#### СПИСОК ЛИТЕРАТУРЫ

- 1. Трухний А.Д. Парогазовые установки электростанций: учебное пособие для вузов. М.: Издательский дом МЭИ, 2013. 646 с.: ил.
- Гринчук А.С. Повышение эффективности утилизационных ПГУ за счет применения промежуточного перегрева пара //
  Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2008. № 5.
- 3. Трухний А.Д., Ломакин Б.В. Теплофикационные паровые турбины и турбоустановки: учебное пособие для вузов. М.: Издательство МЭИ, 2002. 540 с.: ил.

## ЭФФЕКТИВНОСТЬ ДОЖИГАНИЯ В КОТЛАХ-УТИЛИЗАТОРАХ ПГУ-ТЭЦ

### А.А. Бенедиктов, О.Ю. Ромашова

Томский политехнический университет, ИШЭ, НОЦ И.Н. Бутакова, группа 5БМ31

Использование комбинации парового и газового циклов позволяет достигать одного из самых высоких КПД по выработке электроэнергии. Также известно, что теплофикационный режим работы турбины позволяет повысить эффективность установки относительно конденсационного режима [1]. Дожигание, в свою очередь, не всегда имеет однозначно положительный эффект для тепловой экономичности установки и используется для разных целей.

Исследование направлено на поиск оптимального решения в теплофикационных ПГУ.

Согласно литературным источникам, использование дожигания оправдано в следующих случаях [2, с. 46]:

- повышение температуры выхлопных газов у ГТУ с низкотемпературными уходящими газами для уменьшения эрозийного износа последних ступеней ПТ;
  - поддержание параметров острого пара из-за сезонного снижения параметров за ГТУ;
- в целях дополнительного нагрева сетевой воды или получения пара для производственных нужд;
  - в целях получения прибыли от ценовой разницы на электроэнергию в течение суток.

В зависимости от схемы отпуска теплоты ПГУ-ТЭЦ можно разделить на два типа. В первом случае отпуск базовой тепловой нагрузки осуществляется в сетевой установке, питаемой паром из отборов теплофикационной турбины. Пик потребления может быть обеспечен пиковыми сетевыми подогревателями, запитанными паром КУ или пиковыми водогрейными котлами.

Во втором случае используются одноконтурные КУ с газовыми подогревателями сетевой воды (ГПСВ). Пар, как и в первом типе, направляется из КУ в теплофикационную паровую турбину. Но в отличие от первого типа ГПСВ нагревает воду параллельно теплофикационной установке паровой турбины. В данном случае пик потребления тепловой нагрузки обеспечивается дожиганием топлива КУ или также пиковыми водогрейными котлами.

В рамках исследования эффективности дожигания необходимо решать следующие задачи:

- анализ вариантов установки дожигания в одноконтурной ПГУ на номинальном режиме;
  - анализ варианта установки дожигания в двухконтурной ПГУ на номинальном режиме;
  - оптимизация параметров ПТУ;
  - выбор оптимального коэффициента теплофикации;
  - расчёт ПГУ на переменный режим с целью определения годовых показателей.

В рамках данной работы выполнены исследования по выбору места установки дожигающего устройства для одно- и двухконтурной  $\Pi\Gamma Y$ .

Исходные данные. За прототип ПГУ с одноконтурным КУ выбрана схема ПГУ, схема КУ которой представлена на рис. 1, где роль паровой турбины выполняет Т-22/28-2,8 (рис. 2). Данная турбина предназначена для работы в составе одноконтурной ПГУ-75. В качестве газовой турбины принята ГТЭ-65 производства «Силовые машины». Мощность базовая—61,5 МВт, мощность пиковая—65 МВт, температура газов перед турбиной 1280 °С, температура газов на срезе выхлопного патрубка — 555 °С, расход газа на выходе из ГТУ — 184 кг/с, КПД на клеммах генератора — 35,2 %, степень повышения давления — 15. В качестве топлива используем стандартное углеводородное топливо (85 % углерода и 15 % водорода). Коэффициент избытка воздуха принимаем равным 2,5. Параметры воздуха и продуктов сгорания приняты согласно [3, табл. 12.5].

