6. Федорова Е. Б. Современное состояние и развитие мировой индустрии сжиженного природного газа: технологии и оборудование. – 2011.

ФОРМИРОВАНИЕ УГЛЕВОДОРОДНОГО СОСТАВА ТЯЖЕЛЫХ НЕФТЯНЫХ ФРАКЦИЙ С ПОМОЩЬЮ МЕТОДА СТРУКТУРНО-ОРИЕНТИРОВАННОГО ОБЪЕДИНЕНИЯ Григораш М.С., Чузлов В.А.

Научный руководитель профессор Е.Н. Ивашкина Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Тяжелые нефтяные фракции, как и непосредственно нефть, являются многокомпонентными системами углеводородов разных классов с различной структурой. Описание таких смесей может быть осуществлено с помощью группировки углеводородов в широкие категории классов соединений или интервалов кипения с упрощённым представлением схемы превращений в процессе переработки. Детальное представление молекул углеводородов усложняет процесс описания химических превращений, однако дает возможность оценить свойства и состав сырья и продуктов реакционного процесса, определить выходы ключевых компонентов или получить фракционный состав смеси углеводородов.

Метод структурно-ориентированного объединения (SOL) [4] позволяет охарактеризовать молекулу углеводорода с помощью вектора из 22 структурных приращений. Структурные приращения представляют собой ключевые структурные особенности, которые может иметь органическое вещество: бензольное или нафтеновое кольцо, алкильная и алифатическая цепь, наличие серы, азота или кислорода. Однако разные молекулы с одинаковым набором структурных групп, то есть структурные изомеры, будут представлены как одно и то же вещество, например, 1,2-диэтилбензол будет идентичен 1-метил, 1-пропил бензолу, но в то же время данные вещества отличаются от бутилбензола, который будет иметь другой вектор.

Данный вектор обеспечивает основу для создания схемы превращений и кинетических уравнений, включающих тысячи компонентов и многие тысячи реакций. Описание хода реакций должно регулироваться определённым набором правил, который составляется для определенного химического процесса.

Также данный метод обеспечивает определение различных параметров молекул благодаря комбинированию с методами определения физико-химических свойств, включая температуру кипения, критические параметры, энтальпию и другие.

Цель данной работы — составить модель формирования углеводородного состава с помощью метода структурно-ориентированного объединения и определения основных характеристик как индивидуальных углеводородов, так и смеси веществ.

Смесь углеводородов может состоять из огромного количества индивидуальных веществ разного строения, однако для представления молекул требуется лишь небольшой набор структурных групп: для парафинов это алифатическая цепь, нафтенов — нафтеновое кольцо и др. Вид и характеристика каждого из приращений представлен в таблице.

Сипуниурина ириранганна и их характариатика

Таблица

Структурные приращения и их характеристика			
Структурное приращение	Обозначение	Характеристика	
Ароматические	A6	Ароматическое (бензольное) кольцо	
приращения	A4	Приращение к ароматическому кольцу, для создания	
	A2	конденсированных многокольцевых структур Ароматическое приращение для представления многокольцевой структуры (пирен)	
Нафтеновые	N6	Нафтеновое кольцо (циклогексан)	
приращения	N5	Нафтеновое кольцо (циклопентан)	
	N4	Дополнительные приращения нафтенового кольца, которые должны	
	N4	быть присоединены к нафтеновым или ароматическим кольцевым	
	N2	структурам	
	N1		
Приращения алкильной цепи	R	Количество атомов углерода в алкильной цепи или количество атомов углерода в алифатических молекулах	
Разветвления алкильной цепи	br	Число разветвлений в алкильной цепи или алифатической молекуле	
Наличие боковой цепи у кольчатых УВ	me	Количество алкильных цепей у нафтеновых или ароматических углеводородов	
Степень ненасыщенности	IH	Если колец нет, IH = 1 для парафинов, IH = 0 для моноолефинов и IH = -1 для диолефинов. Если присутствуют нафтеновые кольца, IH = -1 указывает на циклоолефин.	

