ОЦЕНКА ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ В АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЯХ МАССИВНОГО РОТОРА ИЗ СТАЛИ С ВЫСОКОЙ ЭЛЕКТРОПРОВОДНОСТЬЮ

А.Б. Раднаев, Б.С. Доржиева Томский политехнический университет ИШЭ, ОЭЭ, группа А0-28

В настоящее время из-за низких энергетических показателей в рабочих режимах асинхронные двигатели с массивным ротором имеют ограниченное распространение.

Несмотря на ухудшение энергетических характеристик, двигатели с массивным ротором из стали с высокой электропроводностью и низкой магнитной проводимостью может найти широкое применение, в приводах где предъявляются требования к механической прочности ротора (высокооборотным машинам), а высокие пусковые показатели дают возможность применять такие решения в тяговых двигателях [1].

Другими преимуществами ротора такого типа являются простота в изготовлении, что способствует повышению технологичности конструкции, и высокая надежность ротора (отсутствие паяных соединений и термомеханических напряжений), экономичность [2].

Расчет АД с массивным ротором выполнен методом численного моделирования. В качестве материала для ротора рассматривались стали типа CF-25, CF-8.

Основной несущий материал массивного ротора (рисунок 1) состоит из вала из стали Ст-3, на поверхности которого размещена гильза из сплава обладающей высокой электропроводностью.

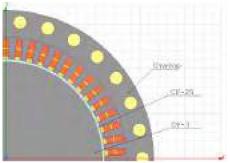


Рис. 1. Модель АД с массивным ротором

Результаты моделирования при различной ширине гильзы приведены в таблицу 1.

Таблица 1. Характеристики двигателя при различной толщине гильзы

bk, мм	I_{ϕ}, A	сosф	М, кН м	n, об/мин	Потери в роторе, кВт	s, %
20	495,4	0,702	2,71	983	13,3	1,7
17,5	484,9	0,717	2,71	982,2	13,1	1,78
15	476,4	0,729	2,71	981	12,9	1,9
12,5	470,6	0,737	2,71	979,2	13	2,08
10	466,6	0,74	2,71	976,8	13,4	2,32
7,5	466,8	0,738	2,7	973,2	14,1	2,68
5	473,7	0,729	2,7	967,4	15,5	3,26

С целью улучшения рабочих характеристик иногда внешнюю поверхность массивного стального ротора покрывают медью, применяют медные кольца, прикрепленные к торцевым поверхностям массивного ротора [2]. Дополнительно выполнен расчет асинхронного двигателя с массивным ротором с покрытием поверхности ротора слоем меди. Результаты расчета приведены в таблице 2.

Сравнение двигателя с короткозамкнутым ротором и его аналогом с применением гильзы из высокопроводящего сплава и с покрытием поверхности ротора слоем меди при сопоставимых скольжениях (при ширине кольца 15 мм) приведено в таблице 3.

Таблица 2. Характеристики двигателя с омедненным ротором

bk, mm	I _φ , A	cosф, o.e.	М, кН∙м	п, об/мин	Потери в	s, %
					роторе, кВт	
5	531,2	0,646	2,7	987,2	14,8	1,28
3,5	501,6	0,683	2,7	983,8	16,6	1,62
2	484,3	0,71	2,7	977,1	22,1	2,29

Таблица 3. Сравнительные данные

Параметр	Короткозамкнутый	Массивный ротор с	Массивный ротор с	
	ротор	высокопроводящей	омеднением	
		гильзой		
Коэффициент мощности, о.е.	0,86	0,73	0,7	
Ток статора, А	394	476,4	484	
Сумма потерь в роторе, кВт	8	12,9	16,6	
Кратность пускового момента, о.е.	1,2	1,7	_	
Кратность пускового тока, о.е.	5,4	4,6	_	

Применение массивного ротора приводит к ухудшению энергетических характеристик в сравнении с короткозамкнутым ротором — снижению коэффициента мощности двигателя, увеличению потерь в обмотке статора и суммарных потерь в роторе, в то же время двигатель с массивным ротором обладает лучшими пусковыми характеристиками.

Исходя из результатов расчета массивного ротора с медным цилиндром на поверхности, приведённых в таблице 3, применение стали с высокой электропроводностью является более предпочтительным по всем показателям.

ЛИТЕРАТУРА:

- 1. Нейман Л. Р.: поверхностный эффект в ферромагнитных телах. Ленинград; Москва: Изд-во Госэнергоиздат, 1949. 190 с.
- 2. Куцевалов В.М: вопросы теории и расчета асинхронных машин с массивными роторами. Москва; Ленинград: Изд-во Энергия, 1966. 304 с.

Научный руководитель: профессор, д.т.н. А.Г. Гарганеев, профессор ОЭЭ ИШЭ ТПУ.

РАЗРАБОТКА МОДЕЛИ ТУРБОГЕНЕРАТОРА В СРЕДЕ ANSYS MAXWELL

Б.С. Доржиева, А.Б. Раднаев Томский политехнический университет ИШЭ, ОЭЭ, группа А0-28

Сложность аналитических исследований процессов, протекающих в электрических машинах, обусловлена одновременным изменением нескольких факторов. Большую роль играет нелинейность кривой намагничивания, зависимость параметром машины от нагрузки, появление вихревых токов в массивных элементах, взаимное влияние электромагнитных и механических процессов [1].

В настоящее время для исследования электрических машин широко используется численное моделирование. Моделирование, основанное на расчете электромагнитных, силовых и других полевых задач методом конечных элементов (МКЭ), при условии корректной постановки задачи отличается высокой точностью, быстрой скоростью вычисления и наглядным представлением результатов.