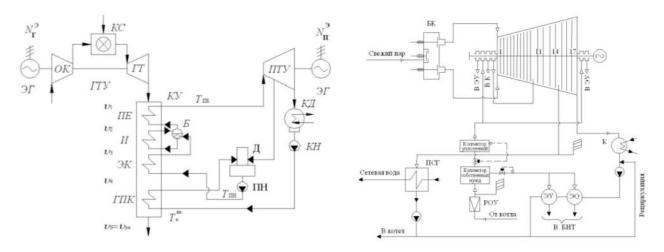



Рис. 9. Схема ПГУ-75

Рис. 10. Схема Т-22/28-2,8

За прототип ПГУ с двухконтурным КУ взята ПГУ-230, схема которой представлена на рис. 3. В качестве ГТУ здесь выбрана ГТЭ-160 производства «Силовые машины». Мощность на клеммах генератора — 157 МВт, температура газов перед турбиной 1070 °С, температура газов на срезе выхлопного патрубка — 537 °С, расход газа на выходе из ГТУ — 504 кг/с, КПД на клеммах генератора — 34,4 %, степень повышения давления — 11,1. При проведении расчета принимаем температурный напор в пароперегревателях  $\Delta t_{\text{пп}} = 30$  °С; температурный перепад в испарителях  $\Delta t_{\text{исп}} = 10$  °С; недогрев воды экономайзере до температуры насыщения 10 °С.

Выбор наилучшего места установки дожигающего устройства выполняется при изменении температуры газов за счет дожигания. Для схемы с дожиганием перед ПЕ выполняются вариантные расчеты при увеличении температуры до 750 °C [4, с. 32] с шагом 25 °C, значения теплоты дожигания  $Q_{\rm дож}$  фиксируются и затем используются при расчете показателей в других вариантах установки дожигающих устройств. Для всех мест оставляем только вариант с наибольшим КПД ПГУ (соответствует определенному значению  $Q_{\rm дож}$ ), учитывая, что температура уходящих газов не должна опускаться ниже 100 °C, чтобы избежать конденсации в рамках дымовой трубы.

| Тиолици 3. сривнение мест устиновки обжигиния в обноконтурном ку |                                     |                     |                                     |                     |                  |                      |                    |
|------------------------------------------------------------------|-------------------------------------|---------------------|-------------------------------------|---------------------|------------------|----------------------|--------------------|
| Место                                                            | $D_0, \frac{\kappa \Gamma}{\Gamma}$ | $N_{ m эПТУ}$ , МВт | $Q_{\scriptscriptstyle  m T}$ , МВт | $\eta_{ m e\Pi TY}$ | $\eta_{ m эПГУ}$ | θ <sub>yx</sub> , °C | $Q_{ m дож}$ , МВт |
| дожигания                                                        | ° с                                 |                     |                                     |                     |                  |                      |                    |
| Нет                                                              | 29,3                                | 17,3                | 68                                  | 0,1959              | 0,4477           | 127                  | 0                  |
| Перед ПЕ                                                         | 33                                  | 18,3                | 72                                  | 0,1854              | 0,4446           | 120                  | 5,3                |
| Перед И                                                          | 36                                  | 21,2                | 83,5                                | 0,1961              | 0,4538           | 100,7                | 14,9               |
| Перед ЭК                                                         | 31,7                                | 18,7                | 68                                  | 0,1959              | 0,4416           | 154,9                | 5,3                |
| Перед ГПК                                                        | 29,3                                | 17,3                | 68                                  | 0,2358              | 0,4477           | 204,3                | 14,9               |

Таблица 5. Сравнение мест установки дожигания в одноконтурном КУ

Из табл. 1 видно, что наибольший эффект по тепловой экономичности дает установка дожигающего устройства перед испарителем, так как в этом случае в первую очередь растёт количество пара, работающего в турбине. В местах перед ПЕ и перед ЭК установка дожигания не является целесообразной, так как КПД возрастают при уменьшении дожигания, достигая максимума в точке с его отсутствием.

