Реакция (1) не пригодна для получения, так как в результате будет образовываться карбонат натрия, что является не желательной примесью. Самыми перспективными реакциями выбираем — реакции № 2, 3 и 4. Проведенный термодинамический анализ показал, что реакции № 2 и

3, не протекают при температурах до 100 °C, т. е. в водном растворе на практике в термостатическом реакторе получился низкий выход — менее 1 %. Самой перспективной оказалась реакция № 4, с ней проведены исследования.

Список литературы

- 1. Угольная отрасль России в 2023 году URL: https://delprof.ru/press-center/open-analytics/ugolnaya-otrasl-rossii-v-2023-godu/.
- 2. Петрянов-Соколов И.В., Станцо В.В., Черненко М.Б. Популярная библиотека химических элементов. Книга первая Водород-палладий. — Л.: Химия, 1977. — 265 с.

СИНТЕЗ НЕФТЕСОРБЕНТОВ МОДИФИКАЦИЕЙ ЛИГНИНА

А. И. Кириенко¹, А. Д. Бардацкий¹, Д. В. Маляр² Научный руководитель – к.х.н., с.н.с., доцент отделения химической инженерии О. В. Ротарь³

1 МБОУ лицей при ТПУ г. Томска

²МАОУ школа «Перспектива»

³Национальный исследовательский «Томский политехнический университет» robotar31@mail.ru

Для очистки воды от нефти при аварийных разливах используются нефтесорбенты. При производстве бумаги образуются отходы, которые могут быть использованы как сырье для получения сорбентов.

Лигнин представляет собой полимер, содержащий в структуре ароматические кольца с присоединенными метоксильными и гидроксильными группами, обладающие реакционной способностью.

Известны способы выделения лигнина из древесины: щелочной, кислотный, экстрактивный [1].

Целью исследования являлась разработка технологии выделения лигнина экстракцией растворителями и получение полимера модификацией лигнина элементарной серой.

Древесная мука (100 г), просеянная через сито, экстрагируется холодной водой с эфиром, а потом 95 % этанолом. Затем выпаривается алкогольный экстракт в присутствии карбоната кальция. Осадок растирают с эфиром в порошок, фильтруют, сушат.

Установлено, что в зависимости от помола опилок и способа выделения, выход лигнина колеблется.

Температура плавления лигнина 125–255 °C. Влажный лигнин начинает плавиться при 50 °C.

В вязко текучее состояние лигнин переходит при 90–100 °С. Модификацию лигнина проводили серой. Для этого тщательно смешивали лигнин и серу в соотношение 1:2, после чего добавляли 10 % водного раствора щелочи (гидроксида калия). Нагревали до 160 °С. 2,5 часа. По окончании времени реакционную массу охлаждали, полимер отфильтровывали. Для удаления серы и щелочи промывают осадок водой. После проверки рН промывной воды, можно провести подкисление серной кислотой. Температура плавления сшитого лигнина составляет 325–355 °С.

Таблица 1. Выход лигнина в зависимости от степени помола

	Выход, %			
Размер частиц, мм	Экстрак- тивный метод	Кислотный метод	Щелоч- нойметод	
0,14	14,3	22,1	21,5	
0,5	13,8	18,7	19,0	
1,0	10,2	15,7	14,1	

Таблица 2. Основные характеристики сорбентов

№ п/п	Сорбент	НЕ г/г	Плаву- честь ч
1	Лигнин М	14,5	Более 650
2	Активирован- ный уголь	12,7	48

Адсорбционную способность и нефтеемкость (НЕ, Γ/Γ), сорбента определяли по методике ТУ 214-10942238-03-95 [2].

Способность сорбентов поглощать нефть оценивали следующим образом: на поверхности воды (площадь составляла 48,50 см²) создавали пленку нефти толщиной от 0,5 до 5мм. На поверхность пленки наносили сорбент, из расчета 0,3 г на 10 см² и выдерживали от 6 до 96 часов. По истечении времени сорбент отфильтровывали. Количество поглощенной нефти определяли

гравиметрическим методом. Были определены такие показатели как нефтеемкость и плавучесть [3]. Полученные результаты представлены в табл. 2.

Выводы

- 1. Установлено, что 1 мг сорбента способен адсорбировать 0,065 мг МГ, что составляет 6,5 % от массы сорбента.
- 2. Модифицированный лигнин по нефтеемкости и плавучести значительно превосходит промышленный активированной уголь.
- 3. Ротарь О.В., Егошина А.В. Способы модификации целлюлозосодержащих нефтесорбентов // XXIII Международный Биос-форум и Молодежная Биос-олимпиада 2018: сборник материалов, Санкт-Петербург, 19 Сентября-25 Октября 2018. Санкт-Петербург: Любавич, 2018. С. 267–271.

Список литературы

- 1. Смирнова А.И., Демьянцева Е.Ю. С506 Переработка и применение полимеров. Лигнины: Получение. Свойства. Переработка: учеб. пособие. СПб. : ВШТЭ СПбГУПТД, 2021. 98 с.
- 2. Архипов В.С. Определение адсорбционной способности торфа по метиленовому голубому. Томск: Изд-во Томского политехнического университета, 2011. 28 с.

ТРЕХМЕРНЫЕ ТАБЛИЦЫ МЕНДЕЛЕЕВА КАК НОВАЯ ИНФОГРАФИКА ПЕРИОДИЧЕСКОГО ЗАКОНА

А. С. Колдунова¹ Научный руководитель – учитель, м.н.с. Л. А. Ваймугин^{1,2} ¹МБОУ Лицей «Физико-техническая школа»

koldunovaanna@gmail.com ²ФГБУН «Институт общей и неорганической химии им. Н. С. Курнакова РАН» leonvay@rambler.ru

Значимую роль в современной химии как науке и учебной дисциплине играют процессы накопления экспериментальной и теоретической информации. Для полноценного функционирования химических лабораторий требуется их информационное оснащение. При наглядном комментировании понятий из курса общей химии оправдано использование открытых электронных справочных материалов. В связи с этим визуализация множественной однотипной химической информации представляется актуальной.

Таблица Менделеева представляет собой ключевую инфографику, отражающая суть периодического закона. В ней представлено широкое разнообразие элементов, которое удобно классифицируется на группы и периоды. Периодический закон в разных проявлениях позволя-

ет следить за изменением тех или иных свойств элементов или веществ на их основе внутри одной группы или периода. Однако подобные тенденции не всегда замечаются при просмотре таблицы Менделеева в ее традиционном, 2D-виде, поскольку двумерное изображение удобнее всего отображает положение элемента среди своих соседей. Следовательно, для описания взаимосвязей между свойствами элементов и веществ на их основе и положением в группе/периоде необходимо добавить еще одну составляющую и выделить для нее место в пространстве. Для этого нами была предложена 3D-визуализация таблицы Менделеева, где в плоскости расположены элементы по группам и периодам, а по вертикали отложены значения заданного свойства, характерного для элемента (Рис. 1). При