- 3. Гречушников, В. В. Оценка эффективности управляющих воздействий для сохранения синхронной динамической устойчивости на сильных связях при близких затяжных коротких замыканиях / В. В. Гречушников, Н. Р. Вагапов, Е. А. Понамарев // Электроэнергетика глазами молодежи 2016: Материалы VII Международной молодёжной научно-технической конференции. В 3 т., Казань, 19–23 сентября 2016 года. Том 2. Казань: Казанский государственный энергетический университет, 2016. С. 162- 165.
- 4. ГОСТ Р 55105-2019. Единая энергетическая система и изолированно работающие энергосистемы. Оперативно-диспетчерское управление. Автоматическое противоаварийное управление режимами энергосистем. Противоаварийная автоматика энергосистем. Нормы и требования. М.: Стандартинформ, 2020. 24 с.
- 5. Киевец, А. В. Исследование методики настройки противоаварийной разгрузки турбогенератора / А. В. Киевец, А. С. Гусев, А. Ю. Пищулин // Электроэнергетика глазами молодежи 2016: Материалы VII Международной молодёжной научно-технической конференции. В 3 т., Казань, 19–23 сентября 2016 года. Том 2. Казань: Казанский государственный энергетический университет, 2016. С. 224-226.
- 6. Сергеев, Е. В. Изменение топологии электрической сети как управляющее воздействие автоматики разгрузки при близких и затяжных коротких замыканиях / Е. В. Сергеевсергеев // Электроэнергетика глазами молодежи 2016: Материалы VII Международной молодёжной научно-технической конференции. В 3 т., Казань, 19–23 сентября 2016 года. Том 2. Казань: Казанский государственный энергетический университет, 2016. С. 371-374. EDN YZDWOI.

Научный руководитель: доцент, к.т.н. С.М. Юдин, доцент ОЭЭ ИШЭ ТПУ.

ГИБКАЯ СИСТЕМА ПЕРЕДАЧИ ПЕРЕМЕННОГО ТОКА

М.В. Хромов Томский политехнический университет ИШЭ, ОЭЭ, группа 5А03

Технологии управляемых систем электропередачи переменного тока — Flexible Alternative Current Transmission System (FACTS) являются одной из наиболее перспективных электросетевых технологий, суть, которой состоит в том, что электрическая сеть из пассивного устройства транспорта электроэнергии превращается в устройство, активно участвующее в управлении режимами работы электрических сетей.

Что такое FACTS и для чего используется

Система транспортировки переменного тока, включающая в себя силовую электронику и статические контроллеры, для улучшения управления и увеличения мощности передачи.

Задачи Facts

- Увеличить пропускную способность ЛЭП до тепловых пределов нагрева.
- Поддержка постоянной работы энергосистемы при различных проблемах.
- Обеспечение заданной мощности в электрической сети в соответствии с требованиями диспетчера.
 - Управление напряжениями в сетях.

Основные элементы FACTS

Система силовой электроники, которая управляет многими параметрами системы передачи переменного тока.

Виды подключения FACTS

- Контроллеры серии;
- Шунтирующие контроллеры;
- Комбинированная серия-контроллеры серии;

• Комбинированные последовательные шунтирующие контроллеры.

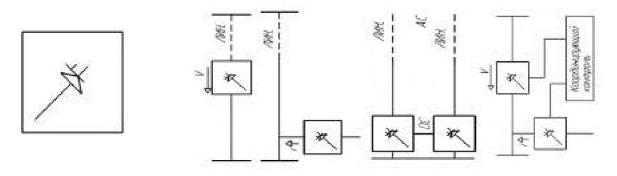


Рис. 1. Общее обозначение контроллера FACTS

Рис. 2. Виды подключения FACTS

Контроллеры серии

Последовательный контроллер может быть переменным импедансом или переменным источником, оба являются модулями силовой электроники для удовлетворения желаемых потребностей. Все контроллеры серии вводят напряжение последовательно с линией.

Шунтирующие контроллеры

Шунтирующие контроллеры FACTS вводят реактивные токи или комбинацию активных и реактивных токов для управления напряжением в точке соединения и вокруг нее из-за их малой мощности, что приводит к более эффективному управлению напряжением и параметризации сети. Часто используется для гашения колебаний.

