ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

На правах рукописи

Меркулова Мария Андреевна

Исследование центробежных и резонансных эффектов в молекулах типа асимметричного и сферического волчка: C_2D_4 , ClO_2 , CD_4 , SiF_4

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

1.3.6. Оптика

Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский политехнический университет» и Университете Бургундии Франш-Конте.

Научный руководитель: Уленеков Олег Николаевич

доктор физико-математических наук, профессор, Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет», исследовательская школа физики высокоэнергетических процессов, профессор

Научный консультант: Будон Винсент

PhD, Университет Бургундии Франш-Конте, Бургундская междисциплинарная лаборатории им. Карно НЦНИ, старший научный сотрудник

Официальные оппоненты:

Лаврентьева Нина Николаевна

доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В. Е. Зуева Сибирского отделения Российской академии наук, лаборатория молекулярной спектроскопии, ведущий научный сотрудник

Стариков Виталий Иванович

доктор физико-математических наук, Федеральное государственное автономное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники», кафедра математики, профессор

Защита состоится 19 марта в 15 ч. 00 мин. на заседании диссертационного совета ДС.ТПУ.02 при Национальном исследовательском Томском политехническом университете по адресу: 634050, г. Томск, пр. Ленина, 2, стр. 32, аудитория 11.

С диссертацией можно ознакомиться в научно-технической библиотеке Томского политехнического университета и на сайте dis.tpu.ru при помощи QR-кода.

Автореферат разослан « » января 2025 г.

Ученый секретарь диссертационного совета ДС.ТПУ.02 кандидат физико-математических наук, PhD

An

А. Л. Фомченко

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Исследование вращательных и колебательно-вращательных спектров многоатомных молекул в газовой фазе давно имеет фундаментальное значение для определения точной молекулярной геометрии в различных колебательных состояниях, для получения информации о внутреннем силовом поле, параметрах колебательно-вращательного взаимодействия, дипольных моментах, расчете термодинамических функций на основе структурных и колебательных данных и, в целом, для получения информации о взаимосвязи между структурой и физическими свойствами молекулы.

Значимость изучения колебательно-вращательных состояний многоатомных молекул в последнее время заметно возросла благодаря появлению спектроскопии высокого разрешения и существенным успехам в развитии теоретических и экспериментальных методов исследования тонкой структуры колебательно-вращательных спектров молекул.

Анализ электромагнитного спектра молекулы позволяет получать информацию о ее энергетических уровнях, причем положение этих уровней непосредственно зависит от внутренних физических характеристик молекулы (ее геометрия, длины связей и углы между ними, внутримолекулярные взаимодействия и др.). Таким образом, анализ молекулярных спектров дает возможность извлекать разнообразные физические параметры, описывающие внутренние свойства молекул. Причем информация, получаемая из спектров, характеризуется высокой степенью точности.

Структура и свойства молекулы напрямую зависят от ее симметрии. Эта зависимость отображается в спектрах высокого разрешения, и, таким образом, исследование спектров молекул различных симметрий требует применения особых методов и подходов, а также учета известных особенностей и возможных затруднений. Так, например, при исследовании спектров молекул, относящихся к классу сферических волчков (для которых все три момента инерции равны), неприменимы традиционные методы и подходы, такие, например, как метод комбинационных разностей. Вследствие высокой (например, тетраэдрической, T_d) симметрии сферических волчков, в спектрах таких молекул наблюдается так называемое «тетраэдрическое расщепление», что значительно усложняет интерпретацию и математическое описание таких спектров. Присутствие в спектрах «горячих» полос также усложняет задачу интерпретации линий в спектре, т. к.

спектр становится очень плотным, линии смешиваются, а иногда и полностью перекрываются.

Молекулы, относящиеся к классу асимметричного волчка (все три момента инерции неравны), обладают слабой степенью симметрии. Их исследование может быть затруднено присутствием линий, относящихся к «горячим» полосам. Для корректного и полного исследования таких спектров необходимы специально подобранные экспериментальные условия, способные снизить влияние от присутствия «горячих» полос.

Среди молекул типа асимметричного волчка особое место занимают молекулы в вырожденных электронных состояниях. Исследование таких молекул требует особого подхода при описании несинглетных электронных состояний. В настоящее время имеет место нехватка гарантированно точных методов описания спектров этих молекул для обеспечения потребности в высокоточной количественной информации о параметрах спектральных линий. Поэтому возникает необходимость в разработке особых методов, способных с теоретической точки зрения обосновать поведение современных экспериментальных спектров высокого разрешения таких молекул.

Указанные выше сложности, а также упомянутая практическая значимость полученной при анализе спектров информации для различных областей физики, химии, материаловедения, биологии, астрономии и атмосферной оптики определяют актуальность темы исследования, проводимого в рамках настоящей работы.

Работа посвящена получению новой высокоточной информации путем исследования спектров высокого разрешения молекул типа сферического и асимметричного волчка, а также разработке новых и усовершенствованию уже имеющихся методов анализа спектров молекул в несинглетных электронных состояниях.

