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1 Introduction

The W boson mass (mW ) is directly related to electroweak (EW) symmetry breaking in
the Standard Model (SM) [1–3]. At tree level, mW = gv/2 where g is the weak-isospin
coupling and v is the vacuum expectation value of the Higgs field. Going beyond tree level
the boson masses and couplings receive loop corrections. The value of mW is related to
the precisely measured fine-structure constant (α), the mass of the Z boson (mZ) and the
Fermi constant (GF ), as [4, 5]

m2
W

(
1− m2

W

m2
Z

)
= πα√

2GF
(1 + ∆), (1.1)
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where ∆ encapsulates the loop-level corrections. A global fit of EW observables, excluding
direct measurements of mW , yields a prediction of mW = 80354 ± 7MeV [6].1 This can
be compared with direct measurements to test for possible beyond SM contributions to ∆
in eq. (1.1). The 2020 PDG average of direct measurements is mW = 80379± 12MeV [7].
The sensitivity of the global EW fit to physics beyond the SM is primarily limited by
the precision of the direct measurements of mW [6]. Furthermore, the uncertainty in the
prediction is expected to reduce as the top-quark mass, which is the leading source of the
parametric uncertainty, is determined more precisely in the future.

The value ofmW was measured to a precision of 33MeV at the Large Electron-Positron
(LEP) collider [8] at CERN and to a precision of 16MeV in an average [9] of measurements
by the CDF [10] and D0 [11] experiments at the Fermilab Tevatron collider. The first mea-
surement at the LHC was performed by the ATLAS collaboration and has an uncertainty of
19MeV [12]. The hadron collider measurements are based on three observables in leptonic
W boson decays, namely the transverse mass, missing transverse momentum and charged
lepton transverse momentum (pT). At hadron colliders, the lepton pT is measured with
good resolution but it is strongly influenced by the W boson transverse momentum distri-
bution, the modelling of which is a potential source of a limiting systematic uncertainty.
However, the resolution of the transverse mass is degraded by the pile-up of proton-proton
interactions in the same bunch crossing. Therefore, the lepton pT was the most sensitive
observable in the recent measurement performed by the ATLAS collaboration. Despite
being based on a small subset of the data recorded to date, the ATLAS measurement of
mW is already limited by uncertainties in modelling W boson production, in particular the
parton distribution functions (PDFs) of the proton.

The potential for a measurement based on the muon pT with the LHCb experiment
is studied in ref. [13]. It was estimated that LHCb data collected in LHC Run 2, at a
proton-proton (pp) centre of mass energy

√
s = 13TeV, would allow a measurement with

a statistical precision of around 10MeV. Owing to the complementary pseudorapidity (η)
coverage of the LHCb experiment with respect to the ATLAS and CMS experiments, it
was demonstrated in ref. [13] that the PDF uncertainty could partially cancel in an average
of mW measurements by the LHC experiments.

In this paper a first measurement of mW is presented using W → µν decays, including
both W boson and muon charges, collected at the LHCb experiment.2 This measurement
considers the muon q/pT distribution, where q is the muon charge. Figure 1 (left) illustrates
how the shape of the muon q/pT distribution in simulated W boson decays is influenced
by variations in mW of ±300MeV, which corresponds to roughly ten times the target
precision of the present analysis. The q/pT variable allows all muons with pT > 24GeV to
be visualised; those with 28 < pT < 52GeV are used to determine mW , while consistent
control of the fit can be demonstrated in the region pT > 52GeV.

The pT of a muon produced by the decay of a W boson has a strong dependence on
the W boson transverse momentum (pWT ). Direct measurements of the pWT distribution

1Throughout this paper natural units with c = 1 are used.
2The inclusion of charge-conjugate processes is implied throughout unless otherwise specified.
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Figure 1. Muon q/pT distribution in simulated W → µν events with variations in (left) mW and
(right) the A3 coefficient. The dashed vertical lines indicate the two pT ranges that are included in
the mW fit.

have been reported by the ATLAS [14] and CMS [15] collaborations but the intervals
are necessarily coarse due to the limited pWT resolution. Measurements of the transverse
momentum distribution for Z boson production (pZT) are therefore used to validate the
predictions for the pWT distribution.3 The angular variable φ∗ [16], defined in eq. (4.2), is
used in this analysis as a proxy for pZT since its distribution can be measured more precisely
than that of pZT . Parton-shower programs such as Pythia [17] can be tuned (e.g. ref. [18])
to describe the pZT and φ∗ data at the per cent level but it is challenging to reliably translate
such tunes toW boson production. However, aW -boson-specific tuning of a parton-shower
model can be performed simultaneously with a determination of mW [19].

If electroweak corrections are neglected then the production and leptonic decay of the
W boson factorise such that the differential cross-section can be written as

dσ
dpWT dydMd cosϑdϕ

= 3
16π

dσunpol.

dpWT dydM

×
{

(1 + cos2 ϑ) +A0
1
2(1− 3 cos2 ϑ) +A1 sin 2ϑ cosϕ

+A2
1
2 sin2 ϑ cos 2ϕ+A3 sinϑ cosϕ+A4 cosϑ

+A5 sin2 ϑ sin 2ϕ+A6 sin 2ϑ sinϕ+A7 sinϑ sinϕ
}
,

(1.2)

where ϑ and ϕ are the lepton decay angles defined in a suitable frame (the Collins-Soper
frame [20] is used in this analysis), and pWT , y and M denote the transverse momentum,
rapidity and mass of the final state lepton pair, respectively. An equivalent expression
applies to Z → µµ production. The eight angular coefficients (Ai) are ratios of helicity
cross-sections and depend on pWT , y and M ; σunpol. is usually referred to as the unpolarised
cross-section. The coefficients A5 − A7 are numerically small because they only arise at

3For brevity Z denotes Z/γ∗.
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second order, or higher, in the strong coupling constant (αs).4 The coefficient A3 is par-
ticularly influential on the muon pT distribution. Figure 1 (right) shows how the q/pT
distribution in simulated W boson events, after the selection requirements described in
section 3, changes when A3 is scaled up and down by 3%.

In this paper, the simulated samples are weighted in the full five-dimensional phase
space of vector boson production and decay, using different models for the unpolarised
cross-section, angular coefficients, and QED final-state radiation. Several PDF sets are
used in the analysis but none of the analysed data were included in the determination of
these PDF sets.

This paper is organised as follows. Section 2 describes the data and simulated sam-
ples. Section 3 details the signal candidate selection requirements. Section 4 describes
charge-dependent curvature corrections that are applied to the data and simulation. The
determination of residual smearing corrections to the simulation with a simultaneous fit
of Z → µµ and quarkonia decays is subsequently described. Section 5 details the mea-
surement of muon selection efficiencies and subsequent weight-based corrections to the
simulation. Section 6 describes the treatment of background arising from in-flight decays
of light hadrons. Section 7 sets out the modelling of vector boson production and decay.
Section 8 describes the simultaneous fit of the model to the muon pT distribution of W
boson candidates and the φ∗ (defined in eq. (4.2)) distribution of Z boson candidates to de-
terminemW . Section 9 explains how results based on three different PDF sets are averaged,
and summarises the systematic uncertainties. Several cross-checks of the measurement are
reported. The impact of analysis choices and systematic variations on mW is discussed
throughout the paper. The conclusions of the analysis are presented in section 10.

