УДК 621.397.2:621.315.2

ПОДАВЛЕНИЕ ФОНОВЫХ ПОМЕХ В ЛИНИЯХ ПЕРЕДАЧИ ВИДЕОСИГНАЛОВ

В.И. Туев

Томский государственный университет систем управления и радиоэлектроники E-mail: tvi@tv2.tomsk.ru

Рассмотрены источники фоновых помех в линиях передачи видеосигналов, показано влияние синфазного сопротивления на величину максимального подавления фоновой помехи в дифференциальных видеокорректорах, даны практические рекомендации по расчету дифференциальных входных каскадов видеокорректоров на операционных усилителях.

Передача видеосигналов телевидения, занимающих полосу частот от 50 Гц до 6 МГц, между комплектами оборудования аппаратно-студийного блока, монтажными и эфирными аппаратными внутри здания, между разнесенными территориально зданиями вещательных компаний и передающих центров осуществляется по волоконно-оптическим и коаксиальным радиочастотным линиям связи. Волоконно-оптические линии связи, обладающие большой пропускной способностью, применяются для передачи групповых сигналов, содержащих десятки видеосигналов, сигналов звукового сопровождения и дополнительной информации [1]. Передача одиночных видеосигналов по экономическим соображениям осуществляется по коаксиальным радиочастотным линиям связи. В соответствии с правилами устройства электроустановок [2] корпуса аппаратуры, электроустановки и нулевой проводник питающей электрической сети должны быть заземлены (рис. 1).

Рис. 1. Конфигурация цепей заземления

По контуру заземления протекают токи промышленной частоты и ее гармоник, обусловленные конструктивными и паразитными емкостями С_к блоков питания аппаратуры связи. Малое, но конечное сопротивление устройства заземления приводит к наличию паразитной разности потенциалов вдоль заземляющего проводника, достигающей десятков – сотен мВ, а при большом территориальном разносе и ед. В [3]. Коаксиальная линия связи, будучи включенной между источником и получателем видеосигнала, своей оплеткой шунтирует точки 1 и 2 контура заземления. Протекающий по ней ток создает помеху частотой 50...200 Гц, попадающую в спектр телевизионного видеосигнала и вызывающую искажение изображения в виде медленно перемещающихся горизонтальных темных и светлых полос на экране телевизионного приемника [3]. Вследствие высокой различимости такая помеха жестко регламентирована допустимой величиной отношения сигнала яркости к фоновой помехе [4].

Для удовлетворения указанных в [4] требований по уровню фоновой помехи последовательно с линией включают активные дифференциальные корректоры [5], позволяющие в отличие от пассивных устройств [3] дополнительно восстанавливать уровень видеосигнала на выходе линии связи и компенсировать частотнозависимые потери. Эквивалентная схема линии связи, подключенной к входу дифференциального корректора, приведена на рис. 2.

Определим $U_{BX,Z}$ – дифференциальное и $U_{BX,C}$ – синфазное входные напряжения дифференциального корректора. Для этого в соответствии с методом контурных токов [6] запишем систему линейных уравнений

$$I_{1}(R_{\Pi} + R_{C} + R_{KAE}) - I_{2}R_{KAE} = E_{\Pi},$$

-I_{1}R_{KAE} + I_{2}(R_{\Gamma} + R_{\Pi} + R_{KAE}) = E_{\Gamma}. (1)

Используя решения системы ур. (1) относительно переменных I_1 и I_2 , получим

$$U_{BX,\mathcal{A}} = I_2 R_{\mathcal{A}} = \frac{R_{\mathcal{A}}}{R_{\Gamma} + R_{\mathcal{A}} + R_{KAE} \left(1 - \frac{R_{KAE}}{R_{\Pi} + R_C + R_{KAE}}\right)} \times (E_{\Gamma} + \frac{R_{KAE}}{R_{\Pi} + R_C + R_{KAE}} E_{\Pi}),$$

$$U_{BX,C} = I_1 R_C = \frac{R_C}{R_{\Pi} + R_C + R_{KAE} \left(1 - \frac{R_{KAE}}{R_{\Gamma} + R_{\mathcal{A}} + R_{\mathcal{A}} + R_{\mathcal{A}}}\right)} \times (2) \times (E_{\Pi} + \frac{R_{KAE}}{R_{\Gamma} + R_{\mathcal{A}} + R_{\mathcal{A}} + R_{KAE}} E_{\Gamma}).$$