Цели работы:

- Получение теоретических данных о положениях линий, соответствующих колебательно-вращательным переходам, в спектрах молекул SiF₄, CD₄, C₂D₄, ClO₂ и их изотопологов для дальнейшего решения обратной спектроскопической задачи и получения параметров эффективного гамильтониана для возбужденных колебательновращательных полос.
- Получение теоретически рассчитанных спектров «горячих» полос молекулы SiF₄ с использованием полученных из экспериментальных данных значений параметров эффективного гамильтониана комбинационных полос.

• Получение теоретических данных об интенсивности линий, соответствующих колебательно-вращательным переходам, в спектре молекулы SiH₄ для получения параметров дипольного момента.

Достижение поставленных целей требует решение нескольких задач:

- Выполнить анализ положений линий колебательно-вращательных спектров комбинационных полос молекул SiF_4 , CD_4 , C_2D_4 , ClO_2 и их изотопологов.
 - Для исследуемых полос решить обратную спектроскопическую задачу.
- С помощью полученных спектроскопических параметров для комбинационных полос молекулы SiF₄ и пакета программ XTDS провести расчет положений линий и построить теоретический спектр «горячих» полос данной молекулы, вплоть до 14 полиады.
- Получить новые высокоточные спектры основного состояния молекулы SiH₄, выполнить анализ интенсивности линий спектров для улучшения данных о параметрах дипольного момента.

Научная новизна:

- Впервые определены переходы комбинационных полос $v_5 + v_{12}$ и $v_6 + v_{11}$ молекулы C_2D_4 общим числом почти 4 500 до максимальных значений квантовых чисел $K_{a-Makc} = 12$ и $K_a^{Makc} = 17$ для полосы $v_5 + v_{12}$ и $v_6 + v_{11}$, соответственно.
- Впервые определены спектроскопические параметры молекулы C_2D_4 на основе анализа колебательно-вращательных спектров высокого разрешения полос $\nu_5 + \nu_{12}$ и $\nu_6 + \nu_{11}$.
- Определены впервые, либо с гораздо более высокой точностью переходы фундаментальной v_3 и комбинационной $v_1 + v_3$ полос молекулы ClO_2 с использованием нового предложенного подхода, основанного на теории неприводимых тензорных операторов, для улучшенного описания спектров молекул типа асимметричного волчка в несинглетном электронном состоянии, общим числом 7 200 до максимального значения квантовых чисел $K_a = 21$ и $K_a = 59$ для фундаментальной и комбинационной полосы, соответственно.
- Определены впервые, либо с гораздо более высокой точностью параметры эффективного гамильтониана молекулы ClO_2 на основе анализа колебательновращательных спектров высокого разрешения полос v_3 и $v_1 + v_3$ с использованием

предложенного подхода для описания молекул в несинглетных электронных состояниях, учитывающим спин-вращательные взаимодействия в молекулах подобного типа.

- Определены впервые переходы, соответствующие диаде v_2/v_4 молекулы $^{13}\text{CD}_4$; определены с гораздо более высокой точностью абсолютные интенсивности линий диады v_2/v_4 молекулы $^{12}\text{CD}_4$ и впервые для полосы v_4 молекулы $^{13}\text{CD}_4$.
- Определены впервые спектроскопические параметры молекулы $^{13}\text{CD}_4$, а также определены с гораздо более высокой точностью параметры эффективного дипольного момента диады v_2/v_4 молекулы $^{12}\text{CD}_4$ и впервые для полосы v_4 молекулы $^{13}\text{CD}_4$.
- Впервые определены переходы комбинационных полос $v_1 + v_2$, $v_1 + v_3$, $v_1 + v_4$, $v_2 + v_3$, $v_2 + v_4$ и $v_3 + v_4$ молекулы SiF₄ общим числом более 10 000 до значений квантового числа $J^{\text{max}} = 78$, 82, 58, 70, 54 и 60, соответственно; переходы полосы $v_1 + v_3$ были впервые определены также для изотопологов 29 SiF₄ и 30 SiF₄.
- Впервые определены спектроскопические параметры комбинационных полос v_1 + v_2 , $v_1 + v_3$, $v_1 + v_4$, $v_2 + v_3$, $v_2 + v_4$ и $v_3 + v_4$ молекулы SiF₄ на основе анализа колебательно-вращательных спектров высокого разрешения.
- Впервые для молекулы SiF₄ проведен расчет положений линий и построены теоретические спектры «горячих» полос $v_3 + v_1 v_1$, $v_3 + v_2 v_2$ и $v_3 + v_4 v_4$ с точностью не хуже экспериментальной вплоть до 14 полиады.
- Впервые для молекулы SiH_4 определена абсолютная интенсивность линий, соответствующих переходам между уровнями основного колебательного состояния, а также переходам «горячей» полосы $v_3 v_3$.
- Впервые определены параметры эффективного дипольного момента молекулы SiH_4 для описания интенсивности линий в диапазоне дальнего инфракрасного излучения, где располагаются переходы между уровнями основного состояния и переходы «горячей» полосы $v_3 v_3$.

Практическая значимость:

• Информация о структуре спектров высокого разрешения молекул SiH₄, SiF₄, CD₄, C₂D₄, ClO₂ и их изотопологов является существенным дополнением к существующим базам данных колебательно-вращательных спектров молекул и может быть использована в широком диапазоне практических приложений информации о тонкой структуре спектров молекул.

