УДАЛЕННЫЙ МОНИТОРИНГ РЕАКЦИИ ПОЛЬЗОВАТЕЛЯ НА ВИРТУАЛЬНЫЙ КОНТЕНТ

Туев Д.В. ¹, Видман В.В. ²

¹ НИ ТПУ, г. Томск (студент гр. 8ИМ31 ОИТ, ИШИТР), e-mail: dvt18@tpu.ru

² НИ ТПУ, г. Томск (старший преподаватель ОИТ, ИШИТР), e-mail: vidman@tpu.ru

Аннотация

В докладе рассматриваются способы подключения датчиков к портативным VR-устройствам и записи данных с них. Был реализован прототип программного комплекса для мониторинга VR-пользователя. Он состоит из приложений для ПК и VR-шлема. Приложение для VR воспроизводит видео и передает данные на ПК. Приложение на ПК синхронно выводит видео и отображает принимаемые данные.

Ключевые слова: 360-видео, виртуальная реальность, психиатрия, Android, Unity.

Введение

В современном мире, пронизанном быстрыми технологическими изменениями, виртуальная реальность (VR) вступает в область психиатрии, предоставляя уникальные возможности для исследования, диагностики и терапии различных психических расстройств. Виртуальная реальность, представляющая собой симуляцию окружающей среды с использованием компьютерной графики, открывает новые перспективы в области психического здоровья. Применение VR в диагностике психиатрических расстройств создает контролируемую среду для проведения наблюдений и тестирования, что может существенно повысить объективность и репрезентативность результатов.

Самыми доступными на момент выполнения исследования являются портативные VR-системы (состоящие из шлема и пары контроллеров) от компаний Meta¹ и PICO. Они работают под управлением модифицированной версии операционной системы для мобильных устройств Android. Например, ОС на шлемах имеет более строгие ограничения доступа приложений к системе и отсутствие некоторых API, из-за чего не все Android-приложения поддерживаются. Для реализации VR-приложений на низком уровне используются проприетарные API от производителей устройств или открытый API OpenXR [2][7][8]. На высоком уровне часто используются коммерческие игровые движки, предоставляющие инструментарий для разработки трехмерных приложений, игр и симуляций.

Целью работы является проектирование и разработка приложения для удаленного мониторинга реакции пользователя на виртуальный контент.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- 1. Провести анализ способов подключения медицинских датчиков к портативным VRустройствам.
- 2. Спроектировать прототип с учетом медицинских и технологических требований.
- 3. Реализовать прототип.

Подключение датчиков к устройству

Для проектирования приложения требуется рассмотреть способы подключения устройств к VR-системам.

Подключение напрямую к устройству

Android предоставляет API для подключения внешних устройств по Bluetooth. Это позволяет подключаться к датчикам, поддерживающим Bluetooth или Bluetooth Low Energy. Данная технология поддерживается в микроконтроллере ESP32 и многих смарт-часах. Вследствие ограниченности версий Android, использующихся на VR-шлемах, связь по Bluetooth может работать некорректно.

Альтернативным способом является подключение по USB и использование ОТG-кабеля. Для Android существует библиотека, реализующая драйверы популярных USB-UART преобразователей [1]. Данный способ позволяет обмениваться данными с любыми современными

¹ Компания Meta Platforms Inc. внесена в реестр экстремистских организаций, ее деятельность в России признана экстремистской деятельностью.

микроконтроллерами или с ПК. Недостатком данного способа является наличие кабеля, способного повредить USB-порт на VR-шлеме при резком вращении головы пользователя.

Подключение по локальной сети

Любое приложение для Android имеет доступ к локальной сети устройства, даже на ограниченных версиях Android для VR-шлемов. Приложение может создавать TCP/IP-сокеты для подключения к другим хостам (TCP-клиент) или запускать TCP-сервер, к которому могут подключаться другие хосты.

Подключение по локальной сети через посредника

Данный способ является расширением предыдущего. На посреднике (ПК или смартфоне) запускается ТСР-сервер или клиент. Посредник же подключается к устройству посредством Bluetooth, USB или иного способа, принимает данные с датчика и передает их по локальной сети на VR-шлем.

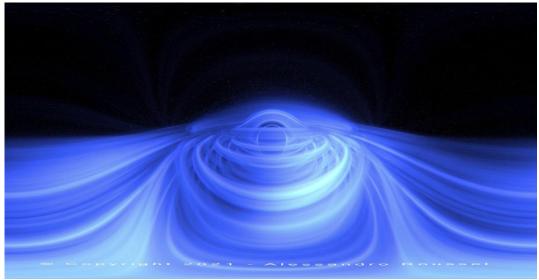
Подключение по сети Интернет

В данном случае датчик передает информацию на сервер, расположенный в облаке. Программа на VR-шлеме подключается к этому серверу по сети Интернет и принимает данные с датчика. Данный способ имеет место быть только если датчик не позволяет передавать данные по локальной сети напрямую, а только поддерживает связь со сторонним сервером, управляемым производителем датчика. Медицинские данные должны быть надежно защищены от доступа сторонних лиц, что в данном случае невозможно обеспечить.

