ПРИ УСТАНОВИВШЕМСЯ СИНУСОИДАЛЬНОМ РЕЖИМЕ ПРЕОБРАЗОВАНИЯ НЕЛИНЕЙНЫХ ЦЕПЕЙ

Г. Е. ПУХОВ и С. П. АМОСОВА

вступление

Ниже рассматривается графоаналитический метод расчета электрических цепей с так называемыми инерционными нелинейными элементами (термосопротивлениями и т. п.), наличие которых не ведет к появлению достаточно заметных гармоник токов и напряжений, вследствие чего режим цепи можно считать довольно близким к синусоидальному. Идея метода по существу совпадает с идеей метода преобразования (трансфигурации), применяемого при расчетах линейных цепей.

Свойства нелинейных двухполюсников, составляющих цепь, будем описывать при помощи двух характеристик: вольтамперной U = U(I) и фазовоамперной $\varphi = \varphi(I)$, где U и I -действующие (эффективные) значения напряжения и тока данного двухполюсника, а φ - угол сдвига фаз между ними. Характеристики U(I) и $\varphi(I)$ могут быть сняты опытным путем.

Режим цепи с постоянными токами и напряжениями можно рассматривать как синусоидальный при условии, что период синусоид стремится к бесконечности. В этом случае свойства двухполюсника определяются только одной вольтамперной характеристикой.

1. Последовательное соединение нелинейных двухполюсников

Условимся отсчитывать фазовые углы φ_1 , $\varphi_2 \dots \varphi_n$ от вектора тока к векторам напряжений двухполюсников (фиг. 1 и 2), причем углы будем считать положительными, если напряжение по фазе опережает ток (на фиг. $2 < \varphi_1$ — положителен, а остальные — отрицательные). Из векторной

диаграммы видим, что вольтамперная и фазовоамперная характеристики следующим образом выражаются через характеристики соответствующих двухполюсников:

$$U(I) = \sqrt{\left[\sum_{\kappa=1}^{n} U_{\kappa}(I) \cos \varphi_{\kappa}(I)\right]^{2} + \left[\sum_{\kappa=1}^{n} U_{\kappa}(I) \sin \varphi_{\kappa}(I)\right]^{2}}$$
(1.1)

$$\varphi(I) = \operatorname{arctg} \frac{\sum_{\kappa=1}^{\kappa=1} U_{\kappa}(I) \sin \varphi_{\kappa}(I)}{\sum_{\kappa=1}^{\kappa} U_{\kappa}(I) \cos \varphi_{\kappa}(I)}, \qquad (1.2)$$

151

где $U_{\kappa}(I)$ и $\varphi_{\kappa}(I)$ — вольт- и фазовоамперная характеристики к-того двухполюсника.

Расчет цепи, состоящей из последовательно соединенных нелинейных двухполюсников, на основании приведенных зависимостей, производится в следующем порядке:

1. Имея вольт- и фазовоамперные характеристики составляющих цепь двухполюсников, по формулам (1.1) и (1.2) строятся вольт- и фазовоамперная характеристики эквивалентного двухполюсника U(I) и $\varphi(I)$.

2. Зная приложенное к цепи напряжение, по характеристикам U(I) и $\varphi(I)$ легко найти ток цепи и угол сдвига фаз между током и внешним напряжением.

3. По найденному в пункте 2 значению тока и вольт-и фазовоамперным характеристикам находятся напряжения на составляющих двухполюсниках и углы сдвига фаз между напряженнями и током цепи.

152

В случае цепи с постоянными токами и напряжениями выражение (1.1) упрощается и принимает вид

$$U(I) = \sum_{\kappa=1}^{n} U_{\kappa}(I), \qquad (1.3)$$

так как углы $\varphi_{\kappa} = 0$.

Эту зависимость можно прочитать так: в цепи с постоянными токами и напряжениями вольтамперные характеристики при последовательном соединении двухполюсников складываются в направлении отсчета напряжений.

В качестве примера расчета цепи, состоящей из последовательно соединенных нелинейных двухполюсников, приводится расчет схемы, изображенной на фиг. 3.

В качестве нелинейных элементов для этой схемы использовались обычная лампочка накаливания с характеристикой, представленной на фиг. 4, и катушка со стальным сердечником, вольтамперная и фазовоамперная характеристики которой приведены на фиг. 5.