- Разработанный подход для анализа свободных радикалов типа асимметричного волчка в несинглетных электронных состояниях может быть использован для анализа спектров различных молекул, относящихся к указанному классу.
- Полученные при анализе и расчете спектров результаты были взяты за основу при создании методических рекомендаций для работы со спектроскопическими программными комплексами, позволяющими проводить моделирование и анализ молекулярных спектров высокого разрешения, для студентов бакалавриата и магистратуры в рамках дисциплин «Теоретические основы молекулярной спектроскопии» и «Экспериментальные методы ИК спектроскопии».

Разработанные в рамках диссертации методы и модели, а также результаты, полученные на их основе, позволяют упростить процедуру описания сложных колебательно-вращательных спектров многоатомных молекул различной симметрии, в том числе для молекул в несинглетных электронных состояниях.

Полученные в рамках настоящего исследования результаты использовались при выполнении совместных научных исследований Национального исследовательского Томского политехнического университета и университета Бургундии (Франция) и при проведении практических занятий и семинаров в рамках дисциплин «Теоретические основы молекулярной спектроскопии» и «Экспериментальные методы ИК спектроскопии».

Методология и методы исследования. Для решения поставленных задач использовались методы квантовой механики, теории групп и аппарата теории неприводимых тензорных операторов.

Положения, выносимые на защиту:

- 1. Использование подхода, основанного на теории неприводимых тензорных операторов, для описания спектров высокого разрешения молекул типа асимметричного волчка в дублетных электронных состояниях позволяет улучшить расчет положения линий спектров фундаментальной полосы молекулы ClO₂ более чем в десять раз.
- 2. Описание колебательно-вращательной структуры молекул C_2D_4 (в области $3\ 120{\text -}3\ 510\ \text{cm}^{-1}$) и CD_4 (в области $800{\text -}1\ 300\ \text{cm}^{-1}$) с точностью, не хуже экспериментальной, возможно на основе использования аналитических выражений, полученных из изотопических соотношений для материнской и соответствующей изотопозамещенной модификаций.

3. Учет аналитических выражений для тетраэдрических расщеплений при решении обратной спектроскопической задачи позволяет получить численные значения спектроскопических параметров, описывающих вращательную структуру молекул типа XY4, с точностью, близкой к погрешностям эксперимента.

Степень достоверности результатов, полученных в работе, подтверждается:

- 1. Строгостью используемых математических моделей, непротиворечивостью полученных результатов.
- 2. Соответствием результатов теоретических исследований экспериментальным данным, известным в литературе ранее, либо полученным впервые в рамках настоящего исследования.
- 3. Согласованностью полученных в настоящей работе результатов с известными из литературы *ab initio* расчетами.

Личный вклад автора:

- Совместно с профессорами ИШФВП ТПУ, д. ф.-м. н. О. Н. Уленековым, д. ф.-м. н., PhD О. В. Громовой, старшим научным сотрудником университета Бургундии (Франция), PhD В. Будоном, постановка целей и задач;
- Совместно с научными сотрудниками лаборатории «LURE» циклического ускорителя электронов Синхротрона «SOLEIL» (Франция) получение экспериментальных спектров молекулы SiH₄;
- Исследование тонкой структуры спектров молекул C_2D_4 , ClO_2 , CD_4 , SiF_4 , SiH_4 и их изотопологов;
- Совместно с профессорами ИШФВП ТПУ, д. ф.-м. н., PhD О. В. Громовой, к. ф.-м. н. Н. И. Николаевой анализ интенсивностей и полуширин линий в спектрах диады v_2/v_4 молекулы 12 CD₄ и ее изотополога 13 CD₄ и основного состояния молекулы SiH₄;
- Совместно с профессором ИШФВП ТПУ, д. ф.-м. н., PhD О. В. Громовой и аспирантом ИШФВП А. Н. Какаулиным реализация и апробация подхода для анализа свободных радикалов типа асимметричного волчка в несинглетных электронных состояниях.

Апробация работы. Материалы, вошедшие в диссертационную работу, докладывались и обсуждались на следующих российских и международных конференциях:

- 17-й международной конференции студентов и молодых ученых «Перспективы развития фундаментальных наук» (Томск, Россия, 2020 г.);
- 2-й всероссийской научно-методической конференции «Современные технологии, экономика и образование» (Томск, Россия, 2021 г.);
- 18-й международной конференции студентов и молодых ученых «Перспективы развития фундаментальных наук» (Томск, Россия, 2021 г.);
- Международном семинаре «Новые разработки в области молекулярной спектроскопии высокого разрешения и их применение в современных приложениях» (Лез-Уш, Франция, 2022 г.);
- Международном семинаре «Молекулярные объекты в изолированной и естественной средах» (Дюнкерк, Франция, 2022 г.);
- 15-й конференции «Применение спектроскопии в атмосферной оптике», совместно с 16-й конференцией «HITRAN» (Реймс, Франция, 2022 г.);
- 29-м международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Дижон, Франция, 2023 г.);
- 77-м международном симпозиуме по молекулярной спектроскопии (Урбана и Шампейн, США, 2024 г.).