СЕКЦИЯ 8. ХИМИЧЕСКИЕ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ МИНЕРАЛЬНОГО И ТЕХНОГЕННОГО СЫРЬЯ

Продолжение таблицы

		1 77
Бифенильный мостик	AA	Бифенильный мостик между любыми двумя кольцами (A6, N6 или N5).
Серосодержащие приращения	NS	Сера, расположенная в нафтеновом кольце или парафине и связанная с двумя атомами углерода
	RS	Сера, представляющая меркаптановую группу
Азотсодержащие приращения	AN	Азот, расположенный в ароматическом кольце с образованием пиридина или хинолина
	RN	Азот, представляющий аминовую группу
	NN	Азот, расположенный в нафтеновом кольце или парафине и связанный с двумя атомами углерода
Кислородсодержащие приращения	NO	Кислород, расположенный в нафтеновом кольце или парафине и связанный с двумя атомами углерода
	RO	Кислород, представляющий спиртовую группу
	KO	Кетоновая или альдегидная группа

Определение основных свойств углеводородов можно выполнить с помощью метода группового вклада. В этом методе молекулярная структура соединения рассматривается как набор групп трех типов: группы первого порядка, группы второго порядка и группы третьего порядка [3]. Группы первого порядка предназначены для описания широкого круга органических соединений, тогда как роль групп второго и третьего порядка заключается в предоставлении дополнительной структурной информации о молекулярных фрагментах соединений, описание которых недостаточно с помощью групп первого порядка. Таким образом, оценка выполняется на трех последовательных уровнях, где первый уровень обеспечивает начальное приближение, которое улучшается на втором уровне и дополнительно уточняется (при необходимости) на третьем уровне. Конечной целью этой многоуровневой схемы оценки является повышение точности, надежности и диапазона применения ряда важных свойств чистых компонентов.

Данным методом определяются следующие свойства: нормальная температура плавления (Тт), нормальная температура кипения (Тb), критическая температура (Тc), критическое давление (Рc) и критический молярный объем (Vc), а также стандартная энергия Гиббса (Gf), стандартная энтальпия образования (Hf), стандартная энтальпия парообразования (Hv) и стандартная энтальпия сгорания (Hfus).

Лля описания многокомпонентной системы углеводородов необходимо достигнуть универсальности расчета для различных классов углеводородов. Для этого из перечня групповых вкладов для расчета свойств парафинов, изопарафинов, гомологов циклопентана и циклогексана, ароматических углеводородов взяты групповые вклады, которые формируют структуры таких углеводородов.

Для проверки правильности расчета были взяты справочные данные о физико-химических свойствах углеводородов [6]: данные о нормальной температуре кипения, критической температуре, критическом давлении и стандартной энтальпии образования при 298 К. Для рассматриваемых углеводородов были сформированы векторы приращений, которые представляют структуру, и составлены формулы расчета физико-химических свойств на основе метода группового вклада.

Расчет некоторых параметров производится с низкой точностью, в особенности для парафинов, изопарафинов, а также для алкильных боковых цепей кольчатых углеводородов. В связи с этим групповой вклад СН2 представлен в виде зависимости от количества атомов углерода в алкильной цепи, то есть от значения структурного приращения R.

Погрешность расчета возрастают с усложнением структуры углеводородов, но все еще остается в пределах допустимых значений для каждого из проверяемых физико-химических свойств:

- 1) н-парафины до 0,43 %;
- 2) изопарафины до 0.6 %:
- 3) нафтены (циклопентан и циклогексан) до 2,5 % и 2,1 % соответственно;
- 4) ароматические углеводороды до 1,5 %.

Таким образом, с помощью подобранных групповых вкладов и формул расчета физико-химических свойств можно описать состав и свойства нефтяных фракций для дальнейшего использования в моделях переработки нефти.

Литература

- Feng S. et al. Molecular composition modelling of petroleum fractions based on a hybrid structural unit and bond-electron matrix (SU-BEM) framework // Chemical Engineering Science. - 2019. - T. 201. - C. 145-156.
- Jaffe S. B., Freund H., Olmstead W. N. Extension of structure-oriented lumping to vacuum residua // Industrial & engineering chemistry research. – 2005. – T. 44. – № 26. – C. 9840-9852.

 Marrero J., Gani R. Group-contribution based estimation of pure component properties // Fluid phase equilibria. – 2001. –
- T. 183. C. 183-208.
- Quann R. J., Jaffe S. B. Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures // Industrial & engineering chemistry research. – 1992. – T. 31. – № 11. – C. 2483-2497.
- Tian L. et al. Building a kinetic model for steam cracking by the method of structure-oriented lumping // Energy & fuels. -2010. – T. 24. – № 8. – C. 4380-4386.
- Никольский Б. П. Справочник химика. СПБ. Химия. 1996 1071 с.