ПЕРСПЕКТИВЫ СОВЕРШЕНСТВОВАНИЯ ПРОЦЕССОВ ПРОМЫСЛОВОЙ ПОДГОТОВКИ НЕФТИ С УЧЁТОМ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ В ЗАПАДНО-СИБИРСКОМ РЕГИОНЕ

Н. Е. Полошков

Научный руководитель - к.т.н., доцент Е. А. Кузьменко

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, tpu@tpu.ru

Нефтяная эмульсия, поступающая из скважин, представляет собой смесь сырой нефти, пластовой воды, попутного (нефтяного) газа, твердых частиц и механических примесей. На зрелых месторождениях объемы пластовой воды в нефтяной эмульсии увеличиваются. Более 40 % извлекаемых запасов «черного золота» на территории России имеет обводненность свыше 65 %. В пластовой воде содержание минеральных солей достигает 250-290 г/л. Высокое содержание минерализованной воды и наличие твердых частиц вызывает коррозионное разрушение и эрозионный износ оборудования, кроме этого вода, взаимодействуя с нефтью, образует при транспортировке стойкую эмульсию. Поэтому необходимо проводить отделение пластовой воды от нефти в местах добычи.

Применение на месторождениях традиционной установки подготовки нефти (УПН) обладает рядом особенностей. УПН – технически сложный объект, который включает в себя большое количество единичных технических устройств - резервуары, печи нагрева, сепараторы, дегидраторы, отстойники и технологические трубопроводы. Для применение данного оборудования необходимы большие площади, которые в условиях болотистых местностей Западной Сибири являются «роскошью».

Для реализации решений по совершенствованию промысловой подготовки нефти, сбора, утилизации воды и газа, обессоливания нефти на кустовых площадках все больше находят применение мобильные установки подготовки нефти, например, передвижной комплекс исследования и освоения скважин ПКИОС. Для региона Западной Сибири эффективно использовать данные установки на площадках разрабатываемых месторождений, прилегающих к магистральным нефтепроводам, пока строятся и вводятся в эксплуатацию основные объекты промысловой подготовки нефти.

Для месторождений с высокой обводненностью скважин, в плане совершенствования технологии подготовки нефти на промыслах, эффективно внедрение такого технологического мобильного оборудования, как установка раннего предварительного сброса воды (УРПСВ).

Преимущества применения УРПСВ заключается в значительном уменьшении объема перекачиваемой жидкости за счет сепарации воды в непосредственной близости от кустовых площадок. Использование УРПСВ обеспечит увеличения добычи нефти за счет снижение нагрузки на систему нефтесбора, дожимные насосные станции (ДНС) и как следствие уменьшения операционных затрат (электроэнергию, реагенты и т. д.), а также уменьшения капитальных за-

Таблица 1. Условия применимости УРПСВ

Плотность нефти, кг/м³	Агрегативная устойчивость эмульсионной фазы, %	Производительность установки УРПСВ по жидкости, м³/сут							
		3000		5000		7000		10000	
		Газовый фактор при стандартных условиях, м ³ /т							
		До 150	150– 1500	До 150	150– 1500	До 150	150– 1500	До 150	150– 1500
Не бо- лее 870	До 30	4500	4000	9000	8000	13500	12000	18000	16000
	31-65	4000	4000	8000	8000	12000	12000	16000	16000
Не более 870,1–895	До 30	4000	4000	8000	8000	12000	12000	16000	16000
	31-65	4000	3500	8000	7000	12000	10500	16000	14000
Более 895,1	До 30	3000	3000	6000	6000	9000	9000	12000	12000
	31-65	2500	2000	5000	4000	7500	6000	10000	8000

трат на систему промысловых трубопроводов и оборудования технологических площадок.

Применение оптимизированного сепарационного узла пластовой воды в блоке очистки воды, обеспечивает снижение нефтепродуктов до уровня 15 мг/л. Это достигается за счет использования коалесцирующих элементов, изготовленных из олеофильных материалов и переменного профиля. Вывод механических примесей и уловленных нефтепродуктов из УРПСВ в трубопровод отвода газо-жидкостной смеси достигается применением система автоматизированной самоочистки.

Совершенствование процессов промысловой подготовки нефти в части увеличения экономической эффективности возможно при выявлении кустовых площадок и внедрении установок предварительного сброса воды, которые удовлетворяют требования по внедрению УПРСВ (табл. 1) и ПКИОС, а также по суммарным сводным показателям и расположению существующей инфраструктуры. Повышение эффективности при реализации процессов раннего предварительного сброса воды является актуаленым для «зрелых» нефтяных Компаний.

ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ МАССЫ И КАЖУЩЕЙСЯ ЭНЕРГИИ АКТИВАЦИИ КОКСА В ПРОЦЕССЕ ВЫСОКОТЕМПЕРАТУРНОЙ ИЗОТЕРМИЧЕСКОЙ ВЫДЕРЖКИ

А. Г. Потемкина

Научный руководитель — к.т.н., заведующий кафедрой ХТТ и ПЭ УрФУ С. Г. Стахеев Уральский федеральный университет имени первого Президента России Б. Н. Ельцина 620002, Уральский федеральный округ, Свердловская область, Екатеринбург, ул. Мира, 19, alexandra.potemkina@mail.ru

Технология сухого тушения кокса применяется в коксохимической промышленности для охлаждения кокса, выдаваемого из печей с температурой 1000–1100 °C. Сухое тушение кокса имеет ряд преимуществ, позволяющих утилизировать вторичные энергоресурсы в виде теплоты горячего кокса и улучшить механические и физико-химические свойства как топлива и восстановителя для доменных печей.

При эксплуатации установок сухого тушения кокса (УСТК) был выявлен существенный недостаток — снижение массы охлаждаемого кокса.

Задачей данного исследования было изучение снижения массы кокса от температуры и времени изотермической выдержки углеродистого остатка из угля технологической марки «Ж», а также определение кажущейся энергии активации процесса.

Термогравиметрический анализ исследуемого угля выполняли на приборе синхронного термического анализа «Netzsch STA 449 F3 Jupiter» (Германия).

Уголь марки Ж имеет выход летучих веществ $V^{\text{daf}}=34,1$ %, содержание минеральных примесей $A^{\text{d}}=7,4$ % и толщину пластического слоя y=37 мм.

Условия проведения термогравиметрического анализа: масса навески -35 ± 1 мг; скорость нагрева -10 °С/мин; расход продувочного и защитного газа (аргон) -50 мл/мин; материал тигля – корунд.

Температура изотермической выдержки в опытах составляла 900, 950, 1000, 1050, 1100 °C. Получаемый углеродистый остаток выдерживали при указанных температурах в течение 2 часов.

В ходе исследования было выявлено, что в каждый момент времени термостатирования показатель снижения массы кокса увеличивается с повышением температуры изотермической выдержки.

В таблице 1 представлены результаты изменения массы кокса в зависимости от температуры и времени изотермической выдержки. С повышением температуры изотермической выдержки снижение массы кокса увеличивается.

Для определения кажущейся энергии активации была рассчитана степень превращения вещества и определены константы скорости реакции (таблица 2) [1].

На основе полученных данных была рассчитана кажущаяся энергия активации, которая составила 77, 2 кДж/моль.