Функции прототипа

Прототип приложения должен обладать следующим набором функций.

- 1. Прототип должен проигрывать контент в формате видео.
- 2. Прототип должен в VR-шлеме воспроизводить видео.
- 3. Прототип должен на ПК показывать изображение, которое видит VR-пользователь.
- 4. Прототип должен сохранять данные в файл.
- 5. Прототип должен работать на Meta Quest 2.
- 6. Прототип должен работать на РІСО 4.


Форматы вилео

Для реализации прототипа требуется исследовать, какие форматы видео используются в виртуальной реальности.

360-видео – это видео в сферическом формате. Оно может быть просмотрено в любом направлении. Для видео в формате 360 существует несколько способов проекции сферы на плоскую картинку.

- 1. Кубическая текстура (cubemap). Каждый кадр делится на сетку из 6 прямоугольников. Каждая ячейка этой сетки является одной из граней куба.
- 2. Равнопромежуточная проекция [3] (equirectangular projection). Сфера проецируется на прямоугольник по определенной формуле. Пример представлен на рисунке 1.

YouTube также поддерживает формат «mesh», при использовании которого в видеофайл записывается 3D-модель с произвольными позициями вершин и UV-координатами.

Puc. 1. Кадр 360-видео в формате равнопромежуточной проекции Источник: Falling into a realistic Black Hole (VR 360°) Автор: ScienceClic English

Формат VR180 был разработан YouTube. В отличие от 360-видео, его угол обзора – полусфера, но видео хранит изображение для двух глаз, тем самым предоставляя ощущение глубины. Спецификация VR180 [11] поддерживает только формат «mesh», описанный выше. Пример кадра в этом формате представлен на рисунке 2.

Puc. 2. Кадр VR180-видео Источник: Meanwhile 4D Автор: TomSka

Фоновая запись данных

В ходе исследования возникла гипотеза: возможно разработать приложение, которое будет в фоновом режиме записывать данные, пока на переднем плане работает игра или VR-плеер. Данное приложение, при срабатывании предварительно настроенного триггера, делает снимок экрана, и тем самым получает направление взгляда. Были найдены следующие варианты реализации: WebXR-плеер [4], запуск второго VR-приложения на фоне, перехват через OpenXR API Layers [6], служба Android для создания скриншотов.

В результате анализа каждого варианта реализации самым перспективным оказался последний вариант. WebXR-плееров с открытым исходным кодом и активной поддержкой найдено не было. Ни

Meta Quest, ни PICO не позволяют запускать несколько VR-приложений одновременно и не поддерживают OpenXR API Layers.

Для проверки гипотезы был создан прототип варианта реализации с использованием службы Android. Данный прототип после запуска создает снимки экрана каждые 5 секунд и сохраняет во внутреннее хранилище. В результате разработки прототипа было выявлено, что Meta Quest 2 не поддерживает Media Projection API [5], из-за чего приложение-прототип закрывается с ошибкой при попытке запустить службу. Но при тестировании на PICO 4 прототип запустился и функционировал корректно. Однако, такая реализация не имеет доступа к VR-датчикам (например, направлению взгляда глаз).

Система записи данных

Одними из функций прототипа являются запись данных в файл и их отображение. Для этого прототип программы должен иметь систему записи данных, собирающую информацию со всех настроенных датчиков. Реализованная система предоставляет интерфейсы для приема данных с датчиков (например, из VR-системы или по Bluetooth) и их последующей передачи (например, в файл или по сети). Наличие синхронизации изображения подразумевает клиент-серверную архитектуру и передачу данных от VR-шлема к ПК. Для этого и на ПК, и на VR-шлеме создается по одному экземпляру блока записи данных. По TCP/IP данные передаются с VR-шлема на ПК и выводятся на экране. Диаграмма обмена данными между приложениями представлена на рисунке 3.

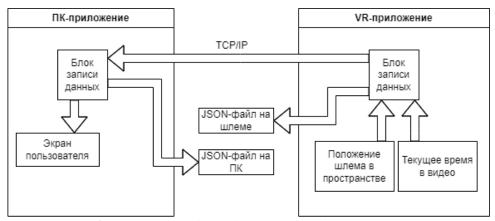


Рис. 3. Диаграмма обмена данными между устройствами

Результаты

Для реализации прототипа был выбран движок Unity. Он бесплатен для личного и академического использования, поддерживает VR на ПК и портативных шлемах, а также и имеет компонент для воспроизведения видео в качестве текстуры. Для декодирования видео из файла в текстуру используется компонент Video Player из Unity. Поддерживается видео в контейнере MP4 и кодеке H.264.