161

Входное дифференциальное напряжение $U_{BX,R}$ содержит полезную составляющую, обусловленную действием источника сигнала E_r , и помеху, вызванную протеканием токов промышленной частоты и ее гармоник через сопротивление оплетки кабеля R_{KAF} . Из анализа (2) следует, что уменьшить помеху можно, увеличивая синфазное входное сопротивление R_c . Действительно, полагая в (2) $R_c = \infty$, получим

$$U_{BX,\mathcal{A}} = \frac{R_{\mathcal{A}}}{R_{\Gamma} + R_{\mathcal{A}} + R_{KAE}} E_{\Gamma} ,$$
$$U_{BX,C} = E_{\Pi} + \frac{R_{KAE}}{R_{\Gamma} + R_{\mathcal{A}} + R_{KAE}} E_{\Gamma} .$$

Таким образом, увеличение входного синфазного сопротивления дифференциального корректора является основным условием достижения максимального подавления фоновой помехи, поскольку препятствует протеканию тока промышленной частоты и ее гармоник по оплетке линии связи и минимизирует прохождение помехи на дифференциальный вход устройства. В этом случае коэффициент подавления помехи максимален и равен коэффициенту ослабления синфазного сигнала дифференциального корректора.

Схемотехника современных кабельных корректоров основана на применении в качестве активных элементов специализированных операционных усилителей (ОУ) [3, 5].

Типовая схема корректора на ОУ, обеспечивающая подавление синфазной помехи, приведена на рис. 3, a [7].

Рис. 3. Дифференциальный корректор на ОУ: R₁ – согласующий резистор, сопротивление которого равно волновому сопротивлению линии связи, R_гIIR₁ – параллельное соединение R_г и R₁

Эквивалентная схема корректора для области низких частот с использованием упрошенной модели ОУ [8] приведена на рис. 3, δ , где *R* обозначает эквивалентное сопротивление двух одинаковых групп элементов, обведенных штрих-пунктирной линией на рис. 3, *a*, и определяется по формуле

$$R = R_2 + \frac{R_{\Gamma}R_1}{R_{\Gamma} + R_1}.$$

Уравнения для контурных токов имеют вид

$$I_1(R+R_0) = U_{BX,C},$$

$$I_2(R+R_0) = K(U_1 - U_2) - U_{BX,C},$$
(3)

где К – коэффициент усиления ОУ.

Используя решения системы ур. (3) относительно переменных I_1 и I_2 с учетом соотношений

$$U_1 = \frac{R_0}{R + R_0} U_{BX.C},$$
$$U_2 = U_{BX.C} + RI_2,$$

получим

$$R_{BX,C} = \frac{U_{BX,C}}{I_1 - I_2} = \frac{R + R_0}{2}.$$
 (4)

Из (4) следует, что для увеличения входного синфазного сопротивления дифференциального корректора на ОУ необходимо пропорционально увеличивать значения сопротивлений R_0 и R. С учетом выражения (2) в схеме, приведенной на рис. 3, a, увеличению подлежат сопротивления резисторов R_0 и R_2 . Однако в реальных условиях увеличение этих сопротивлений приводит к ухудшению частотных свойств корректора в области верхних частот и накладывает ограничения на предельно достижимые значения входного синфазного сопротивления.

Эквивалентная схема корректора для области верхних частот приведена на рис. 4.

Рис. 4. Эквивалентная схема дифференциального корректора для области верхних частот

$$Z_{2} = \frac{R_{2}}{1 + pR_{2}C}, Z_{3} = \frac{R_{\Gamma}R_{1}}{R_{\Gamma} + R_{1}} + Z_{2},$$
$$Z_{0} = \frac{R_{0}}{1 + pR_{0}C}, K(p) = \frac{K}{1 + pT_{OY}}, p = 2\pi jf,$$

где C – емкость монтажа, T_{oy} – постоянная времени ОУ.