2 Data sets and event selection

The LHCb detector [21, 22] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c
quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the proton-proton (pp) interaction region [23], a large-area
silicon-strip detector located upstream of a dipole magnet with a bending power of about
4 Tm, and three stations of silicon-strip detectors and straw drift tubes [24] placed down-
stream of the magnet. The tracking system provides a measurement of the momentum, p,
of charged particles with a relative uncertainty that varies from 0.5% at low momentum
to 1.0% at 200GeV. The minimum distance of a track to a primary pp collision vertex
(PV), the impact parameter, is measured with a resolution of (15 ⊕ 29/pT)µm, where
pT is the component of the momentum transverse to the beam, in GeV. Different types
of charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors [25]. Photons, electrons and hadrons are identified by a calorimeter system con-
sisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system composed of alternating layers of
iron and multiwire proportional chambers [26]. The online event selection is performed by a

4Throughout this paper αs denotes the strong coupling at the scale of the Z boson mass.
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trigger [27], which consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruction.

This analysis uses a data sample of pp collisions at
√
s = 13TeV recorded during 2016,

corresponding to an integrated luminosity of about 1.7 fb−1. Roughly half of the data were
recorded in each of the dipole magnet polarity configurations, resulting in a large degree of
cancellation of charge-dependent curvature biases and their associated uncertainties. These
data correspond to an average number of proton-proton interactions per bunch-crossing
event of O(1).

During Run 2 the LHCb detector was aligned and calibrated in real-time [28]. The
alignment of the tracking system is based on a χ2 minimisation of the residuals of the
clusters of tracker hits evaluated with a Kalman filter that takes into account multiple
scattering and energy loss [29]. The alignment algorithm also permits mass and vertex
constraints [30]. An optimised offline alignment, which includes Z → µµ events with a
mass constraint that accounts for the natural width of the Z boson, is used to determine
the track parameters. Since the real-time alignment is not optimised for the analysis of
high-pT final states, this realignment improves the Z → µµ mass resolution by around 30%.

All signal and background processes are simulated using an LHCb specific tune [31] of
Pythia version 8.186 [17]. The interaction of the generated particles with the detector, and
its response, are implemented using the Geant4 toolkit [32, 33] as described in ref. [34].
Events are simulated with both polarity configurations and weights are assigned to events
in each polarity such that the polarity distribution matches the recorded data.

3 Selection of W boson, Z boson and quarkonia signal candidates

Tracks are identified as muons if they are matched to hits in either three or all four of the
most downstream muon stations depending on their momentum. They are then considered
in this analysis if they are within the range 1.7 < η < 5.0, and have a momentum of less
than 2TeV. The tracks must have a good fit quality and a relative momentum uncertainty
of less than 6%.

Candidate W → µν events are selected online by requiring that one identified muon
satisfies the requirements of all stages of the trigger. At the hardware stage a pT of
at least 6GeV is required. The isolation of a muon is defined as the scalar sum of the
transverse momenta of all charged and neutral particles, as selected by a particle-flow
algorithm, described in ref. [35], within (∆η)2 + (∆φ)2 < 0.42 around the muon, where ∆η
and ∆φ denote the separation in η and azimuthal angle around the beam direction (φ),
respectively. Hadronic background contributions are suppressed by requiring the muon to
have an isolation of less than 4GeV. For the W → µν selection the η range is tightened
to 2.2 < η < 4.4 so that the area of the isolation cone is fully instrumented. The muon
must satisfy χ2

IP < 9 where χ2
IP is defined by the difference in the vertex fit χ2 of the PV

with and without including the muon. Background from Z boson events is suppressed by
rejecting events that contain a second muon with pT > 25GeV and an opposite charge to
that of the primary muon candidate. Roughly 2.4 million W → µν candidates are selected
in the range 28 < pT < 52GeV.
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Candidate Z → µµ events are reconstructed from combinations of two oppositely
charged identified muons associated to the same PV with an invariant mass within ±14GeV
of the known Z boson mass [7]. At least one muon must be matched to a single muon
selection at all stages of the trigger. Both muons must have pT > 20GeV, an isolation value
below 10GeV, and an impact parameter significance of less than ten standard deviations.
Roughly 190 thousand Z → µµ candidates are selected.

Candidate J/ψ → µµ and Υ (1S) → µµ events, which are primarily used to calibrate
the modelling of the momentum measurement, are required to have a pair of oppositely
charged identified muons. Both muons must have a transverse momentum above 3GeV and
satisfy a tighter muon identification requirement. In order to specifically select J/ψ → µµ

candidates originating from b-hadron decays the decay vertices must be displaced from the
nearest PV with a significance of at least three standard deviations. These selections retain
roughly 1.0 million Υ (1S)→ µµ candidates and 220 thousand J/ψ → µµ candidates.

4 Momentum calibration and modelling

The momentum scale can be precisely determined from the mass measurements of various
resonances, including those that decay to muon pairs. However, charge-dependent curva-
ture biases that shift q/p are challenging to estimate because their effect largely cancels in
the mass of the resonances. They are also particularly important for the high momentum
muons from W and Z boson decays. In ref. [36] it was proposed to determine corrections
using the so-called pseudomass variable in Z → µµ events

M± =
√

2p±p±
T
p∓

p∓
T

(1− cos θ), (4.1)

where p± and p±
T are the momenta and transverse momenta of the µ±, respectively. The

opening angle between the two muons is denoted θ. Crucially, the value of M± is inde-
pendent of the magnitude of the momentum of the µ∓ and is therefore directly sensitive to
curvature biases affecting the µ± candidate. The pseudomass is an approximation of the
dimuon mass under the assumption that the dimuon system has zero momentum transverse
to the bisector of the two lepton transverse momenta. The φ∗ observable is defined as [16]

φ∗ = tan((π −∆φ)/2)
cosh(∆η/2) ∼ pZT

M
, (4.2)

where ∆φ is the azimuthal opening angle between the two leptons and ∆η is the difference
between the pseudorapidities of the negatively and positively charged lepton. In events
with small values of φ∗ the pseudomass better approximates the dimuon mass. The pseu-
domass distributions for events with φ∗ < 0.05 are studied in intervals of φ and η of the
µ± candidate, with a further categorisation into candidates traversing the silicon strip or
straw drift tube detectors downstream of the magnet. A maximum likelihood fit of the
M± distributions is performed for each of these detector regions. The signal shapes are
described by the sum of a resonant Crystal-Ball [37] component and a nonresonant compo-
nent represented by an exponential function. The means of theM± Crystal-Ball functions
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Figure 2. Curvature corrections as a function of the detector region index (depends on η, φ and
tracking detector, as described in the text) for (left) data and (right) simulation. The corrections
are shown for both polarity configurations. The periodic pattern corresponds to a dependence on
pseudorapidity that repeats in the intervals of the azimuthal angle.

are parameterised as M̄(1 ± A), where A and M̄ are freely varying asymmetry and mass
parameters, respectively. The resulting q/p corrections, which are given by A/p̄ where p̄
is the average muon momentum for a given interval in η and φ, are presented for the data
and simulation for both polarity configurations in figure 2.