Публикации. Основные результаты диссертационной работы опубликованы в 13 печатных работах (из них 3 статьи в изданиях, рекомендуемых ВАК, 4 статьи в рецензируемых журналах, индексируемых «Scopus» и «Web of Science», и 9 — материалы и тезисы конференций).

Структура и объем диссертации. Работа состоит из введения, трех глав и заключения общим объемом 179 страниц, в том числе содержит 20 рисунков, 24 таблицы и список цитируемой литературы из 125 наименований.

Работа выполнялась при финансовой поддержке стипендии «ISITE-BFC» для написания кандидатских диссертаций под совместным руководством в Томском политехническом университете (Томск, Россия) и Университете Бургундии (Дижон, Франция), 2021–2024 г. Исследования проводились, в том числе, в рамках проекта РФФИ «Исследование спектров высокого разрешения этилена: энергетическая структура, интенсивности и полуширины колебательно-вращательных спектральных линий» (№18-02-00819, 2018–2020 гг.), в рамках проекта РНФ «Проведение фундаментальных и изыскательных научных исследований небольшими индивидуальными научными груп-

пами» (19.0013.РНФ.2022, 2022 г.), в рамках проекта ПРИОРИТЕТ-2030 (НИП/ЭБ-010-000-2022, 2022 г.), а также при поддержке международного гранта концерна Фольксваген «Колебательное возбуждение органических молекул в космосе и атмосферах: экспериментальные и теоретические исследования» (Германия, 2020–2022 гг.).

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность проведенных научных исследований, сформулированы цели работы, указаны основные методы исследования, а также научные положения, выносимые на защиту. Приведено обоснование научной новизны представленных результатов, их практическая значимость, кратко описана структура диссертационной работы и резюмировано содержание отдельных ее глав.

В первой главе описаны необходимые для понимания практической части работы приближения и методы теоретической колебательно-вращательной спектроскопии, способы построения квантово-механического гамильтониана во внутримолекулярных координатах для произвольной многоатомной молекулы, описаны элементы теории изотопозамещения и теории неприводимых тензорных операторов, а также представлены сведения о колебательных полиадах молекул.

Вторая глава посвящена теоретическому исследованию молекул типа асимметричного волчка, а именно исследованию колебательно-вращательных спектров полностью дейтерированного изотополога этилена C_2D_4 и молекулы в несинглетном электронном состоянии диоксида хлора ClO_2 . В начале каждого раздела приводится литературный обзор, а также сведения из теории описания спектров молекул типа асимметричного волчка. Например, для молекул, чья группа симметрии изоморфна точечной группе D_{2h} (C_2D_4) характерны 12 основных колебаний, принадлежащих к трем типам: a, b и c. Принимая во внимание симметрию молекулы, можно сформулировать правила отбора для переходов, соответствующих типу исследуемых полос.

Используя вышеописанные теоретические методы, в результате исследования спектров комбинационных полос и решения обратной спектроскопической задачи был получен набор спектроскопических параметров, который позволяет описывать экспериментальные положения линий молекулы C_2D_4 с точностью не хуже $0,13\cdot 10^{-3}$ см⁻¹ для полосы v_5+v_{12} (рисунок 1) и $0,15\cdot 10^{-3}$ см⁻¹ для полосы v_6+v_{11} .

Говоря об исследовании молекул в несинглетных электронных состояниях, свободные радикалы требуют усовершенствованных методов описания колебательновращательных спектров. Для обеспечения высокой точности полученных результатов необходимо учитывать взаимодействия между вращением молекулы и спином непарного электрона (или электронов). Подобное взаимодействие выражается в спинвращательных расщеплениях экспериментальных линий с образованием так называемых дублетов (рисунок 2), имеющих симметричные и асимметричные компоненты. Поэтому для корректного описания энергетических уровней таких молекул была использована усовершенствованная, более сложная модель гамильтониана, учитывающая спин-вращательные взаимодействия в молекулах типа асимметричного волчка.

Усовершенствованный метод описания спектров молекул в несинглетных электронных состояниях позволил получить спектроскопические параметры, описывающие значения экспериментальных положений линий с точностью не хуже $0.24 \cdot 10^{-3}$ см⁻¹ для полосы v_3 и точностью не хуже $0.25 \cdot 10^{-4}$ см⁻¹ для полосы $v_1 + v_3$ молекулы ClO_2 .

В **третьей главе** представлены результаты анализа колебательно-вращательных спектров молекул типа сферического волчка CD₄, SiF₄ и SiH₄. В начале каждого раздела приводится литературный обзор, а также сведения из теории описания спектров молекул типа сферического волчка.

