Секция 6 **Энергосбережение**и энергоэффективность

ЭНЕРГОЭФФЕКТИВНАЯ ДЭС С АККУМУЛЯТОРНЫМ НАКОПИТЕЛЕМ ЭЛЕКТРОЭНЕРГИИ

Д.Г. Орешков

Томский политехнический университет, ИШЭ, ОЭЭ, гр. 5AM24

Научный руководитель: Б.В. Лукутин, д.т.н., профессор ОЭЭ ИШЭ ТПУ

На сегодняшний день дизельные электростанции актуальны в следующих областях: регионы с плохо развитой инфраструктурой электроснабжения, в отдаленных районах и населенных пунктах; временные строительные объекты; морская и авиационная промышленности; резервное электроснабжение.

Основные проблемы дизельных электростанций:

- Повышенный расход топлива: дизельные электростанции требуют дорогостоящего топлива, поэтому их эксплуатация может быть дорогой. Кроме того, требуется регулярное обслуживание и замена деталей, что также сопряжено с расходами.
- Зависимость от нефтепродуктов: дизельным электростанциям необходимо наличия топлива, что делает их зависимыми от поставок нефтепродуктов. Это может привести к проблемам автономного электроснабжения при трудностях с доставкой или росте цен на дизельное топливо.

Основной идеей данной работы является экономия топлива за счет выравнивания режима работы ДЭС с помощью аккумуляторных батарей, работающих в режиме заряда-разряда через двунаправленный статический преобразователь электроэнергии (рис. 1). В результате неравномерный график электрической нагрузки дизельной системы электроснабжения дополняется энергией заряда аккумуляторов, при низком уровне текущего электропотребления, и энергией разряда в периоды максимальных нагрузок. Загрузка ДЭС в рассматриваемом энергетическом комплексе может быть оптимизирована по критерию расхода топлива. Установленная мощность ДЭС выбирается не по пиковому электропотреблению нагрузки, а по её среднесуточному значению.

Объектом исследования является поселок Алысардах Республики Саха (Якутия).

В работе рассчитаны характерные графики нагрузок данного поселка для разных сезонов года, а также выбрана дизельная электростанция АД-40-Fregat. Для базового варианта с

обычной ДЭС рассчитан годовой расход топлива, который составил 58454,64 литров дизельного топлива, а также его стоимость: 4512698 руб. в год.

Для улучшения технико-экономических характеристик базовой ДЭС предложен дизельный генератор Baudouin MGEp16BN меньшей установленной мощности с аккумуляторной системой накопления электроэнергии, позволяющей производить обмен электроэнергии с ДЭС через двунаправленный статический преобразователь. Для данного варианта годовой расход топлива составил 54312 литров, а его стоимость — 4192886 руб. в год. Выбраны аккумуляторные батареи и построена суточная циклограмма состояния их заряда (рис. 2), что позволило оптимизировать их ёмкость в соответствии с выбранным режимом работы дизельгенератора.

Следующим шагом оптимизации энергетического комплекса является изменение коэффициента загрузки ДЭС с помощью варьирования ёмкости аккумуляторов. В результате анализа суточной циклограммы заряда аккумуляторов (рис. 3) определено соотношение между коэффициентом загрузки ДЭС и ёмкостью аккумуляторов. Установлено, что увеличение ёмкости накопителя позволяет сократить годовой расход топлива до 47523 литров, а его стоимость до 3668776 руб.

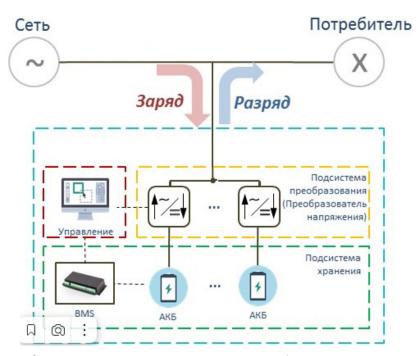


Рис. 1. Схема двунаправленного статического преобразователя электроэнергии

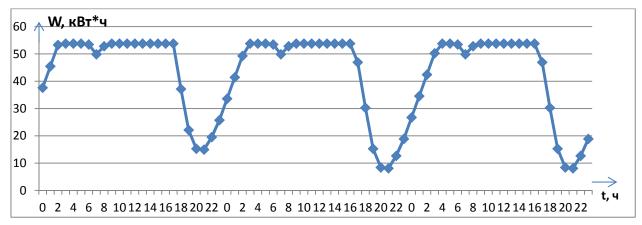


Рис. 2. Суточная циклограмма заряда аккумуляторных батарей

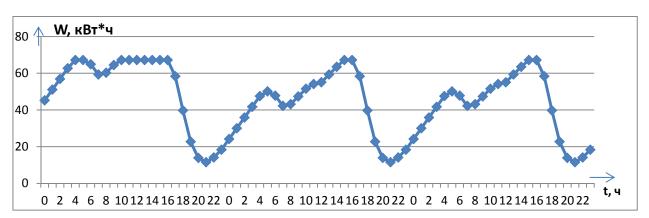


Рис. 3. Суточная циклограмма заряда аккумуляторных батарей большей емкости

Заключение

Сравнивая варианты построения ДЭС, видно, что применение системы накопления электроэнергии с возможностью энергообмена позволяет существенно снизить эксплуатационные расходы дизельных систем электроснабжения. Для рассмотренного примера, годовой расход топлива сокращается на 10931,64 литров и его стоимость на 843922,6 рублей, по сравнению с вариантом классической ДЭС.

СПИСОК ЛИТЕРАТУРЫ

- 1. Информация об объеме производства и фактических расходах на производство 1 кВт·ч электрической энергии за 2021 г. URL: http://www.rushydro.ru/press/holding-news/112186.html (дата обращения 11.03.2023).
- 2. Типовые суточные графики электрических нагрузок. URL: https://online-electric.ru/ %20 (дата обращения 02.04.2023).
- 3. Дизельные генераторы Фрегат. URL: https://dgufregat.ru/ (дата обращения 13.04.2023).
- 4. Дизельные генераторы. Сайт завода Амперос. URL: https://mge-power.ru/product/dizelnyy-generator-baudouin-mgep16bn (дата обращения 19.04.2023).
- 5. Литий-железо-фосфатные LiFePo4 аккумуляторы. URL: https://lifepo4.ru/akkumulyator-lifepo4-24v-560ah (дата обращения 27.04.2023).
- 6. Правила устройства электроустановок: Все действующие разделы ПУЭ7. Новосибирск: Сиб. Унив. изд-во, 2009. 853 с.

ЭНЕРГОЭФФЕКТИВНОСТЬ УСТРОЙСТВА ДЛЯ ПОЛУЧЕНИЯ ПОРОШКА ВЫСОКОЭНТРОПИЙНЫХ КАРБИДОВ

А.А. Свинухова¹, А.П. Корчагина²

Томский политехнический университет, ИШЭ, ОЭФ, гр. АЗ-08¹; ИШЭ, НОЦ И.Н. Бутакова, гр. 5БМ22²

Научный руководитель: А.Я. Пак, д.т.н., профессор ОЭЭ ИШЭ ТПУ

Высокие темпы развития промышленности побуждают искать новые современные материалы способные удовлетворить растущие потребности. На данный момент особенно актуальны материалы способные выдерживать высокие и сверхвысокие температуры для применения в аэрокосмической отрасли и в энергетике [1]. Потенциальным кандидатом для использования в таких условиях является сверхвысокотемпературная керамика (UHTC), характеризующаяся температурой плавления 3300 К [2]. Но ввиду повышающихся требований