After the curvature corrections are applied to the data and simulation, the momenta of
the simulated muons are smeared to match those in the data, as described below, according
to

q

p
→ q

p · N (1 + α, σMS) +N
(
δ,

σδ
cosh η

)
, (4.3)

where N (a, b) represents a random number sampled from a Gaussian distribution with
mean a and width b. The σMS and σδ parameters correspond to the multiple scattering
and curvature measurement contributions to the resolution, respectively. The smearing
model includes six parameters in total. There are two momentum scale parameters α
corresponding to the 2.2 < η < 4.4 region, which coincides with the selection of W boson
candidates, and the η < 2.2 region. A single δ parameter, corresponding to a curvature bias,
covers the region 2.2 < η < 4.4, while the value of δ is fixed to zero in the region η < 2.2.
There are two σδ parameters corresponding to the 2.2 < η < 4.4 and η < 2.2 regions, while
a single σMS parameter is found to adequately cover all η values. The empirical 1/cosh η
dependence of the second term in eq. (4.3) improves the modelling of the η dependence in
the Z → µµ mass distribution. As a further correction to eq. (4.3), the value of σMS is
increased by a factor of 1.5 in the region η > 3.3 since this improves the agreement between
data and simulation in the η dependence of the quarkonia mass distributions.

The six smearing parameters are determined in a simultaneous fit of J/ψ → µµ,
Υ (1S) → µµ and Z → µµ candidates in data and simulation. A total of 36 dimuon
invariant mass distributions are used in the fit. First, there are three η regions covering
η < 2.2, 2.2 < η < 3.3 and 3.3 < η < 4.4, which result in six categories that depend on the
η regions of the two muons. The quarkonia mass distributions are only used in categories
with both muons having η > 2.2. In the subset of the η categories with both muons in

– 7 –
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Parameter Fit value
α (η < 2.2) (0.58± 0.10)× 10−3

α (2.2 < η < 4.4) (−0.0054± 0.0025)× 10−3

δ (−0.48± 0.37)× 10−6 GeV−1

σδ (η < 2.2) (17.7± 1.2) keV−1

σδ (2.2 < η < 4.4) (14.9± 0.9) keV−1

σMS (2.015± 0.019)× 10−3

Table 1. Parameters in the momentum smearing model where the uncertainties quoted are statis-
tical.

η > 2.2, the Z → µµ data are split into three intervals of the asymmetry between the
momenta of the two muons, which provides a first order sensitivity to the δ parameters.
Finally, all categories are divided by magnet polarity.

As in previous studies of Z → µµ production with the LHCb experiment [38], the
background under the Z → µµ peak is low enough to be neglected but the fit includes
exponential functions for the background contributions under the quarkonia resonance
peaks. The fractions and slopes of these exponential components vary freely in the fit.

The total χ2 from the fit is 1862 for 2082 degrees of freedom. Table 1 shows the
fit values of the six parameters in the smearing model. The δ values are close to zero as
expected given the curvature corrections that have already been applied. Figure 3 shows the
dimuon mass distributions for the Z, Υ (1S) and J/ψ samples after combining all categories
with both muons in the 2.2 < η < 4.4 range.

The statistical uncertainties in the smearing parameters result in an uncertainty in
mW of 3MeV. The uncertainty in the world average of the Υ (1S) mass [7] leads to an
uncertainty of 2MeV. The uncertainty in the J/ψ mass is negligible compared to that in
the Υ (1S) mass. The Υ (1S) and the Z masses have comparable relative uncertainties but
the latter has a negligible effect given the limited size of the Z boson sample. The amount
of material in the detector, which affects the modelling of energy losses, is varied by 10%,
leading to an uncertainty of 3MeV. A total uncertainty of 5MeV is attributed to the shifts
in mW corresponding to: an alternative form of the 1/cosh η factor in eq. (4.3); and a
variation in the η region over which σMS is scaled. An uncertainty of 2MeV is attributed
to the modelling of the radiative tails in the Υ (1S) and J/ψ simulation, using the methods
described in ref. [39]. The total uncertainty attributed to the modelling of the momentum
scale and resolution is 7MeV.

5 Efficiency corrections

Corrections to the simulation are required for the muon trigger, identification, tracking and
isolation efficiencies. The efficiencies are measured using a combination of Z → µµ and, in
the case of the trigger efficiency, Υ (1S) → µµ samples. Positively and negatively charged

– 8 –
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Figure 3. Dimuon mass distributions for selected J/ψ, Υ (1S) and Z boson candidates. All
categories with both muons in the 2.2 < η < 4.4 region are combined. The data are compared with
the fit model. The red histogram delineates the model before the application of the smearing.

muons are analysed separately but the results are combined since any charge asymmetries
are verified to have a negligible effect.

The trigger efficiency, which accounts for the hardware and software stages, is measured
using a combination of Z → µµ and Υ (1S) → µµ events in which one so-called tag muon
is required to match a positive decision in the hardware trigger and the first stage of the
software-level trigger such that the other muon can be regarded as an unbiased probe of
the trigger efficiency. Events are categorised as either matched or unmatched depending
on whether the probe muon is matched to a positive trigger decision in the event data
record. The Z → µµ sample is verified to be sufficiently pure that the efficiencies can be
measured by simply counting the matched and unmatched events with invariant masses
within ±15GeV of the known Z boson mass [7]. The efficiencies are determined in four
uniform φ intervals and eight uniform η intervals in the range 2.2 < η < 4.4. There are two
additional η intervals in the region η < 2.2 and one in the region η > 4.4. The Υ (1S)→ µµ

sample requires background subtraction by fitting the dimuon invariant mass distribution
with a parametric model of the signal and background components.

Three pT intervals, in the range 7.0 < pT < 12.5GeV, are used for the probe muons
from Υ (1S) → µµ decays while for the Z → µµ candidates an adaptive algorithm is
employed to determine the pT intervals. The ratios of the trigger efficiencies in data relative
to those in the simulation are shown as a function of 1/pT of the muon in figure 4 for each
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of the intervals in η and φ. These are overlaid with a linear function of pT, from which
correction weights for the simulated events are evaluated. The weights for the W boson
model only rely on these functions but the weights for the Z boson model also require a
parameterisation of the absolute efficiency in the simulation such that the efficiency can
be correctly modelled for Z boson candidates with one or two muons matched to a trigger
decision. The absolute efficiency is described by an error function that captures the pT
threshold (roughly 6GeV) of the hardware trigger [28].