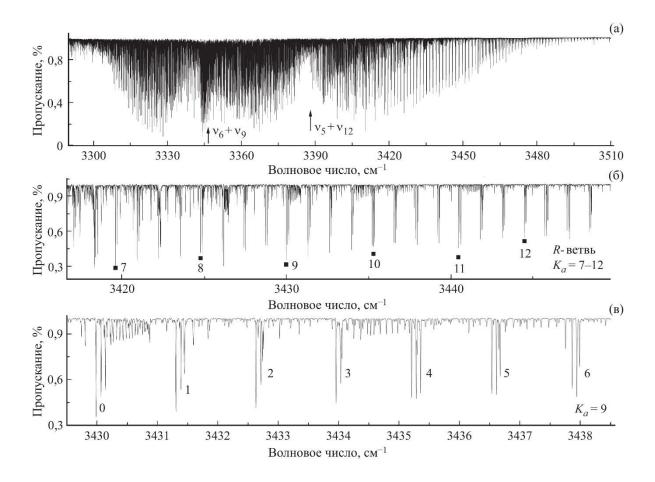


Рисунок 1 — Спектр молекулы этилена C_2D_4 в диапазоне 3300—3510 см $^{-1}$ (часть a); на фрагментах (δ) и (ϵ) показана R-ветвь полосы $v_5 + v_{12}$

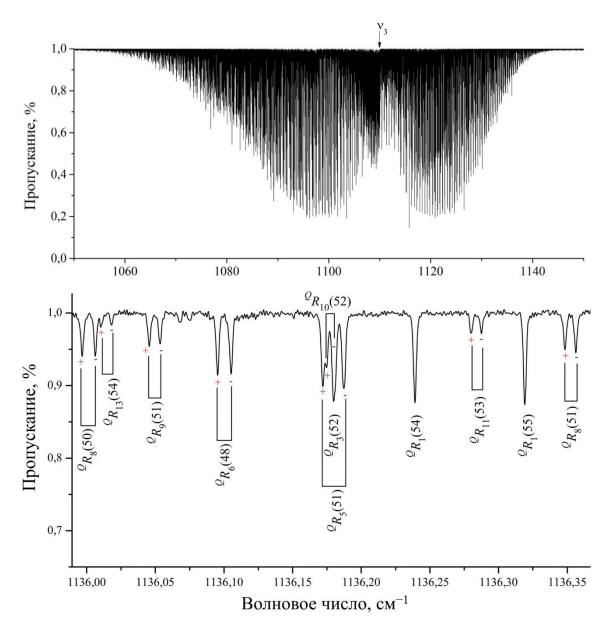


Рисунок 2 — Спектр молекулы ClO_2 в районе полосы v_3 ; иллюстрация спинвращательных расщеплений в области R-ветви. Символы «+» и «-» обозначают симметричный и асимметричный компоненты дублетов $J=N\pm1/2$

К молекулам типа сферического волчка, ввиду их высокой симметрии, неприменимы традиционные методы и подходы, такие, например, как метод комбинационных разностей. Помимо этого, в спектрах молекул такой симметрии наблюдаются так называемые «тетраэдрические расщепления», что значительно усложняет интерпретацию и математическое описание таких спектров. Влияние «горячих» полос, отвечающих за энергетические переходы между двумя возбужденными колебательными состояниями, особенно заметно в спектрах тяжелой молекулы фторированного силана SiF₄, чьи цен-

тры колебательно-вращательных полос располагаются очень близко друг к другу. При анализе спектров высокого разрешения сферических волчков использовалась модель гамильтониана, учитывающая, в том числе, тетраэдрические расщепления.

Благодаря тому, что между частотами нормальных колебаний молекул с тетраэдрической структурой выполняются приблизительные соотношения, например, для молекулы метана CD₄ это $v_1 \simeq v_3 \simeq 2v_2 \simeq 2v_4$, фундаментальные и обертонные колебательные состояния могут быть сгруппированы в так называемые полиады, причем состояния, принадлежащие разным полиадам, как правило, не взаимодействуют. Если в молекуле с N различными нормальными модами колебаний (которые могут быть вырожденными) есть уровень (v_1, v_2, \ldots, v_N) , он будет относиться к полиаде P_n , причем колебательные квантовые числа v_i (i = 1...N) удовлетворяют соотношению:

$$n = \sum_{i=1}^{N} i_i v_i,\tag{1}$$

где $(i_1, i_2, \ldots, i_N) - N$ целых чисел, выбранных для определения полиадной схемы. Таким образом, колебательные уровни метана группируются в полиады с помощью полиадной схемы:

$$(i_1, i_2, i_3, i_4) = (2, 1, 2, 1),$$
 (2)

иными словами, полиада P_n описывает все колебательные состояния, удовлетворяющие условию:

$$n = 2v_1 + v_2 + 2v_3 + v_4, \tag{3}$$

из которого следуют стандартные для метана полиады: P_0 , соответствующая основному состоянию, P_1 с двумя колебательными уровнями (верхние состояния v_2/v_4 диады), P_2 с пятью уровнями (верхние состояния $v_1/v_3/2v_2/2v_4/v_2 + v_4$ пентады), и т. д. (рисунок 3).