В результате расчёта двухконтурного КУ были получены результаты для работы установки как в теплофикационном режиме, так и в конденсационном (табл. 2 и 3).

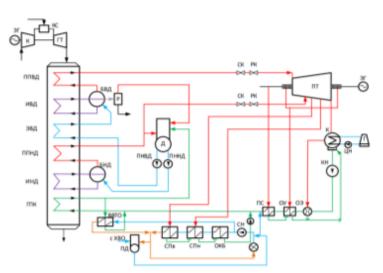



Рис. 11. Схема ПГУ-230

Таблица 6. Параметры двухконтурного КУ не зависящие от режима

| Место дожигания | $D_{\scriptscriptstyle \mathrm{B}\mathrm{\mathcal{I}}}, \frac{\mathrm{K}\Gamma}{\mathrm{c}}$ | $D_{\rm HJ}, \frac{{ m K}\Gamma}{{ m C}}$ | $Q_{\scriptscriptstyle \mathrm{T}}$ , MB $_{\mathrm{T}}$ | θ <sub>yx</sub> ,°C |
|-----------------|----------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|---------------------|
| Нет             | 60,3                                                                                         | 15,1                                      | 162,8                                                    | 119,9               |
| Перед ППВД      | 70,63                                                                                        | 12,48                                     | 180,2                                                    | 114,4               |
| Перед ИВД       | 74,94                                                                                        | 11,35                                     | 187,4                                                    | 112,2               |
| Перед ЭКВД      | 60,28                                                                                        | 27,9                                      | 191,3                                                    | 110,8               |
| Перед ППНД      | 60,28                                                                                        | 27,9                                      | 191,3                                                    | 110,8               |
| Перед ИНД       | 60,28                                                                                        | 29,53                                     | 194,9                                                    | 109,7               |

Таблица 7. Сравнение мест установки дожигания в двухконтурном КУ

|            |                                 | =                        |                      |                            |                          |                          |                      |                            |
|------------|---------------------------------|--------------------------|----------------------|----------------------------|--------------------------|--------------------------|----------------------|----------------------------|
| Место      | Т режим                         |                          |                      |                            | К режим                  |                          |                      |                            |
| дожигания  | $N_{\Pi 	ext{T} 	ext{y}}$ , МВт | $N_{\Pi 	ext{TY}}$ , MBT | $\eta_{\Pi	ext{TY}}$ | $\eta_{\Pi\Gamma 	ext{y}}$ | $N_{\Pi 	ext{TY}}$ , МВт | $N_{\Pi 	ext{TY}}$ , МВт | $\eta_{\Pi	ext{TY}}$ | $\eta_{\Pi\Gamma 	ext{y}}$ |
| Нет        | 60,2                            | 214,6                    | 0,7872               | 0,7311                     | 82,7                     | 237,1                    | 0,3544               | 0,5194                     |
| Перед ППВД | 77,6                            | 232                      | 0,8135               | 0,8398                     | 100,2                    | 254,6                    | 0,3725               | 0,5207                     |
| Перед ИВД  | 75,6                            | 230                      | 0,8447               | 0,8551                     | 98,3                     | 252,7                    | 0,3642               | 0,5168                     |
| Перед ЭКВД | 58,1                            | 212,6                    | 0,6726               | 0,8017                     | 89,8                     | 244,2                    | 0,3317               | 0,4994                     |
| Перед ППНД | 58,1                            | 212,6                    | 0,733                | 0,8017                     | 89,8                     | 244,2                    | 0,3317               | 0,4994                     |
| Перед ИНД  | 59,4                            | 213,8                    | 0,7101               | 0,8176                     | 91,9                     | 246,4                    | 0,3391               | 0,5039                     |

#### Выводы

Для ПГУ с одноконтурным КУ наиболее оправданным является установка дожигания перед испарителем. Также при замене ГПК на ГПСВ дожигание после ЭК будет оправданным.

Для ПГУ с двухконтурным КУ в режиме работы по тепловому графику наибольший прирост КПД будет давать установка дожига перед испарителем высокого давления, при работе в конденсационном режиме наибольший прирост КПД даст установка перед пароперегревателем высокого давления. Окончательный выбор места установки дожигающего устройства на ПГУ-ТЭЦ может быть выполнен на основе исследования годовых показателей работы установки.