The muon identification efficiency is treated in a similar manner to the trigger efficien-
cies, using Z → µµ events. The resulting event weights, which are applied to the simulated
events, are within a few per cent from unity. The tracking efficiency is determined as in
previous measurements of W and Z boson production at LHCb [38] using Z → µµ candi-
dates where the probe muons are reconstructed by combining hits from the muon stations
and the large-area silicon-strip detector located upstream of the magnet [40]. As neither
of these detectors are used in the primary track reconstruction algorithms, the probes can
be used to measure the tracking efficiency. Correction factors are evaluated using a simi-
lar approach to those of the muon identification efficiency, except that the corrections are
assumed to be independent of pT.

The statistical uncertainties in the muon trigger, tracking and identification efficiency
corrections are evaluated by rerunning the relevant steps of the analysis, up to and including
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the mW determination, with random fluctuations in the underlying efficiency values. The
RMS of the resulting variations in themW value is regarded as an uncertainty. A systematic
uncertainty is attributed to the dependence of the results on the scheme for η and φ

intervals. This includes restricting to a single interval in φ, reducing the number of η
intervals (within 2.2 < η < 4.4) by a factor of two, varying the number of pT intervals
between two and ten, and using the simulation rather than the data to control the adaptive
algorithm. Further systematic uncertainties are attributed to variations in the isolation and
pT requirements on the tag muons, the mass windows used to determine the Z → µµ signal
yields, and the functions of the pT dependence of the efficiency ratios. As the probe muons
for the tracking efficiency are reconstructed using minimal tracking information, they have
a significantly lower momentum resolution and so a dedicated momentum smearing is
applied by default. A variation in the size of this smearing is included in the systematic
uncertainty evaluation. The total uncertainty associated to the muon trigger, identification
and tracking uncertainties is 6MeV.

The efficiency of the isolation requirement is measured with Z → µµ events. The
isolation variable receives contributions from pile-up, the underlying event and the recoil
component of the hard process. The recoil projection for each muon is defined by

u = ~p VT · ~p
µ

T
pµT

, (5.1)

where ~p µT and ~p VT are the two-dimensional momentum vectors of the muon and the parent
vector boson in the transverse plane. Figure 5 (left) shows the isolation requirement effi-
ciency as a function of u in the Z → µµ data and simulation. The efficiency is around 80% at
positive values of u where the underlying event contribution dominates. At negative values
of u, corresponding to large recoil, the efficiency drops to around 70%. The full reconstruc-
tion of the Z boson in Z → µµ events allows the determination of corrections as a function
of u defined at reconstruction level and consistently applied to W and Z boson events as a
function of u defined at generator level, with this approach validated using the Z boson sam-
ple. A map of relative efficiencies between data and simulation is determined in intervals of
u and η and is used to evaluate weights for the simulated events. Figure 5 (right) shows that
the dependence of the isolation efficiency on 1/pT in data is accurately described by the
simulation after the corrections. The statistical uncertainties in the isolation efficiency cor-
rections are treated as a source of systematic uncertainty. This is combined in quadrature
with a systematic uncertainty that accounts for variations in the u and η intervals and in a
smoothing procedure applied to enhance the effective statistical precision of the correction
map. The total uncertainty attributed to the isolation efficiency modelling is 4MeV.

The modelling of the impact parameter and track fit χ2 variables in simulation is
improved in two stages, both of which make use of Z → µµ events. Initially, the values of
the variables in the simulation are smeared and shifted to match the data. Subsequently,
weights are applied to the simulated events to correct for small residual differences in
the efficiencies of the selection requirements between data and simulation. In order for the
impact parameter modelling to be reliably transported between Z andW boson events, the
PVs are refitted with all signal muons removed. The three-dimensional impact parameter
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Figure 6. Weighted pT spectra of the samples of (left) positively and (right) negatively charged
hadron candidates. The fit results are overlaid.

is then decomposed into its individual components and these are smeared according to a
normal distribution in six intervals in η and seven intervals in φ. A similar procedure is used
to improve the modelling of the track fit χ2 distribution. These corrections are followed
by smaller corrections applied to account for the efficiencies of the impact parameter and
track χ2 requirements. The efficiency weights are also determined with Z → µµ events and
are typically within a few per mille from unity. Neither the statistical uncertainties nor
reasonable variations in the η and φ interval schemes are found to have significant impact
on the mW value. Therefore, no systematic uncertainty is considered.

6 QCD background model

A small background from in-flight decays of pions and kaons into muons is present in the
sample of W → µν boson candidates. This background cannot be modelled with high
enough accuracy using full detector simulation. It is therefore modelled using a sample of
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high-pT tracks, selected by dedicated triggers without muon identification requirements.
The W boson selection requirements are applied to this sample but with the muon identi-
fication requirement inverted. The resulting sample is verified in simulation to be a pure
sample of charged hadrons, composed of roughly 60% pions, 30% kaons and 10% pro-
tons, produced directly at the pp interaction vertex. In particular, the impact parameter
requirements suppress the heavy flavour hadron content to a negligible level.

The probability of an unstable hadron of mass m, lifetime τ , and momentum p to
decay within a detector of length d is

1− exp
(
−md
τp

)
≈ md

τp
. (6.1)

Similar kinematic distributions are predicted for pions, kaons and protons in the simulation.
Therefore, the in-flight decay background can be modelled by the data with weights of 1/p.
The majority of the in-flight decays occur outside the magnetic field region and therefore
have minimal influence on the measured momentum. The absolute normalisation is not
needed because this background component is allowed to vary freely in the mW fit.

The weighted pT spectra for both charges are shown in figure 6 and are overlaid with
best-fit functions of the form [41], (

1 + pT
a

)−n
, (6.2)

where a and n are empirical parameters that are determined in the fits. In addition to
giving a good fit to the data, this functional form is verified to describe the pion and kaon
spectra in simulation. The fit functions are sampled to generate background candidates
for inclusion in the mW fit. A charge asymmetry of O(10%), favouring positively charged
hadrons due to the pp initial state, is observed and is included in the sampling.

The uncertainty in the hadronic background model is dominated by systematic sources.
Three different systematic uncertainties, which are combined in quadrature, are assessed.
The first accounts for assuming that the data sample can be treated as containing a single
hadron species. The second accounts for a small bias from the inverted muon identification
requirements. The third accounts for a small dependence on the range of pT values used
in the fits to eq. (6.2). The combined systematic uncertainty is 2MeV.

7 Modelling W and Z boson production

The emulation of different mW hypotheses is achieved by assigning event weights based on
a relativistic Breit-Wigner function with a mass-dependent width. Further weight-based
corrections are also applied to simulated W and Z boson events to improve upon the
limited formal accuracy of Pythia. A weighting to model QCD effects is applied in the
basis of eq. (1.2). A further weighting to model QED effects is applied as a function of
the logarithm of the relative energy difference between the dimuon system before and after
QED final-state radiation.

Higher order electroweak corrections are not included in the model. Instead, an uncer-
tainty of 5MeV is attributed to these missing corrections using samples of events generated
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using POWHEGBoxV2 [42–44] with and without electroweak corrections. These events
are interfaced with Pythia and the uncertainty is evaluated using the data challenge
methods described in section 8.1.