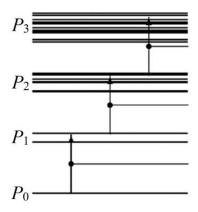


Рисунок 3 — Колебательные уровни, сгруппированные в полиады P_0 — P_3

Для анализа спектров молекулы дейтерированного метана CD_4 использовался колебательно-вращательный гамильтониан, редуцированный до эффективного. Слагаемые этого гамильтониана описывают, соответственно, энергетические вклады основного и возбужденного колебательного состояния (диады v_2/v_4). На начальном этапе анализа спектров диады изотополога молекулы $^{13}CD_4$ использовались положения теории изотопозамещения, позволившие предсказать основные спектроскопические параметры для изотополога $^{13}CD_4$ с использованием данных об основной изотопической модификации молекулы $^{12}CD_4$, которая была исследована ранее. Эти параметры затем использовались в качестве начального приближении при анализе положений линий в спектрах молекулы $^{13}CD_4$. Пошаговое варьирование спектроскопических параметров с поэтапной подстановкой значения экспериментальных энергий с весовым коэффициентом позволило получить набор параметров, описывающих экспериментальные положения линий с точностью не хуже $0.26 \cdot 10^{-3}$ см $^{-1}$ для изотопозамещенной модификации.

Анализ интенсивности линий в спектрах молекул $^{12}\text{CD}_4$ и $^{13}\text{CD}_4$ был выполнен с использованием профиля Хартманна-Тран. Для более тяжелого изотополога было возможно проанализировать только те линии, которые принадлежат полосе v_4 , так как переходы, относящиеся к полосе v_2 , обладали слишком малой интенсивностью даже в сильном спектре II (рисунок 4). В результате был получен набор параметров эффективного дипольного момента, который позволяет воспроизвести экспериментальный контур и абсолютную интенсивность линий с точностью не хуже 4,80 % и 4,21 % для молекул $^{12}\text{CD}_4$ и $^{13}\text{CD}_4$, соответственно.

Другая молекула типа сферического волчка, исследованная в данной работе, является молекулой фторированного силана SiF₄. Для проведения анализа комбинационных полос (вплоть до 14 полиады) было зарегистрировано шесть спектров высокого разрешения различных диапазонов.

Помимо основной модификации, были так же проанализированы более тяжелые изотопологии $^{29}{\rm SiF_4}$ и $^{30}{\rm SiF_4}$ (рисунок 5). Суммарно было проинтерпретировано более 10 000 колебательно-вращательные переходов, значения энергий которых затем использовались при подгонке параметров эффективного гамильтониана (таблица 1). Итоговый набор спектроскопических параметров позволяет воспроизводить экспериментальные значения энергий с точностью не хуже $0,67 \cdot 10^{-3}$ см $^{-1}$ для всех комбинационных колебательно-вращательных полос. Данный результат подтверждает, что выполнение исследования колебательно-вращательных полос в спектрах сферических волчков

без учета резонансных взаимодействий позволяет получить набор параметров эффективного гамильтониана, воспроизводящих экспериментальные значения энергий с достаточной точностью. Полученные спектроскопические данные о комбинационных полосах молекул 28 SiF4, 29 SiF4 и 30 SiF4 позволили рассчитать спектры «горячих» полос $v_3 + v_1 - v_1$, $v_3 + v_2 - v_2$ и $v_3 + v_4 - v_4$ в регионе фундаментальной полосы v_3 .

Для анализа интенсивности и контура линий молекулы SiH₄ было зарегистрировано три спектра чистого газообразного SiH₄ при различных давлениях (12,5, 25 и 50 мбар) и при температуре около 295 К. Таким образом, были получены спектры как «холодных» (основное состояние), так и «горячих» ($v_3 - v_3$) переходов в диапазоне 45–165 см⁻¹.

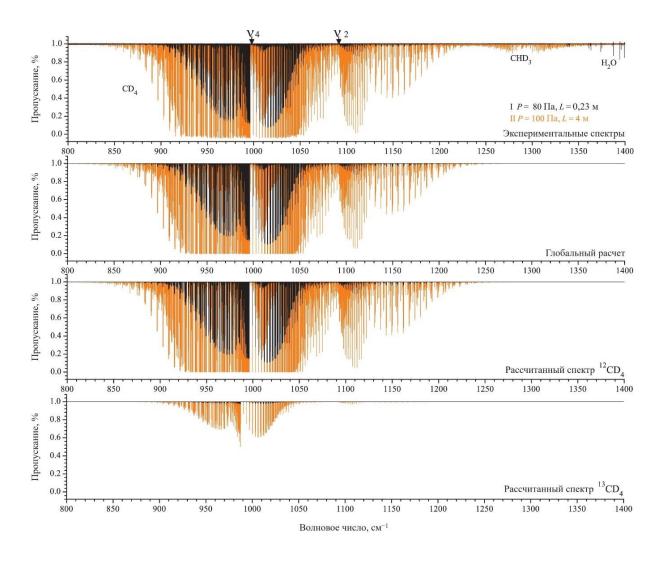


Рисунок 4 — Спектры (I и II) в районе диады v_2/v_4 молекул 12 CD₄ и 13 CD₄. Сравнение экспериментальных и теоретически рассчитанных спектров

