СТРУКТУРНО-ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ОБРАЗЦЕ ИЗ ТИТАНОВОГО СПЛАВА ТІ-6AL-4V, ПОЛУЧЕННОМ ПРОВОЛОЧНОЙ АДДИТИВНОЙ ТЕХНОЛОГИЕЙ, ПРИ ГАЗОФАЗНОМ НАВОДОРАЖИВАНИИ

<u>К. Д. КАМЕЛИНА</u> Томский политехнический университет E-mail: kdk11@tpu.ru

В последнее время большое распространение получил метод аддитивных технологий (АТ), позволяющий производить изделия из металлов, - электронно-лучевое сплавление. В качестве сырья для производства образцов методами АТ перспективными материалами могут быть сплавы титана, в частности сплав Ti-6Al-4V. Стоит вопрос об использовании изделий, полученных АТ, в средах, насыщенных водородом. Как известно, взаимодействие титана с водородом приводит к охрупчиванию материала. Исследования на эту тему уже проводились с традиционно полученными образцами. Образцы, полученные АТ из сплавов титана, по своим свойствам отличаются от образцов, полученных традиционно [1]. Предполагается, что изделия из Ti-6Al-4V, полученные АТ, под воздействием водорода также будут обладать иными свойствами. Целью работы является исследование структурно-фазовых превращений в образце из титанового сплава Ti-6Al-4V, полученном проволочной аддитивной технологией, при газофазном наводораживании.

Брусок из сплава Ti-6Al-4V с размерами 18 мм \times 12 мм \times 60 мм был получен электроннолучевым плавлением проволоки диаметром 1,5 мм в вакууме $1,3 \times 10^{-3}$ Па электронной пушкой с плазменным катодом при ускоряющем напряжении 30 кВ, ток пучка составлял 46 мА. Подача проволоки осуществлялась со скоростью 2 м/мин под углом 35° к поверхности подложки из 16X18H10T. Методом электроискровой резки из бруска был вырезан образец с размерами 5 мм \times 5 мм \times 0,1 мм.

Наводораживание образца Ti-6Al-4V происходило при температуре 450 °C и длилось 96 минут. Использовалась высокотемпературная камера рентгеновского дифрактометра Shimadzu XRD 7000S.

Массовую долю водорода в образце после высокотемпературного насыщения измеряли методом экстракции водорода при нагреве в потоке инертного газа-носителя на установке LECO RHEN-602.

Образец исследован до и после газофазного наводораживания.

Микроструктура образца Ti-6Al-4V до наводораживания состоит из первичных β зёрен неравноосной формы. Поперечные их размеры варьируются в пределах 120–175 мкм, продольные – 200–400 мкм (рисунок 1, а). Внутри первичных зерен β-фазы наблюдаются пластины α-Ti, поперечные размеры которых достигают 2 мкм, а продольные – 35 мкм (рисунок 1, б). По границам пластин наблюдаются прослойки остаточной β-фазы титана.

Рисунок 1. Оптические изображения зеренной структуры образца титанового сплава Ti-6Al-4V до (a, б) и после наводораживания при температуре 450 °C (в, г)

Зёренная структура образца после наводораживания стала более неоднородной, размеры первичных β зёрен увеличились до 230–300 мкм в поперечном направлении и 330–570 мкм в

продольном (рисунок 1, в). Размеры пластин α-Ті при этом, исходя из металлографии, изменились несущественно (рисунок 1, г).

Элементный анализ состава аддитивно полученного образца из сплава Ti-6Al-4V не выявил наличия в нём примесей соответствует ГОСТу (таблица 1). Необходимо отметить, что присутствие небольшого содержания железа допускается в сплаве Ti-6Al-4V [2].

Образец	Обнаруженные фазы	Содержание фаз, объем.	Элементный состав, масс. %				HV
		%	Al	V	Fe	Ti	
Ti-6Al-4V	α-Ti	94,5	6,7	4,6	0,1	88,6	408
	β-Τί	5,5					

Таблица 1 – Фазовый и химический состав, а также твёрдость образца Ti-6Al-4V

Методом рентгеноструктурного анализа обнаружено, что образец титанового сплава Ti-6Al-4V до наводораживания характеризуется выраженной текстурой в направлении (101) (рисунок 2). Объёмная доля остаточной β-фазы титана составляет 5,5 %.