7.1 Candidate QCD programs

Five software programs, or combinations of these, are evaluated as potential candidates for
the weighting of the simulated W and Z boson events.

1. Pythia: events are generated using Pythia version 8.235 [17] with several values of
the intrinsic transverse momentum (kintr

T ) of the initial state partons and αs, closely
following the work of ref. [19]. The NNPDF23_lo_as_0130_qed [45] PDFs are used
in the event generation. The events are weighted using the methods described in
ref. [46] to the NNPDF31_lo_as_0118 [47] and CT09MCS [48] PDFs.

2. POWHEGPythia: events are generated using POWHEGBoxV2 [49] with the
NNPDF31_nlo_as_0118 PDFs and are subsequently showered with Pythia version
8.244 [17]. The event generation with POWHEGBoxV2 is repeated with different
values of αs. The default Monash [18] tune of Pythia is used but event samples
are generated with different values of kintr

T , and with the same value of αs as used in
POWHEGBoxV2. This results in a grid of predictions with different αs and kintr

T
values.

3. POWHEGHerwig: events are generated equivalently to those from
POWHEGPythia but substituting Pythia with Herwig [50] for the parton-shower
stage.

4. Herwig: these events are also equivalent to those of POWHEGPythia except that
the hard process and the parton shower are both fully implemented in Herwig [50].

5. DYTurbo: the cross-sections and angular coefficients are computed at O(α2
s) accu-

racy using DYTurbo [51] with the NNPDF31_nnlo_as_0118 PDFs [47]. Predictions
for the unpolarised cross-section include resummation to next-to-next-to-leading log-
arithms and are produced with several values of the g parameter that controls non-
perturbative effects.

Histograms of the unpolarised cross-section in eq. (1.2) and the angular coefficients are
produced for all combinations of programs and tuning parameters. These histograms,
which are used to determine event weights, have intervals in the transverse momentum,
rapidity and mass of the vector boson.

7.2 QCD weighting and transverse momentum model

The simulated samples described in section 2 can be weighted in the full five-dimensional
phase space of vector boson decays, according to eq. (1.2), to provide predictions based
on different models of QCD. For the unpolarised cross-section such weights are found by
interpolating between the generated histograms described above.
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A detailed measurement of the angular coefficients in pp→ Z → µµ at
√
s = 8TeV was

reported by ATLAS [52]. Predictions based on parton showers are generally found to be
unreliable in predicting the angular coefficients. However, the ATLAS data are reasonably
well described by O(α2

s) predictions from DYNNLO [53], on which DYTurbo is based.
An exception is the difference between A0 and A2, for which O(α2

s) is effectively only
leading order, but the present measurement has a negligible sensitivity to this particular
detail. Hereafter DYTurbo is used in the modelling of the angular coefficients.

Since the prediction of each angular coefficient relies on separate numerator and de-
nominator calculations, there are four independent renormalisation and factorisation scales
that are varied to assess the uncertainty associated with missing higher orders in αs. In
ref. [54] it is argued that fully correlating the scale variations between the numerator and
denominator, which leads to a large degree of cancellation, may result in inadequate un-
certainty coverage. The present analysis therefore follows the recommendation of ref. [54],
which is to vary the four scales independently by factors of 1

2 and 2 with the constraint
that all ratios that could be constructed from the four scales are between 1

2 and 2. This
results in an envelope of 31 values of mW that sets the associated uncertainty.

Figure 7 compares the pZT distribution in the data with the Pythia simulation weighted
to the different unpolarised cross-section predictions before and after tuning them to the
data. Table 2 lists the χ2 and the preferred parameter values for the fits with each model.
DYTurbo gives a reasonable prediction but overestimates the number of events with
large pZT even with tuning of the g parameter. A reasonable initial description is pro-
vided by Pythia, which is to be expected since it has already been tuned to pZT data.
The POWHEGPythia, POWHEGHerwig and Herwig predictions poorly describe the
shape of the pZT distribution with their default values of αs = 0.118. Their descriptions of
the pZT distribution are greatly improved when their αs and kintr

T parameters are tuned. Of
these programs, POWHEGPythia gives the most reliable description of the data, with
a preferred αs value of around 0.125. Large values of αs are also favoured by other mod-
els and in other studies of the pZT distribution [55].5 Therefore, POWHEGPythia with
freely varying αs and kintr

T values is selected for the default fitting model. The systematic
uncertainty in the description of the pZT and pWT shapes is evaluated with alternative pre-
dictions from: Pythia with the CT09MCS and leading-order NNPDF31 PDFs; Herwig
and POWHEGHerwig with the next-to-leading-order NNPDF31 PDFs. The envelope
of shifts in mW obtained from using these alternative descriptions is found to be 11MeV,
providing the dominant contribution to the systematic uncertainty associated with the
modelling of the vector boson transverse momentum.

All of the event generator predictions can be weighted at leading-order to emulate event
generation based on different PDFs. As discussed in ref. [46] this weighting is not com-
pletely valid for events generated at next-to-leading order. Since POWHEGPythia allows
in situ computation of next-to-leading order PDF weights, it is possible to directly estimate
the inaccuracy of the leading-order approximation. With five NNPDF31_nlo_as_0118 repli-

5The spread in αs values between the different models also means that this fit result should not be
interpreted as a precise and accurate determination of the value of αs.
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Figure 7. Distributions of pZ
T (left) before and (right) after the fit for the different candidate

models of the unpolarised cross-sections. The fit only considers the region pZ
T < 30GeV, indicated

by the dashed vertical line. In the lower panels the ratios with respect to the POWHEGPythia
model are shown.

cas it is verified that the differences between the leading-order and next-to-leading-order
weighting approaches are smaller than 1MeV in the mW fit.

Since it is computationally expensive to determine fully the PDF uncertainty in the
DYTurbo angular coefficients, the variations in the next-to-leading order PDFs used in
the POWHEGPythia model of the unpolarised cross-section are coherently propagated to
the angular coefficients. The DYTurbo angular coefficients are shifted by the differences
in values predicted by POWHEGPythia in the default (NNPDF31_nlo_as_0118) PDF
compared to the target PDF in the uncertainty assessment.

Separate measurements of mW based on the NNPDF3.1 [47], CT18 [56] and
MSHT20 [57] PDF sets, each with their own PDF uncertainty estimate, are reported.
However, since these three sets are based on almost the same data, the central result of
this analysis is a simple arithmetic average of the three results, under the assumption that
the three PDF uncertainties are fully correlated.