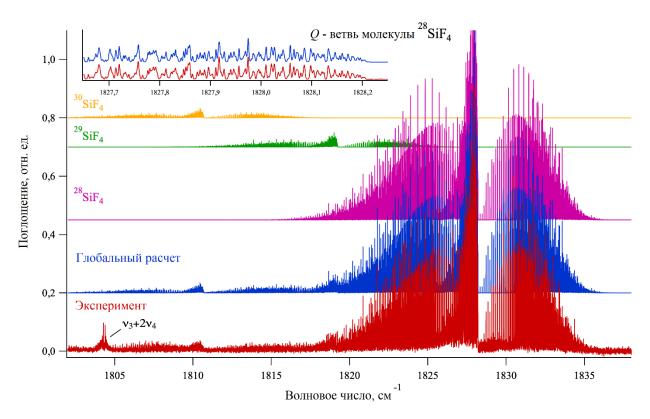


Рисунок 5 — Спектр полосы $v_1 + v_3$, сравнение теоретических спектров для всех изотопологов с экспериментом. На фрагменте показана Q-ветвь исследуемой полосы

Таблица 1 – Статистические данные по результатам анализа комбинационных полос молекулы ${
m SiF_4}$

Полоса	Центр полосы, см ⁻¹	$J^{ ext{make}}$	$N_{ m переходов}$	$N_{ m параметров}$	$d_{\rm rms} \cdot 10^{-3}, {\rm cm}^{-1}$
1	2	3	4	5	6
$v_1 + v_2$	1064,2395	78	1 141	6	0,398
$v_1 + v_2 + v_4$	1454,8007	16	135	16	0,429
$v_1 + v_3$	1828,3546	82	1 334	9	0,563
$^{29}v_1 + v_3$	1819,3854	45	198	8	0,665
$^{30}v_1 + v_3$	1810,8235	58	267	11	0,478
$\nu_1 + \nu_4$	1189,9905	58	1 131	4	0,417
$v_2 + v_3$	1294,5825	70	2 907	22	0,445
$v_2 + v_4$	653,3963	54	844	19	0,382
$v_3 + v_4$	1418,5583	60	2 194	44	0,633
$2v_3$	2058,4311				
Всего			10 151		

На первом этапе анализа индивидуальная интенсивность несмешанных, ненасыщенных и неслабых линий была определена из подгонки контура линий к профилю Фойгта. Данные об экспериментально полученной абсолютной интенсивности линий

затем использовались для определения параметров эффективного дипольного момента из процедуры варьирования с весовыми коэффициентами. Суммарно средние значения абсолютной интенсивности около 100 линий позволили получить набор параметров эффективного дипольного момента, которые описывают экспериментальные характеристики спектральных линий с погрешностью не более 5,67 %.

В заключении сформулированы основные выводы и результаты проведенных исследований:

- 1. Выполнен впервые анализ положений линий колебательно-вращательных спектров молекул SiF_4 , CD_4 , C_2D_4 , ClO_2 и их изотопологов.
- 2. Для исследованных полос решена обратная спектроскопическая задача. Полученные наборы спектроскопических параметров позволяют воспроизводить экспериментальные положения линий с точностью, не хуже экспериментальной.
- 3. С помощью полученных спектроскопических параметров для комбинационных полос молекулы SiF₄ и пакета программ XTDS впервые рассчитаны положения линий и построены теоретические спектры «горячих» полос данной молекулы, вплоть до 14 полиады.
- 4. Получены новые высокоточные спектры основного состояния молекулы SiH₄, выполнен анализ интенсивностей линий спектров и на их основе получен набор эффективных параметров дипольного момента, позволяющий с погрешностью не более 5,7 % воспроизводить экспериментальные интенсивности линий.
- 5. Предложен и апробирован подход, позволяющий рассчитывать положения линий спектров молекулы ClO₂ с точностью более чем в десять раз превышающей ранее известные в литературе данные.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в журналах, включенных в перечень рецензируемых научных изданий

1. Зятькова А. Г., **Меркулова М. А.**, Конова Ю. В. Определение энергетической структуры и спектроскопических параметров колебательного состояния ($v_5 = v_{12} = 1$) молекулы C_2D_4 // Оптика и спектроскопия. – 2020. – Т. 128. – No. 5. – С. 583-588.

В переводной версии журнала, индексируемой «Web of Science» и «Scopus»

Ziatkova A. G., **Merkulova M. A.**, Konova Yu. V. Determination of the energy structure and spectroscopic parameters of the vibrational state ($v_5 = v_{12} = 1$) of the C₂D₄ molecule // Optics and Spectroscopy. – 2020. – Vol. 128. – No. 5. – P. 569-574.

2. **Меркулова М. А.**, Какаулин А. Н., Громова О. В., Бехтерева Е. С. Анализ спектра высокого разрешения молекул в дублетных электронных состояниях: фундаментальная полоса v_3 диоксида хлора ($^{16}\text{O}^{35}\text{Cl}^{16}\text{O}$) в основном электронном состоянии X^2B_1 // Оптика и спектроскопия. – 2021. – Т. 129. – No. 8. – С. 979-984.

В переводной версии журнала, индексируемой «Web of Science» и «Scopus»

Merkulova M. A., Kakaulin A. N., Gromova O. V., Bekhtereva E. S. Analysis of the high-resolution spectrum of molecules in doublet electronic states: fundamental v_3 band of chlorine dioxide ($^{16}O^{35}Cl^{16}O$) in the ground electronic state X^2B_1 // Optics and Spectroscopy. -2021. - Vol. 129. - No. 10. - P. 1138-1144.