Комбинированная серия

Комбинация может представлять отдельные контроллеры серии или унифицированный контроллер серии. Модули объединяемого действия, универсальные контроллер мощности предлагает возможность регулировать фазный угол между напряжениями по концам линия электропередачи и сопротивление.

Последовательные шунтирующие контроллеры

Комбинация может представлять отдельные последовательные и шунтирующие контроллеры или единый контроллер потока мощности. В принципе, комбинированные шунтирующие и последовательные контроллеры вводят ток в систему с помощью шунтирующей части контроллера и напряжение последовательно в линии с последовательной частью контроллера.

Преимущества технологии FACTS

- Управление потоком энергии в соответствии с заказом.
- Увеличение грузоподъемность линий до их тепловых возможностей, в том числе краткосрочных и сезонных.
- Повышение безопасности системы за счет повышения предела стабильности при переходных, ограничения токов короткого замыкания и процессах перегрузок, управления каскадными отключениями и демпфирования электромеханических колебаний энергосистем и машин.
- Обеспечение надежности подключение к линиям связи с соседними коммунальными службами и регионами, тем самым снижая общие требования к резервированию генерации с обеих сторон.
- Уменьшение потока реактивной мощности, что позволит линиям передавать больше активной мощности.
 - Увеличение использование генерации с наименьшими затратами.

Проблемы в России

• Недостаточная пропускная способность соединительных и магистральных линий передачи, что ограничивает возможность удовлетворения требований рынка.

- Ограничения по мощности электростанций.
- Низкая подконтрольность сети и малая мощность контроля регулирования напряжения вызывали повышение напряжения до критичных значений в периоды снижения нагрузки.
 - Малый уровень устойчивости.
- Неоптимальное распределение потока мощности по параллельным линиям разных классов напряжения в результате недозагрузки сети, повышенных потерь в сети.

Применение в реальной жизни

- Определение возможности использования управляемых координирующих систем FACTS в энергосистеме России.
- Установка двух модулей DSR в одном пролете на каждую фазу увеличивает реактивное сопротивление на 20 %.

DSR модулей в Богучанской ГЭС

- При изучении Богучанской ГЭС предложен режим перетока с помощью модулей DSR из Сибири в Урал.
 - В ходе проведенных исследований рассмотрена возможность установки DSR
- 1. При увеличении сопротивления воздушных линий на двадцать процентов, позволяет понижает токовую нагрузку в ней и перенаправить мощность на другие направления.
 - 2. Модули позволяют избежать аварийного снижения активной мощности.
- 3. В нормальном режиме установка DSR модули перераспределяют потоки мощности и уменьшают потери активной.
- 4. При установке DSR модулей в районе Богучанской ГЭС выявлена экономичность, которая может составить около 17,5 млн руб./год.

Выводы

- Данная технология предлагает более улучшенный уровень функционирования электроэнергетических систем.
- Способ основан на силовой энергетике, которая позволяет контролировать множество параметров.
 - Исходя из примера, можно сказать, что технология актуальна для России.
 - Необходимо провести расчеты на других станциях с использованием этого проекта.

ЛИТЕРАТУРА:

- 1. Гибкие системы электропередачи переменного тока // Блог электрика URL: https://lemzspb.ru/gibkiye-sistemy-elektroperedachi-peremennogo-toka/?ysclid=lackzkp 488829745132 (дата обращения: 11.11.2020).
- 2. Чебанов К. А. Бурляева В. А. Бурляев А. М. Мировой и отечественный опыт использования технологии facts // Colloquium-journal. 2020
- 3. RusCable.Ru // Развитие устройств FACTS URL: https://www.ruscable.ru/article/Razvitie_ustrojstv_FACTS?ysclid=lackkqcvze932598635 (дата обращения: 11.11.2022).
- 4. FACTS (Flexible Alternative Current Transmission Systems) гибкие системы передачи переменного ток // LiveJournal URL: https://poisk.livejournal.com/589787.html? ysclid=lackvq7kzm764073502 (дата обращения: 11.11.2022).

Научный руководитель: к.т.н. Р.А. Уфа, доцент ОЭЭ ИШЭ ТПУ.