7.3 Angular scale factors

The uncertainties in the angular coefficients from DYTurbo would lead to an uncertainty
of O(30)MeV in mW , with the dominant contribution attributed to the A3 coefficient. The
importance of A3 can be understood by inspection of eq. (1.2): an increase in A3 enhances
the cross-section for events with large sinϑ and cosϕ. The contribution to the muon
pT from the W boson mass scales with sinϑ while the contribution from the transverse
momentum of the W boson scales with ± cosϕ for W± boson production. By allowing a
single A3 scaling factor, which is shared between the W+ and W− processes, to vary freely
in the mW fit the angular coefficient uncertainty is reduced by roughly a factor of three,
to 10MeV. Effectively the resulting model only depends on DYTurbo for the kinematic
dependence of A3, while all other coefficients are fully modelled by DYTurbo.
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Program χ2/ndf αs

DYTurbo 208.1/13 0.1180 g = 0.523± 0.047GeV2

POWHEGPythia 30.3/12 0.1248± 0.0004 kintr
T = 1.470± 0.130GeV

POWHEGHerwig 55.6/12 0.1361± 0.0001 kintr
T = 0.802± 0.053GeV

Herwig 41.8/12 0.1352± 0.0002 kintr
T = 0.753± 0.052GeV

Pythia, CT09MCS 69.0/12 0.1287± 0.0004 kintr
T = 2.113± 0.032GeV

Pythia, NNPDF31 62.1/12 0.1289± 0.0004 kintr
T = 2.109± 0.032GeV

Table 2. Results of fits of different models to the pZ
T distribution. The uncertainties quoted are

statistical, and the χ2 comparison of the different models to the data is evaluated considering only
statistical uncertainties. The right-hand column lists the fit values of the kintr

T parameter or, for
DYTurbo, the analogous g parameter. The fit with DYTurbo has one more degree of freedom
than the fits with the other models since only one tuning parameter (g) is used for DYTurbo.

7.4 Parametric correction at high transverse momentum

While POWHEGPythia is shown in section 7 to describe the pZT distribution in the
region below 30GeV, it systematically underestimates the cross-section at higher pZT. This
is expected due to the missing matrix elements for the production of a weak boson and more
than one jet. Figure 8 compares the pZT distribution in the data with the model prediction
having set αs and kintr

T to be close to the final fit values. For pZT ≥ 40GeV the model starts
to underestimate the cross-section, reaching the ten per cent level at pZT ∼ 100GeV. In the
lower panel of figure 8 the data to prediction ratio is overlaid with a function of the form

(1 + p0 + p0Erf(p1(pVT − p2)))× (1 + p3p
V
T). (7.1)

Since the universality of this correction between W and Z boson processes is not well
controlled, an uncertainty of 100% of this correction is included as an additional systematic
uncertainty associated with the vector boson pT model. This contributes an uncertainty
in the mW value smaller than 1MeV.

7.5 QED weighting

The effect of the QED final-state radiation is largely characterised by the energy difference
between the final-state lepton system before and after radiation. The logarithm of this
energy difference as described by Pythia, Herwig, and an alternative configuration of
Pythia with the final-state radiation modelled by Photos [58] is shown in figure 9. Event-
by-event weights are evaluated for the Herwig and Photos models relative to Pythia and
applied to the simulated samples used in the analysis. The default model uses the arithmetic
average of the Herwig, Photos and Pythia weights, where the Pythia weights are equal
to unity. The systematic uncertainty, amounting to 7MeV, is taken from the envelope of
mW values corresponding to each of the three models taken individually.
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Figure 8. Distribution of pZ
T compared to the POWHEGPythia model prior to the parametric

correction, which is delineated by the red line in the lower panel.
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Figure 9. Logarithm of the relative energy loss of the dilepton system due to final-state radiation
for (left) W boson events and (right) Z boson events. An energy loss of below 10−6 is considered
unresolvable and is accounted for in the underflow bin to the left of the dashed vertical line. In the
lower panel the ratio with respect to Pythia is shown.

8 W boson mass fit

ThemW value is determined through a simultaneous fit of the q/pT distribution ofW boson
candidates and the φ∗ distribution of Z boson candidates. The φ∗ variable is preferred over
pZT because it is less susceptible to several of the modelling uncertainties, while still being
sensitive to the parameters affecting the predicted pZT and pWT distributions. The φ∗ distri-
bution extends to φ∗ = 0.5 while the q/pT distribution includes two fit regions covering 28 <
pT < 52GeV. Projections of the q/pT distribution cover a wider interval with pT > 24GeV
that includes regions outside the fit. The model of both distributions is based on simulated
event samples with event-by-event weights. The fit minimises the sum of two negative log-
likelihood terms, associated with the q/pT and φ∗ distributions, that are computed using
the Beeston-Barlow-Lite prescription [59], which accounts for the finite size of the simulated
samples. The sum of these terms multiplied by a factor of two is denoted as the χ2.
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The φ∗ distribution is modelled including background contributions from Z → ττ and
top quarks. The model of the q/pT distribution includes the dominant W → µν signal
component and several background sources. The largest background, with a fraction of
around 7 × 10−2, is attributed to Z → µµ, which is simulated with true invariant masses
above 20GeV. The W → τν and hadronic background components each contribute at the
O(10−2) level. A combination of rarer background sources including Z → ττ , top quarks,
vector boson pairs, and heavy flavour hadrons gives a total contribution below 10−2.

The fractions of the W+ and W− signal components and the hadronic background are
allowed to vary freely. The W → τν component is constrained, using the known τ → µνν̄

branching fraction [7], relative to the W → µν component. All other component fractions
are fixed relative to the observed number of Z boson candidates in the φ∗ distribution
using the fiducial cross-sections for the corresponding processes relative to that of Z boson
production. The fiducial selections for W and Z boson processes are the same as used in
measurements of the corresponding cross-sections [60]. For all other processes the fiducial
regions correspond to the requirement of a single muon in the region pT > 20GeV and
2 < η < 4.5. The measured cross-section for Z → µµ is used [38]. The cross-sections for
the rare background processes are determined using Powheg with the next-to-leading-
order NNPDF3.1 PDF sets.

The shapes of background components arising from the decay of electroweak bosons
are determined from the same models used to describe the signal component. Systematic
variations of the model used to describe W boson production therefore also simultaneously
provide systematic variations associated with the shapes of background contributions from
the decay of electroweak bosons. The uncertainty in mW from varying the predicted cross-
sections for the rarer background within their uncertainties is negligible.

The default physics model is based on the simulated samples set out in section 2,
fully weighted using a combination of POWHEGPythia and DYTurbo for the QCD
description and a combination of Pythia, Photos and Herwig for the QED description.
The fit is configured to determine the following parameters:

1. the value of mW ,

2. the fraction of W+ signal,

3. the fraction of W− signal,

4. the fraction of QCD background,

5. the value of αs for the Z boson processes (αZs ),

6. an independent αs value that is shared for the W+ and W− signals (αWs ),

7. a shared kintr
T value for all W and Z boson processes,

8. and an A3 scale factor that is shared by the W+ and W− signals.
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Figure 10. Projections of the (left) q/pT and (right) φ∗ distributions for the challenge datasets.
The four dashed vertical lines indicate the two fit regions in the q/pT distribution.

