + M)}{\delta (E + M)} \frac{\sigma p_r (C + M)}{\delta ($

Так. обр. рг и р"і в зависимости от х изменяются по закону прямой. Эти прямые построены на чер. 34 и чер. 35 для частного примера машины компаунд (чер. 14) в предположении перегрева до 300° Ц. После подстановки численных значений получаем: $p_r = 2.9 \text{ x} + 0.055 \text{ и p}''_i = 2.24 \text{ x} - 0.16$. Для ПВЛ, пользуя чер. 13, легко находим кривую σ kn p на чер. 36, на коем в его масштабе наносим и прямую окгорг, применяя чер. 34. Разность ординат двух этих линий и дает значения р'і . — Совокупная диаграмма изменений $p_i = p'_i / \delta + p''_i$ в зависимости от х представлена на чер. 35, где видно, что при всех х превалирующей является работа ЦВД. Выравнивание работы может быть достигнуто уменьшением степени наполнения ЦНД.

Этими частными случаями и позволительно ограничиться для иллюстрации применения к машинам двукратного расширения перегретого пара равенства: р. T/T_n ($\epsilon + m_0$) = δ . pr ($E + M_0$) и гиперболы k_n (чер. 13), ибо эти случаи, будучи типовыми, в связи с изложенным относительно машин насыщенного пара, достаточно могут ориентировать в многочисленных и разнообразных положениях практики.

В заключение необходимо отметить, что разбиравшиеся выше зависимости для коэффициентов переднего к и заднего ке давлений, принятые за основные, выведены в согласии с существующей практикой в предположении постоянства коэффициентов а, в, ф, при изменении степеней наполнения в и сжатия с. Между тем имеются данные предполагать, что последние коэффициенты меняются в свою очередь при изменении в и с, будучи различны для разных типов парораспределения. Опытового материала для суждения о законах такого изменения имеется в литературе мало, почему в качестве одной из ближайших работ в паротехнической лаборатории Томского Технологического Института намечается установление таких зависимостей для а и в, как $f(\varepsilon)$, и φ , как f(c).

AND THE TAX STORE THAT, WITH LABOUR HOLD BE ALL STORES TO SE

THE PERSON OF THE PROPERTY AND PROPERTY AND