На фиг. 6 показана векторная диаграмма рассматриваемой схемы. При этом

$$U_{0}(I) = \sqrt{\left[U_{r}(I) + U_{L}(I) \cos \varphi_{L}(I) \right]^{2} + \left[U_{L}(I) \sin \varphi_{L}(I) \right]^{2}}, \quad (1.4)$$

$$\varphi_0(I) = \operatorname{arctg} \frac{U_L(I) \sin \varphi_L(I)}{U_r(I) + U_L(I) \cos \varphi_L(I)} .$$
(1.5)

Задаваясь произвольными значеннями величин токов, по зависимостям фиг. 4 и 5 находим соответствующие значения $U_r(I)$, $U_L(I)$ и $\varphi_L(I)$.

Таблица 1

N₀	Ι	Ur (I)	U _L (I)	$\varphi_L(I)$	$U_0(I)$	φ ₀ (1) 2p
	a	8	6	гр	6	
1	0,121	4	30	75 °35′	31.2	68° 3 0′
2	0,146	5,5	35	78°35′	36,7	67°18′
З	0,156	6	40	79 °	41,5	70°48′
4	0,211	9,5	50	79 °10′	52,7	6 8°50′
5	0,235	12	55	7 9°40′	58,4	68°
6	0,258	14	60	80°	64	6 7 °30′
7	0,285	16	65	80°10′	69,7	68°
8	0,44	42	90	80°15′	105.5	57°05′
9	0,52	60	100	79°40′	125,3	51° 30′
10	0,61	84	110	7 9°	150,5	45°50′
11	0.73	119	120	78 °	185.6	39°10′

Расчет цепи при последовательном соединении лампы накаливания и катушки со стальным сердечником

В результате расчета имеем вольтамперную $U_0(I)$ и фазовоамперную $\varphi_0(I)$ характеристики всей цепи. Экспериментальная проверка расчета дала удовлетворительный результат (фиг. 7).

2. Параллельное соединение нелинейных двухполюсников

Из векторной диаграммы цепи (фиг. 8) видим, что вольт- и фазовоамперная характеристики эквивалентного двухполюсника следующим образом выражаются через характеристики составляющих двухполюсников:

$$I(U) = \sqrt{\left[\sum_{\kappa=1}^{n} I_{\kappa}(U) \cos \varphi_{\kappa}(U)\right]^{2} + \left[\sum_{\kappa=1}^{n} I_{\kappa}(U) \sin \varphi_{\kappa}(U)\right]^{2}}, \qquad (2.1)$$

$$\varphi(U) = \operatorname{arctg} \frac{\sum_{\kappa=1}^{n} I_{\kappa}(U) \sin \varphi_{\kappa}(U)}{\sum_{\kappa=1}^{n} I_{\kappa}(U) \cos \varphi_{\kappa}(U)}, \qquad (2.2)$$

где $I_{\kappa}(U)$ —вольтамперная характеристика к-того двухполюсника, читаемая в направлении отсчета токов, а $\varphi_{\kappa}(U)$ —характеристика, полученная из вольт- и фазовоамперных характеристик путем пересчета $\varphi_{\kappa}(U) = \varphi_{\kappa}[U_{\kappa}(I)]$. Порядок преобразования цепи, состоящей из параллельно соединенных двухполюсников, подобен преобразованиям, сформулированным выше для последовательного соединения, только вместо характеристик $U_{\kappa}(I)$ и $\varphi_{\kappa}(I)$ нужно оперировать с характеристиками $I_{\kappa}(U)$ и $\varphi_{\kappa}(U)$.

При постоянных токах и напряжениях выражение (2,1) принимает вид:

$$I(U) = \sum_{\kappa=1}^{n} I_{\kappa}(U), (k = 1, 2...n), \qquad (2.3)$$

которое можно прочитать так: в цепи с постоянными токами и напряжениями вольтамперные характеристики при параллельном соединении складываются в направлении отсчета токов.

3. Цепи, состоящие из последовательно и параллельно соединенных нелинейных двухполюсников

Сложные цепи, которые могут быть представлены состоящими только из последовательно и параллельно соединенных двухполюсников, могут исследоваться при помощи вышеприведенных зависимостей. При преобразованиях появляется необходимость в переходах от характеристик U(I) к I(U) и от $\varphi(I)$ к $\varphi(U)$.