3. Бехтерева Е. С., Какаулин А. Н., **Меркулова М. А.**, Громова О. В., Конова Ю. В., Зидо К. Спектроскопия высокого разрешения молекул типа асимметричного волчка в несинглетных электронных состояниях: полоса $v_1 + v_3$ молекулы ClO_2 // Оптика и спектроскопия. – 2022. – Т. 130. – No. 9. – С. 1327-1333.

В переводной версии журнала, индексируемой «Web of Science» и «Scopus»

Bekhtereva E. S., Kakaulin A. N., **Merkulova M. A.**, Gromova O. V., Konova Yu. V., Sydow C. High-resolution spectroscopy of asymmetric top molecules in non-singlet electronic states: $v_1 + v_3$ band of the ClO₂ molecule // Optics and Spectroscopy. – 2022. – Vol. 130. – No. 7. – P. 425-432.

- 4. **Merkulova M.**, Boudon V., Manceron L. Analysis of high-resolution spectra of SiF₄ combination bands // Journal of Molecular Spectroscopy. 2023. T. 391. C. 111738.
- 5. Ulenikov O. N., Bekhtereva E. S., Gromova O. V., Kakaulin A. N., **Merkulova M. A.**, Sydow C., Berezkin K. B., Bauerecker S. High resolution spectroscopy of asymmetric top molecules in nonsinglet electronic states: the v₃ fundamental of chlorine dioxide (¹⁶O³⁵Cl¹⁶O)

- free radical in the X^2B_1 electronic ground state // Physical Chemistry Chemical Physics. 2023. T. 25. No. 8. C. 6270-6287.
- 6. Ulenikov O. N., Gromova O. V., Bekhtereva E. S., Nikolaeva N. I., **Merkulova M. A.**, Morzhikova Y. B., Bauerecker S. Comparative line position and line strength analysis of the v_2/v_4 dyad of $^{12}\text{CD}_4$ and $^{13}\text{CD}_4$ // Journal of Quantitative Spectroscopy and Radiative Transfer. 2023. T. 311. C. 108770.
- 7. Richard C., Ben Fathallah O., Hardy P., Kamel R., **Merkulova M.**, Ulenikov O., Boudon V. Casda24: Latest updates to the Dijon calculated spectroscopic databases // Journal of Quantitative Spectroscopy and Radiative Transfer. 2024. T. 327. C. 109127.

Публикации в сборниках материалов конференций

- 8. **Меркулова М. А.** Определение энергетической структуры и спектроскопических параметров колебательного состояния ($v_5 = v_{12} = 1$) молекулы C_2D_4 / Меркулова М. А. // Перспективы развития фундаментальных наук: сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых, ТПУ, Томск, Россия. Сборник трудов: Изд-во ТПУ. 2020. Т.1: Физика. С. 128-130, Томск. (21-24 апреля, 2020).
- 9. **Меркулова М. А.**, Громова О. В., Бехтерева Е. С., Улеников О. Н. Анализ спектра высокого разрешения молекул в дублетных электронных состояниях: фундаментальная полоса v_3 диоксида хлора ($^{16}O^{35}Cl^{16}O$) в основном электронном состоянии / Меркулова М. А., Громова О. В., Бехтерева Е. С., Улеников О. Н. // Современные технологии, экономика и образование: сборник материалов II Всероссийской научнометодической конференции, ТПУ, Томск, Россия. Сборник материалов: Изд-во ТПУ. 2020. С. 216-217, Томск. (2-4 сентября, 2020).
- 10. **Merkulova M.**, Boudon V., Manceron L. Analysis of high-resolution spectra of SiF₄ combination bands // New developments in high resolution molecular spectroscopy and outreach to modern applications: international workshop, Les Houches school of physics, Haute Savoie, France. Book of Abstracts. 2022. P. 51-52, Les Houches. (29 may 3 june, 2022).
- 11. **Merkulova M.**, Boudon V., Manceron L. High-resolution spectroscopy and analysis of combination bands of SiF₄ // Edifices Moléculaires Isolés et Enironnés: international workshop, CNRS, Dunkerque, France. Résumés. 2022. P. 76, Dunkerque. (14-17 juin, 2022).

- 12. **Merkulova M.**, Boudon V., Manceron L. High-resolution spectroscopy and analysis of combination bands of SiF₄ // 15th ASA Conference (united with 16th HITRAN Conference): international conference, URCA, Reims, France. Book of Abstracts. 2022. P. 26, Reims. (24-26 august, 2022).
- 13. **Merkulova M.** Analysis of high-resolution spectra of SiF₄ combination bands / Merkulova M., Boudon V., Manceron L. // High Resolution Molecular Spectroscopy: book of abstracts of the 28th international colloquium, UBFC, Dijon, France. Book of abstracts. 2023. P. 130, Dijon. (28 august 1 september, 2023).
- 14. **Merkulova M.**, Boudon V., Manceron L. New high-resolution combination bands of SiF₄. Experiment and simulation // International symposium on molecular spectroscopy: book of abstracts of the 77th international symposium, UIUC, Urbana-Champaign, USA. 2024. P7564, Urbana-Champaign. (17-21 june, 2024).