8.1 Data challenge tests

In section 7 it is concluded that POWHEGPythia describes the pZT distribution, in the
pZT ≤ 30GeV region, better than the other candidate models. It is important to demonstrate
that the fit can reliably determine mW ifW boson production is better described by one or
more of the other models. Several pseudodata samples are prepared in which the underlying
Pythia events, without detector simulation, are weighted to match the default DYTurbo
and POWHEGPythia model but with the pVT distribution modified to match an alter-
native model. The mW fit is configured with a simplified model, without background
components, using a statistically independent sample of the same Pythia events without
detector simulation. Figure 10 shows the resulting q/pT and φ∗ distributions of these pseu-
dodata samples. Variations of up to five per cent are seen in the shape of the φ∗ distribution.
Within the fit regions in q/pT variations of several per cent can be seen, while the variations
exceed O(10−1) in the high-pT control region. However, the fit model is able to absorb these
differences in the αs and kintr

T nuisance parameters with variations in the preferredmW value
of no more than 10MeV. Table 3 lists the results of the fits to these pseudodata samples.
The observed variation inmW is consistent with the uncertainty due to modelling the vector
boson transverse momentum distribution in the fit to LHCb data, as discussed in section 7.

8.2 Fit results

The fit to the data, with the NNPDF31_nlo_as_0118 PDF set, returns a total χ2 of 105 for
102 degrees of freedom. Figure 11 compares the q/pT and φ∗ distributions from the data
with the fit model overlaid. The model is in good agreement with the data within the fit
ranges but it underestimates the high-pT control region of the q/pT distribution by up to
ten per cent. This underestimation is within the band of modelling uncertainty, which is
dominated by the high-pVT parametric correction in that region. The values of the eight
parameters determined from the fit are listed in table 4. The αs value for the W boson
events is roughly 0.002 higher than for the Z boson events. If the fit is configured with a
shared αs value for the W and Z boson events the value of mW changes by +39MeV but
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Data config. χ2
W χ2

Z δmW [MeV] αZ
s αW

s A3 scaling
POWHEGPythia 64.8 34.2 — 0.1246± 0.0002 0.1245± 0.0003 0.979± 0.029
Herwig 71.9 600.4 1.6 0.1206± 0.0002 0.1218± 0.0003 1.001± 0.029
POWHEGHerwig 64.0 118.6 2.7 0.1206± 0.0002 0.1226± 0.0003 0.991± 0.029
Pythia, CT09MCS 71.0 215.8 −2.4 0.1239± 0.0002 0.1243± 0.0003 0.983± 0.029
Pythia, NNPDF31 66.9 156.2 −10.4 0.1225± 0.0002 0.1223± 0.0003 0.967± 0.029
DYTurbo 83.0 428.5 4.3 0.1305± 0.0001 0.1321± 0.0003 0.982± 0.028

Table 3. Fit results with the same default fit model used for the templates but with different
models used for the pseudodata. The POWHEGPythia pseudodata correspond to αs = 0.125
and kintr

T = 1.8GeV. The Herwig and POWHEGHerwig pseudodata correspond to αs = 0.136
and kintr

T =1.3GeV. The Pythia pseudodata correspond to αs = 0.127 and kintr
T = 2.7GeV. The

DYTurbo pseudodata correspond to αs = 0.118 and g = 1GeV2. The contributions to the total
χ2 from the q/pT and φ∗ distributions are denoted χ2

W and χ2
Z , respectively. The shift in the

mW value with respect to the POWHEGPythia pseudodata is denoted δmW . The uncertainties
quoted are statistical.

Parameter Value
Fraction of W+ → µ+ν 0.5288 ± 0.0006
Fraction of W− → µ−ν 0.3508 ± 0.0005
Fraction of hadron background 0.0146 ± 0.0007
αZs 0.1243 ± 0.0004
αWs 0.1263 ± 0.0003
kintr

T 1.57 ± 0.14GeV
A3 scaling 0.975 ± 0.026
mW 80362 ± 23MeV

Table 4. Values of the parameters determined in the mW fit with the NNPDF31_nlo_as_0118 PDF
set. The uncertainties quoted are statistical.

the χ2 is increased by more than 20 units, which strongly favours the configuration with
independent αs values. Furthermore, similar variations between the αs values for W and
Z boson events are found in the data challenge tests, as shown in table 3. The A3 scaling
factor is statistically consistent with unity, which suggests that the O(α2

s) predictions from
DYTurbo, with the central scale choices, are compatible with the data.

Figure 12 (left) shows the projection of the q/pT distribution in the Z boson sample,
where the final state muon is only included if it satisfies theW boson selection requirements.
The model is in good agreement with the data. Figure 12 (right) shows that the Z boson
rapidity distribution is well described by the model.
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Figure 11. Distributions of (left) q/pT and (right) φ∗ compared to the model after the mW fit.
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Figure 12. Projections of the (left) q/pT and (right) rapidity distributions for the Z boson selection.
A final state muon is only included in the q/pT distribution if it satisfies the W boson selection
requirements.

9 Systematic uncertainties and cross-checks

Table 5 lists the PDF uncertainties evaluated for fits based on the NNPDF3.1, CT18 and
MSHT20 PDF sets. The mW values agree within an envelope of 12MeV, which supports
the choice to report an arithmetic average of the three. With respect to the central value
obtained with the NNPDF31 PDFs, the mW values obtained with the CT18 and MSHT20
PDF sets differ by −12MeV and −11MeV, respectively. The uncertainties are evaluated
according to the specific methods for the three groups. The NNPDF3.1 uncertainty is
evaluated as the RMS of mW values according to 100 replicas, whereas the other two sets
use fixed numbers of eigenvectors. The CT18 uncertainty is corrected from 90% confidence
level (CL) to 68% CL to be consistent with all other uncertainties in this analysis. For
each PDF set, the uncertainty from the replica variations is added in quadrature to the
uncertainty from variations in the αs used in the PDF fits. Values of 0.116 < αs < 0.120 are
considered, and the uncertainty in mW is taken as half of the absolute difference between
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Set σPDF,base [MeV] σPDF,αs [MeV] σPDF [MeV]
NNPDF3.1 8.3 2.4 8.6
CT18 11.5 1.4 11.6
MSHT20 6.5 2.1 6.8

Table 5. Uncertainties for the NNPDF3.1, CT18 and MSHT20 sets. The contributions from the
PDF uncertainty with fixed αs and from the αs variation are quoted separately as is their sum in
quadrature, which defines the total uncertainty for each PDF set.

Source Size [MeV]
Parton distribution functions 9
Theory (excl. PDFs) total 17
Transverse momentum model 11
Angular coefficients 10
QED FSR model 7
Additional electroweak corrections 5

Experimental total 10
Momentum scale and resolution modelling 7
Muon ID, trigger and tracking efficiency 6
Isolation efficiency 4
QCD background 2

Statistical 23
Total 32

Table 6. Contributions to the systematic uncertainty in mW . Negligible contributions below 1MeV
are not listed.

the corresponding shifts in mW [61].6 The PDF uncertainty on the arithmetic average of
the three results is taken as the arithmetic average of the three uncertainties, in accordance
with the assumption that the uncertainties are fully correlated.