Первое преобразование практически производить не требуется, так как одна и та же вольтамперная характеристика в координатах (U, I) будет характеристикой U(I), а в координатах (I, U)—характеристикой I(U).

Переход от характеристики $\varphi(I)$ к $\varphi(U)$ и обратно производится при помощи вольтамперной характеристики U(I). Например, задаваясь значениями тока *I*, можно из графиков U(I) и $\varphi(I)$ найти соответствующие значения напряжений и углов φ , зная которые легко построить характеристику $\varphi(U)$. Разумеется, все преобразования, связанные с переходом от одних характеристик к другим, не требуют каких-либо аналитических вычислений и производятся чисто графическим путем.

4. Сложные цепи с двумя нелинейными элементами

Для исследования цепей, в которых необходимы преобразования треугольника в звезду и обратно, а также многолучевой звезды в многоугольник, приведенных выше зависимостей недостаточно. Иногда можно сложную цепь с одинаковыми нелинейными элементами заменить неразветвленной цепью, содержащей лишь один нелинейный элемент.

Примером расчета такой сложной цепи может служить расчет схемы мостикового стабилизатора напряжений (фиг. 9), использующего в каче-

Фиг. 9

стве нелинейных элементов r_{A1} и r_{A3} одинаковые лампочки накаливания с характеристиками, показанными на фиг. 10. Сопротивления $r_2 = 210,5$ ом; $r_4 = 205$ ом; $r_5 = 222$ ом—линейные.

Рассматриваемая схема может быть заменена схемой, изображенной на фиг. 11, и далее схемой, приведенной на фиг. 12. Основное уравнение

четырехполюсника с учетом условия
$$U_1(I_1) = U_3(I_3)$$
 запишется следующим
образом:
 $U_3(I_2) = A_{11} U_1(I_1) + A_{12} I_1 + A_{1n}$, (4.1)
нли
 $U_1(I_1) = A_{11} U_1(I_1) + A_{12} I_1 + A_{1n}$, (4.2)
отсюла
 $U_1(I_1) - \left(\frac{A_{12}}{1 - A_{11}}\right) I_1 = \frac{A_{1n}}{1 - A_{11}}$ (4.3)
 $\int_{0}^{0} \frac{1}{Q_2} \frac{1}{Q_2} \frac{1}{Q_3} \frac{1}{Q_4} \frac{1}{Q_5} \frac$

•

Тогда уравнению (4.3) соответствует схема, представленная на фиг. 13. По схеме фиг. 11 обычными методами могут быть определены коэффициенты четырехполюсника:

$$A_{11} = -\left(\frac{r_5}{r_2} + 1\right) , \qquad (4.6)$$

$$A_{12} = r_5 , \qquad (4.7)$$

$$A_{10} = U_0 \left(1 - \frac{r_5}{r_2} \right) \quad . \tag{4.8}$$

Для нашего примера

 $A_{11} = -2,054;$ $A_{12} = -222$ out; $A_{10} = U_0.2,054$ B.

Зная коэффициенты четырехполюсника, определяем численное значение R и $\mathcal{P}(l)$,

 $R = 72,8 \text{ om}; \ \Im(I) = U_0(I). \ 0,673.$

Дальнейший расчет сводится к рассмотрению схемы, изображенной на фиг. 13 с одним нелинейным элементом. По характеристикам $U_1(I_1)$ и

Фиг. 13

 $U_R(I_1)$ строится зависимость $\mathcal{P}(I_1)$, зная которую, легко перейти к значениям $U_0(I)$.

Найдем зависимость между напряжением U_0 , приложенным к схеме, и U_5 —напряжением на диагонали моста. Из схемы на фиг. 11 следует, что

 $U_5(I_1) = U_0(I_1) - 2 U_1(I_1).$ (4.9)

На фиг. 14 представлены расчетная и экспериментальная характеристики стабилизатора.