#### СПИСОК ЛИТЕРАТУРЫ

1. Березинец П.А. Обоснование целесообразности реконструкции котельных и ТЭЦ с использованием газотурбинных установок // Новости теплоснабжения. – 2006. – № 6.

- 2. Трухний А.Д. Парогазовые установки электростанций: учебное пособие для студентов, обучающихся по направлениям подготовки «Энергетическое машиностроение» и «Теплоэнергетика и теплотехника». Москва: Издательский дом МЭИ, 2013. 646 с.: ил., цв. ил., табл.; ISBN 978-5-383-00721-1
- 3. Расчет показателей тепловых схем и элементов парогазовых и газотурбинных установок электростанций: учебное пособие / С.В. Цанев, В.Д. Буров, С.Н. Дорофеев и др.; дод ред. В.В. Чижова.— М.: Издательство МЭИ, 2000. 72 с.
- Култышев А.Ю., Голошумова В.Н., Алешина А.С. Парогазовые установки и особенности паровых турбин для ПГУ. СПб.: Санкт-Петербургский политехнический университет Петра Великого, 2022. – 163 с. – ISBN 978-5-7422-7740-8. – EDN CZGUGM.

# ИСТОРИЯ И ПЕРСПЕКТИВЫ БЕЛОЯРСКОЙ АТОМНОЙ СТАНЦИИ

## В.С. Салюков, Н.М. Космынина

Томский политехнический университет, ИШЭ, группа 5A11 Научный руководитель: Н.М. Космынина, к.т.н., доцент

История Белоярской атомной электростанции (АЭС) на Урале, начавшаяся в середине 1950-х гг., отражает масштабный путь развития ядерной энергетики в СССР и России. Построенная по инициативе И.В. Курчатова и под руководством Минсредмаша СССР станция стала местом для апробации новейших технологических решений и создания реакторов различных типов, в том числе уникальных быстрых реакторов с натриевым теплоносителем.

Первоначально предполагалось использование реакторов АМБ (Атом Мирный Большой) мощностью до 200 МВт. Выдача первого тока энергоблоком № 1 с реактором АМБ-100 в 1964 г. и опыт эксплуатации показал ряд проблем. Кроме того, разгерметизация топливных элементов и конструкционные сложности со временем потребовали досрочного закрытия этих реакторов.

Ключевым этапом в развитии станции стало строительство в 1968 году энергоблока № 3 с реактором на быстрых нейтронах БН-600, который, будучи первым в мире блоком такого масштаба, на практике подтвердил возможность эффективного использования быстрых реакторов в энергетике. БН-600, запущенный в 1980 г., применил трехконтурную систему охлаждения и пассивные системы безопасности, что обеспечило его долгую и безопасную эксплуатацию.

В начале 1990-х гг. в условиях новых требований безопасности и экономических трудностей разрабатывался проект энергоблока № 4 с реактором БН-800, завершенный в 2015 г. БН-800 стал крупнейшим промышленным реактором на быстрых нейтронах, а его конструкция включает дополнительные пассивные системы безопасности, позволяющие реактору автоматически снижать реактивность при аварийных ситуациях.

#### Описание процессов

Натрий первого контура, нагретый в реакторе до 547 °C, распределяется на три потока и подаётся в промежуточные теплообменники, где передаёт тепло натрию второго контура, охлаждаясь при этом до 354 °C. Затем охлаждённый натрий первого контура поступает во всасывающие полости насосов ГЦН-1, откуда снова подаётся в активную зону реактора.

Холодный натрий второго контура забирается насосами ГЦН-2 из буферных баков натрия (ББН) и подаётся в промежуточные теплообменники, где нагревается до 505 °C. Затем горячий натрий второго контура поступает в парогенераторы, сначала в пароперегревательные модули, а затем через переливные патрубки (ПП) – в испарительные модули. Охладившись в парогенераторе до 309 °C, натрий второго контура возвращается в ББН.