При запуске ПК-приложения, оно запускает сервер и ожидает подключения VR-приложения (рис. 4). Для реализации сетевого подключения была использована библиотека Netcode for GameObjects [1]. VR-приложение выводит список всех найденных серверов (рис. 5).

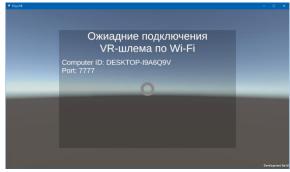


Рис. 4. Снимок стартового экрана ПК-приложения

Рис. 5. Снимок стартового экрана VR-приложения

После подключения VR-шлема, пользователю предоставляется список видео, доступных для проигрывания (рис. 6). После выбора видео, оно проигрывается и на VR-шлеме, и на ПК.

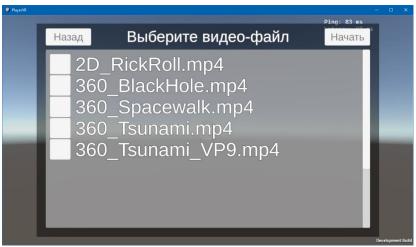


Рис. 6. Список видео в ПК-приложении

Во время проигрывания видео, направление взгляда выводится пользователю ΠK в виде кольца (рис. 7).

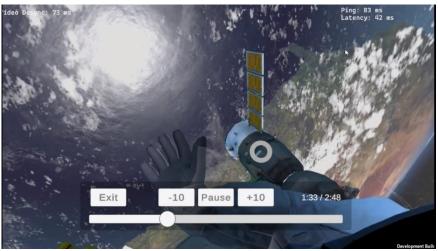


Рис. 7. Отображение видео в ПК-приложении

Заключение

На начальном этапе работы был проведен анализ способов подключения различных датчиков к портативным VR-системам. Было выявлено, что наиболее универсальными способами подключения является подключение по локальной сети устройства напрямую или с помощью посредника — ПК, который принимает данные от датчика и передает их по локальной сети.

В ходе проектирования и разработки прототипа приложения возникла гипотеза, что существует возможность разработать фоновую службу, которая будет записывать необходимые данные. Был разработан прототип, подтверждающий гипотезу. Однако, этот прототип имеет два существенных ограничения: он работает только на VR-шлемах РІСО и не имеет доступа к системе пространственного отслеживания, а значит не имеет возможность фиксировать ориентацию шлема в пространстве и направление взгляда.

В результате выполнения работы был спроектирован и реализован прототип приложения для воспроизведения VR-контента в видеоформате 360 и фоновой фиксации медицинских показателей. Прототип состоит из приложения для ПК и приложения для VR-шлема. И ПК, и VR-шлем, синхронно воспроизводят одно и то же видео. VR-приложение отправляет данные на ПК, который отображает их на экране.

Список использованных источников

- 1. About Netcode for GameObjects Unity3D [Электронный ресурс]. Режим доступа: https://docs-multiplayer.unity3d.com/netcode/current/about/ (дата обращения: 29.03.2024)
- 2. About OpenXR & Unity PICO developer [Электронный ресурс]. Режим доступа: https://developer-global.pico-interactive.com/document/unity-openxr/ (дата обращения: 29.03.2024)
- 3. Equirectangular Projection [Электронный ресурс]. Режим доступа: https://mathworld.wolfram.com/EquirectangularProjection.html (дата обращения: 29.03.2024)
- 4. Getting Started with PWAs** [Электронный ресурс]. Режим доступа: https://developer.oculus.com/documentation/web/pwa-gs/ (дата обращения: 29.03.2024)
- 5. Media Projection API Android [Электронный ресурс]. Режим доступа: https://developer.android.com/reference/android/media/projection/MediaProjection.html (дата обращения: 29.03.2024)
- 6. OpenXR Loader Design and Operation [Электронный ресурс]. Режим доступа: https://registry.khronos.org/OpenXR/specs/1.0/loader.html (дата обращения: 29.03.2024)
- 7. OpenXR Specification [Электронный ресурс]. Режим доступа: https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html (дата обращения: 29.03.2024)
- 8. OpenXR Support for Meta Quest and Quest 2 ² ** [Электронный ресурс]. Режим доступа: https://developer.oculus.com/documentation/native/android/mobile-openxr/ (дата обращения: 29.03.2024)
- 9. Unity User Manual [Электронный ресурс]. Режим доступа: https://docs.unity3d.com/Manual/index.html (дата обращения: 29.03.2024)
- 10. usb-serial-for-android [Электронный ресурс]. Режим доступа: https://github.com/mik3y/usb-serial-for-android (дата обращения: 29.03.2024)
- 11. VR180 Video Format Specification [Электронный ресурс]. Режим доступа: https://github.com/google/spatial-media/blob/master/docs/vr180.md (дата обращения: 29.03.2024)

² Веб-сайт Oculus принадлежит компании Meta Platforms Inc, которая внесена в реестр экстремистских организаций, ее деятельность в России признана экстремистской деятельностью.