При наличии в сложной электрической цепи двух неодинаковых нелинейных элементов расчетную схему всегда можно привести к виду (фиг. 15). Связь между напряжениями и токами нелинейных элементов 1 и 2 дается уравнениями активного четырехполюсника

$$\dot{U}_{1} = A_{11} \dot{U}_{2} + A_{12} \dot{I}_{2} + A_{10}$$

$$\dot{I}_{1} = A_{21} \dot{U}_{2} + A_{22} \dot{I}_{2} + A_{20}$$

$$(4.10)$$

Таблица 2

№ п.п.	<i>I</i> ₁	U ₁ (I ₁)	$2 U_1(I_1)$	$\vartheta (I_1)$	$U_0(I_1) = \frac{\partial(I_1)}{0,674}$	$U_{5}(I_{1}) = U_{0}(I_{1}) - 2U_{1}(I_{1})$
	а	в	8	в	в	в
1 3 4 5 6 7 8 9 10 11	0,3 0,35 0,4 0,45 0,55 0,55 0,6 0,65 0,7 0,75 0,8	4 5 6 8 12,5 17 23 20 37 44 52	8 10 12 16 25 34 46 60 74 88 104	25 30 36 42 48 57 67 78 88 98 110	37,1 44,5 53,4 62,3 71,2 84,6 99,4 115,7 130,6 145,4 163,2	29,1 34,5 41,4 46,3 46,2 50,6 53,4 55,7 55,6 57,4 59,2

Расчет нелинейной мостовой схемы

Обозначим через $U_1(I_1)$ и $\varphi_1(I)$ — вольтамперную и фазовоамперную характеристики элемента, включенного на входе четырехполюсника, а через $U_2(I_2)$ и $\varphi_2(I_2)$ — то же для элемента на выходе четырехполюсника. Вектор I_2 примем за основной, то есть положим $I_2 == I_2$.

Фиг. 15

Уравнения (4.10) теперь можно переписать в виде:

$$\begin{array}{c|c}
U_1(I_1) & |\alpha_1(I_2) = A_{11} U_2(I_2) & |\varphi_2(I_2) + A_{12} I_2 + A_{10} \\
I_1(I_2) & |\beta_1(I_2) = A_{21} U_2(I_2) & |\varphi_2(I_2) + A_{22} I_2 + A_{20}
\end{array}$$
(4.11)

Эти уравнения позволяют построить вольт- и фазовоамперные характеристики на входе четырехполюсника методом попыгок. Имея эти характеристики и U_1 (I_1) и φ_1 (I_1), находим действительные значения U_1 и φ_1 и затем остальные токи и напряжения.

Кроме рассмотренного, можно предложить также другой метод расчета сложных электрических цепей с двумя нелинейными элементами. Заданная схема заменяется активным четырехполюсником. Подсчитываются коэфициенты A_{ik} последнего. Активный четырехполюсник в свою очередь, как известно, может быть представлен Тобразной схемой замещения (фиг. 16), параметры которой

$$Z_{a} = \frac{A_{11} - 1}{A_{21}}$$

$$Z_{b} = \frac{A_{22} - 1}{A_{21}}$$

$$Y_{s} = A_{21}$$

$$\Im_{a} = A_{10} - (Z_{a} - Z_{s}) A_{20}$$

$$\Im_{b} = -Z_{b} A_{20}$$

$$(4.12)$$

Схему (фиг. 16) можно рассчитать методом попыток по зависимостим, приведенным в п. п. 1 и 2 для ценей, состоящих из последовательно и нараллельно включенных нелинейных двухполюсников.

Фиг. 16

5. Заключение

Рассмотренный графоаналитический метод расчета электрических цепей с инерционными нелинейными элементами дает вполне удовлетворительные результаты для простых и разветвленных электрических цепей в случае, если наличие нелинейных элементов в электрической цепи не приводит к заметному нарушению синусоидальности рассматриваемых напряжений и токов цепи. Проведенные авторами исследования феррорезонансных контуров не дают приемлемого совпадения теоретического расчета с экспериментом. Для цепей с несколькими нелинейными элементами может быть предложен способ, рассмотренный в п. 4, только к решению потребуется привлечь теорию линейного многополюсника.

ЛИТЕРАТУРА

Воронов Р. А. Графоаналитический метод построения характеристик нелинейных цепей переменного и постоянного токов, Труды ТЭМИИТа, вып. XVI, 1950.
 Воронов Р. А., Пономарева Г. Ф. Круговые диаграммы при исследовании иелинейных цепей, Эл-во № 12, 1951.
 Пухов Г. Е. К вопросу расчета электрической цепи с одним нелинейным эле-ментом при установившемся синусоидальном режиме, Известия ТНИ, т. 72, 1952.

4. Зелях Э. В. Основы общей теории линейных электрических схем, Изд. АН СССР, 1951.