Table 6 lists each contribution to the systematic uncertainty in the final result, af-
ter averaging results based on the three PDF sets. The systematic uncertainty is split
into three orthogonal components that are combined in quadrature. The uncertainty due
to the description of the parton distribution functions is 9MeV. The remaining theory
uncertainty in the modelling of W and Z boson production is 17MeV, as described in sec-
tion 7, with the largest contribution arising from variations of the transverse momentum
model. The experimental uncertainty is 10MeV, with the different contributions discussed
in sections 4, 5, and 6.

6The variations in αs are larger than the ±0.0015 variations recommended in ref. [61] but this choice
avoids further ad hoc scaling.
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Independently of the systematic uncertainty evaluation, several cross-checks of the
measurement are performed.

• Consistency of orthogonal subsets: the data and simulation are split into or-
thogonal subsets by magnet polarity, the product of the muon charge and polarity,
and the φ and η of the muon in the W boson selection. These results are reported
in table 7. Considering the statistical uncertainties only, all differences are within, or
just outside, two standard deviations, which was predefined as a criterion for this test.

• Fit range: the minimum and maximum pT of the fit range in the q/pT distribution
are varied around their default values of 28GeV and 52GeV, respectively. The results
are reported in table 8. Considering the variations in the statistical uncertainties in
mW this test shows that the fit results are stable with respect to variations in the
fit range.

• Fit model freedom: the choice of parameters that are determined in the fit is
varied and the results are reported in table 9. The default fit determines one αs
parameter for the Z processes and a second that is shared between W+ and W−

processes. With three αs parameters there is only a small change in mW and the
fit quality. The default fit determines a single floating kintr

T parameter that is shared
among all three processes. Neither the mW value nor the χ2 are strongly affected
by allowing two (with one shared between the W+ and W− processes) or three kintr

T
parameters to vary freely. If the A3 scaling factor is fixed to unity the value of mW

shifts by 7MeV and the χ2 increases by a few units. In summary the mW fit seems
to be rather insensitive to all of these variations, except that the data strongly prefer
independent POWHEGPythia tunes for the W and Z boson production processes.

• Use of NNLO PDF sets: the PDF set used for the analysis is varied from
NNPDF31_nlo_as_0118 to NNPDF31_nnlo_as_0118. The shift in mW is 1MeV.

• Separate mW values for W + and W − bosons: an additional parameter is
included in the fit, allowing for separate values of mW for W+ and W− bosons. This
mass difference is found to be consistent with zero within one standard deviation.

• W -like measurement of the Z boson mass: the same methods are applied to
the Z boson sample alone, to perform a W -like measurement of the Z boson mass.
The values measured with positive and negatively charged muons agree within one
standard deviation and their average is consistent with the PDG average [7] within
one standard deviation.

10 Summary and conclusion

This paper reports the first measurement ofmW with the LHCb experiment. A data sample
of pp collisions at

√
s = 13TeV corresponding to an integrated luminosity of 1.7 fb−1 is

analysed. The measurement is based on the shape of the pT distribution of muons from
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Subset χ2
tot/ndf δmW [MeV]

Polarity = −1 92.5/102 —
Polarity = +1 97.3/102 −57.5± 45.4
η > 3.3 115.4/102 —
η < 3.3 85.9/102 +56.9± 45.5
Polarity × q = +1 95.9/102 —
Polarity × q = −1 98.2/102 +16.1± 45.4
|φ| > π/2 98.8/102 —
|φ| < π/2 115.0/102 +66.7± 45.5
φ < 0 91.8/102 —
φ > 0 103.0/102 −100.5± 45.3

Table 7. Fit results where the data and simulation samples are split into two orthogonal subsets.
For a given split, the first row is defined as the reference with respect to which the difference in
mW , denoted by δmW , is defined. The uncertainties quoted on δmW are statistical.

Change to fit range χ2
tot/ndf δmW [MeV] σ(mW ) [MeV]

pmin
T = 24GeV 96.5/102 +6.8 19.7
pmin

T = 26GeV 97.7/102 +9.6 20.9
pmin

T = 30GeV 102.7/102 +3.0 25.7
pmin

T = 32GeV 84.9/102 −21.6 30.8
pmax

T = 48GeV 105.3/102 −3.8 23.2
pmax

T = 50GeV 103.0/102 −2.1 23.0
pmax

T = 54GeV 96.3/102 −8.6 22.6
pmax

T = 56GeV 103.7/102 −14.3 22.4

Table 8. Fit results with variations in the fit range around the default pmin
T = 28GeV and pmin

T =
52GeV. The second column lists the χ2 values, the third column lists the shifts in mW with respect
to the default fit and the third column lists the statistical uncertainties in mW .

Configuration change χ2
tot/ndf δmW [MeV] σ(mW ) [MeV]

2→ 3 αs parameters 103.4/101 −6.0 ±23.1
2→ 1 αs and 1→ 2 kintr

T parameters 116.1/102 +13.9 ±22.4
1→ 2 kintr

T parameters 104.0/101 +0.4 ±22.7
1→ 3 kintr

T parameters 102.8/100 −2.7 ±22.9
No A3 scaling 106.0/103 +4.4 ±22.2
Varying QCD background asymmetry 103.8/101 −0.7 ±22.7

Table 9. Fit results with variations in which physics parameters are varying freely.
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Figure 13. Measured value of mW compared to those from the ALEPH [62], DELPHI [63], L3 [64],
OPAL [65], CDF [10], D0 [11] and ATLAS [12] experiments. The current prediction of mW from
the global electroweak fit is also included.

W boson decays. A simultaneous fit of the q/pT distribution of W boson decay candidates
and of the φ∗ distribution of Z boson decay candidates is verified to reliably determine
mW . This method has reduced sensitivity to the uncertainties in modelling the W boson
transverse momentum distribution compared to previous determinations of mW at hadron
colliders. The following results are obtained

mW = 80362± 23stat ± 10exp ± 17theory ± 9PDF MeV,
mW = 80350± 23stat ± 10exp ± 17theory ± 12PDF MeV,
mW = 80351± 23stat ± 10exp ± 17theory ± 7PDF MeV,

with the NNPDF3.1, CT18 and MSHT20 PDF sets, respectively. The first uncertainty is
statistical, the second is due to experimental systematic uncertainties, and the third and
fourth are due to uncertainties in the theoretical modelling and the description of the PDFs,
respectively. Treating the three PDF sets equally results in the following arithmetic average

mW = 80354± 23stat ± 10exp ± 17theory ± 9PDF MeV.

This result agrees with the current PDG average of direct measurements [7] and the
indirect prediction from the global EW fit [6], and is compared to previous measurements
in figure 13. This measurement also serves as a first proof-of-principle of a measurement
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of mW with the LHCb experiment. In ref. [66] it was demonstrated that the PDF
uncertainty in a measurement of mW by LHCb can be strongly reduced by using in
situ constraints and by fitting the doubly differential distribution of pT and η, similar
to the measurement by the CMS Collaboration [67], instead of the singly differential
pT distribution. An approximately three times larger data sample is already available
for analysis but particular attention should be paid to reducing the dominant source of
systematic uncertainty, which is the modelling of W boson production.
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