Рисунок 2. Дифрактограмма исходного образца Ti-6Al-4V

При наводораживании, после 28-й минуты насыщения водородом начались фазовые переходы, приводящие к снижению интенсивности пиков α -Ti. Наблюдался пик переходной фазы α ''-Ti (30–37 мин); после 37 минут наводораживания, так как водород является β -стабилизатором, полностью исчезли пики α -Ti и увеличилась интенсивность пика (110) β -Ti. На 52-й минуте насыщения водородом количество водорода в сплаве превысило предел растворимости, что привело к образованию химического соединения TiH₂ (рисунок 3).

Рисунок 3. Дифрактограммы образца Ti-6Al-4V, измеренные в процессе наводораживания при температуре 450 °C

Массовая доля водорода в образце после высокотемпературного насыщения составила 3,4 %.

Проведенные с помощью просвечивающей электронной микроскопии исследования выявили наличие в образце, подвергнутом наводораживанию при температуре 450 °C в течение 96 минут, более мелких кристаллитов предположительно α фазы (рисунок 4, а). На рисунке 4 (б, в) представлены темнопольные изображения α -фазы титана с ГПУ решёткой с межплоскостным расстоянием 2,55 Å (100) и β -фазы титана с ОЦК решёткой с межплоскостным расстоянием 0,87 Å (123). Кроме того, обнаружено присутствие гидрида титана в насыщенном водородом образце. Межплоскостное расстояние структуры гидрида титана, темнопольное изображение которого представлено на рисунке 4, г составляет 1,58 Å (220).

Рисунок 4. ПЭМ-изображения в светлом поле (а) и тёмном поле (б-г) образца Ti-6Al-4V, подвергнутого наводораживанию при температуре 450 °C. Изображения в тёмном поле были сняты в рефлексах 100 α-Ti (б), 123 β-Ti (в) и 200 TiH₂ (г)

Твёрдость образца до наводораживания составляла 4,0±0,1 ГПа, после наводораживания стала достигать 1203 HV, при этом образец стал более хрупким, что может быть обусловлено водородным охрупчиванием [3].

На основе проделанной работы сделаны следующие выводы:

1. Выявлено, что насыщение водородом образца Ti-6Al-4V, полученного проволочной аддитивной технологией, привело к увеличению первичных зёрен β-фазы титана. Их поперечные размеры при этом увеличились от 120–175 мкм до 230–300 мкм, а продольные – от 200–400 мкм до 330–570 мкм.

2. Выявлены закономерности фазовых превращений, развивающихся в образце Ti-6Al-4V, полученном проволочной аддитивной технологией, в процессе насыщения водородом при температуре 450°C. Показано, что после 28 минут наводораживания наблюдается постепенное исчезновение фазы α -Ti, появление промежуточной фазы α ''-Ti, и последующее образование фазы β -Ti. Наводораживание в течение 52 минут приводит к исчезновению α -Ti, α ''-Ti и β -Ti фазы и возникновению гидрида титана.

3. Методом просвечивающей электронной микроскопии подтверждено наличие гидрида титана в образце Ti-6Al-4V, полученном проволочной аддитивной технологией, после наводораживания.

4. Показано, что вследствие наводораживания в образце существенно повышается твёрдость (от 408 HV до 1203 HV). При этом образец, насыщенный водородом, очень хрупок.

Список литературы

1. Казанцева Н.В., Крахмалев П.В., Ядройцева И.А., Ядройцев И.А. Лазерная аддитивная 3D-печать титановых сплавов: современное состояние, проблемы, тенденции // Физика металлов и металловедение. – 2021. – № 1. – С. 8–30.

2. ГОСТ 19807-91 Титан и сплавы титановые деформируемые. Марки: Межгосударственный стандарт: дата введения 2012-07-01 // Комитет стандартизации и метрологии. Изд. Официальное.

3. Колачев Б.А. Водородная хрупкость цветных металлов. – М.: Металлургия, 1996. – 256 с.