В соответствии с методом контурных токов [5] запишем линейное уравнение

$$I_1(Z_2 + Z_3 + 2Z_0) = U_{BbIX} - U_{BX,\mathcal{I}}.$$
 (5)

Решая ур. (5) относительно переменной *I*₁ с учетом соотношений

$$U_{1} = I_{1}Z_{0},$$

$$U_{2} = U_{BX,\mathcal{A}} + I_{1}(Z_{2} + Z_{3} + Z_{0}),$$

получим выражение для передаточной функции корректора для дифференциального входного сигнала

$$W(p) = \frac{U_{BbIX}}{U_{BX,\mathcal{A}}} = -\frac{K(p)}{1 + \frac{(Z_2 + Z_3)(1 + K(p))}{2Z_0}}.$$
 (6)

Зависимость модуля комплексной передаточной функции (6) от частоты для корректора на ОУ типа AD818 [9] для C=0,5 пФ, K=3500, $R_r=R_1=75$ Ом, $T_{ov}=1,1\cdot10^{-5}$ с и трех пар численных значений R_2 и R_0 приведена на рис. 5.

Рис. 5. Частотные характеристики дифференциального корректорая

Предельное минимальное значение полосы рабочих частот, удовлетворяющее требованиям [4], соответствует значениям $R_2=10$ кОм и $R_0=20$ кОм. При этом в соответствии с (4) максимальное входное синфазное сопротивление составляет 15 кОм.

При больших значениях напряжения помехи входное синфазное сопротивление корректора в десятки кОм может оказаться недостаточным для уменьшения помехи до уровня, при котором отношение сигнала яркости к фоновой помехе удовлетворяет требованиям ГОСТ [4]. В этих обстоятельствах следует использовать схему дифференциального корректора на двух ОУ, приведенную на рис. 6 [9].

Входное синфазное сопротивление дифференциального корректора на двух ОУ равно [10]

$$R_{BX,C} \approx \frac{KR_{BX,\mathcal{I}H\phi}}{2},\tag{7}$$

СПИСОК ЛИТЕРАТУРЫ

- Бутусов М.М., Верник С.М., Галкин С.Л. и др. Волоконно-оптические системы передачи / Под ред. В.Н. Гомзина. – М.: Радио и связь, 1992. – 416 с.
- Правила устройства электроустановок. М.: Главгосэнергонадзор России, 1998. – 608 с.
- Стрижевский Н.З. Коаксиальные видеолинии. М.: Радио и связь, 1988. 200 с.
- ГОСТ 19871-83 Каналы изображения аппаратно-студийного комплекса и передвижной телевизионной станции вещательного телевидения. Основные параметры и методы измерений.
- Куземко В., Шебзухов К. Кабельные корректоры // "625". 2001. – № 9. – С. 8–14.

где $R_{BX, ДИФ}$ – дифференциальное входное сопротивление ОУ.

Значение входного синфазного сопротивления в соответствии с (7) не зависит от параметров пассивных элементов схемы и определяется свойствами самого ОУ. При этом свойства корректора в области верхних частот зависят от сопротивлений R_0 и R_2 аналогично (6).

Рис. 6. Дифференциальный корректор на двух ОУ

Максимальное значение коэффициента подавления помехи в дифференциальных корректорах на ОУ равно коэффициенту ослабления синфазного сигнала ОУ. Экспериментально измеренные значения коэффициента подавления помехи с частотой 50 Гц в дифференциальных корректорах на ОУ типа AD818 составили 65 дБ для схемы, приведенной на рис. 3, *a*, и 73 дБ для схемы, приведенной на рис. 6. Отклонение экспериментальных значений коэффициента подавления помехи от максимально возможного значения 100 дБ [9] обусловлено разбросом параметров элементов в схеме с одним ОУ и неидентичностью активных устройств в схеме с двумя ОУ.

Таким образом, для получения максимального подавления помехи в дифференциальных корректорах необходимо увеличивать их входное синфазное сопротивление, что минимизирует проникновение помехи на дифференциальный вход устройства.

- Сигорский В.П. Матрицы и графы в электронике. М.: Энергия, 1968. – 175 с.
- Волосников С.И., Юргенсон Д.Р. Подавление синфазных помех в схемах с операционными усилителями // Радиотехника. – 1988. – № 7. – С. 27–29.
- Достал И. Операционные усилители: Пер. с англ. М.: Мир, 1982. – 510 с.
- 9. http://www.analog.com/productSelection/pdf/AD818_b.pdf
- Игумнов Д.В., Костюнина Г.П. Полупроводниковые усилительные устройства. – М.: Радио и связь, 1998. – 272 с.