ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 86

1958 r.

О ВЛИЯНИИ НЕКОТОРЫХ ПАРАМЕТРОВ РАДИОЛОКАТОРА НА СРЕДНЕЕ ЧАСОВОЕ ЧИСЛО ОБНАРУЖЕННЫХ МЕТЕОРОВ

Е. И. ФИАЛКО

(Представлено научным семинаром раднотехнического факультета)

Введение

Численность метеоров, обнаруженных радиолокационной станцией, существенно зависит от некоторых параметров радиолокатора.

Экспериментальные [6] и теоретические [5] работы выяснили в основном зависимость среднего часового числа метеоров от длины волны, излучаемой мощности, мощности порогового сигнала приемника, формы диаграммы направленности антенной системы и т. д.

Однако остается неясным, в какой мере влияют на число обнаруженных метеоров форма огибающей излучаемого сигнала и форма резонансной характеристики приемника.

Из результатов, полученных Кайзером [5], следует, что среднее часовое число метеоров (N) может быть определено по приближенной формуле

$$N = A \cdot \left[\frac{\mathbf{P}_i}{\varepsilon} \right]^{\frac{S-1}{2}},\tag{1}$$

где P_i — излучаемая мощность; в случае импульсного режима работы P_i — максимальная мощность в излучаемом импульсе (пико-

- вая мощность);
- є мощность порогового сигнала приемника;
- S константа, характеризующая закон распределения метеоров по массе;
- *А* коэффициент, не зависящий от формы сигнала и формы резонансной характеристики приемника.

Раскроем зависимость N от формы огибающей излучаемого импульса и формы резонансной характеристики приемника, исходя из зависимости (1).

Для этой цели выразим предварительно мощность в импульсе через среднюю мощность излучения (при данной форме огибающей генерируемого импульса), а также определим мощность порогового сигнала при соответствующей форме резонансной характеристики приемника. Под Р_i следует понимать наибольшую мгновенную мощность в импульсе.

Обычно известны форма напряжения в импульсе в функции времени U(t), длительность такого импульса τ , отсчитываемая на определенном уровне от максимального мгновенного значения импульсного напряжения; средняя мощность P_0 и период посылки T_i .

Условием сравнения различных систем является равенство средних мощностей или равенство энергий в импульсах (A_i).

Поэтому выразим пиковую мощность P_i через P_0 или A_i . Энергия в импульсе равна

где

Р_{*i*_{мен}(t) - мгновенная мощность в импульсе. Выражение (2) можно представить в виде:}

$$A_{i} = P_{i} \cdot \frac{1}{P_{i}} \int_{-\frac{T}{2}}^{\frac{T}{2}} P_{i_{M2H}}(t) dt, \qquad (3)$$

где Р_і – максимальная мгновенная мощность в импульсе. Вычислим выражение

для прямоугольного импульса. Так как мощность пропорциональна квадрату напряжения и

$$u = \begin{cases} U_0 \cos \omega_0 t & |t| \leqslant \frac{\tau}{2} \\ 0 & |t| > \frac{\tau}{2} \end{cases},$$

тo

$$\frac{1}{P_{i}}\int_{-\frac{T}{2}}^{\frac{T}{2}}P_{i_{M2H}}(t) dt = \frac{1}{U_{0}^{2}}\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}U_{0}^{2}\cos^{2}\omega_{0}t dt$$

Выполнив интегрирование, получим:

28

$$\frac{1}{P_{i}}\int_{-\frac{T}{2}}^{\frac{T}{2}}P_{i,m_{2}m}(t)\cdot dt = \frac{\tau}{2}\left(1+\frac{T_{0}}{\tau}\cdot\frac{1}{2\pi}\cdot\sin 2\omega_{0}\tau'\right),$$

где $T_0 = \frac{2\pi}{\omega_0}$ — период высокочастотного заполнения импульса. Так как $\frac{T_0}{\tau} \ll 1$ и $|\sin 2\omega_0 \tau| \ll 1$, то вторым слагаемым правой части последнего тождества можно пренебречь. Таким образом, для импульса с прямоугольной огибающей

И

 $A_i = \mathbf{P}_i \cdot \tau \cdot \frac{1}{2} \,. \tag{3}$

В случае импульса любой формы представим энергию A_i по аналогии с прямоугольным импульсом в виде

$$A_i = \mathbf{P}_i \cdot \boldsymbol{\tau}_{\mathfrak{sg}} \cdot \frac{1}{2}, \qquad (4)$$

где эффективная длительность импульса равна, как это видно из сопоставления (3) и (4),

$$\mathbf{r}_{sof} = \frac{2}{\mathbf{P}_i} \int_{\frac{T}{2}}^{\frac{T}{2}} \mathbf{P}_{i_{M2H}}(t) \cdot dt$$
(5)

и, так как мощность пропорциональна квадрату напряжения, имеем

$$\tau_{s\phi} = \frac{2}{\mathbf{U}^2 \max_{max} \int_{T}^{T}} \mathbf{U}^2(t) \cdot dt .$$
 (6)

Таким образом, эффективная длительность импульса определяется как длительность импульса с прямоугольной огибающей, энергия которого равна энергии данного импульса, и амплитуда равна максимальной амплитуде данного импульса.

Из формулы (5) или (6) можно определить зависимость между эффективной длительностью импульса и длительностью импульса на определенном уровне:

$$\tau_{sgp} = \zeta_1(\tau)$$

29 '

В общем случае эта зависимость будет сложной; но для простых форм огибающих импульсов (прямоугольной, треугольной, вероятностной, косинусоидальной, экспоненциальной и т. п.) между $\tau_{s\phi}$ и τ существует линейная зависимость:

$$\tau_{\vartheta\phi} = \boldsymbol{a} \cdot \boldsymbol{\tau}. \tag{7}$$

Таким образом, форма импульса характеризуется коэффициентом *а*. Как известно,

$$A_i = \mathbf{P}_0 \cdot T_i \tag{8}$$

Из (8) и (4) имеем

$$P_i = 2 \frac{A_i}{\tau_{sp}} = 2 \frac{P_0 \cdot T_i}{\tau_{sp}}$$
(9)

или

$$P_i = 2 \frac{P_0 \cdot T_i}{a \cdot \tau} \tag{9a}$$

О мощности порогового сигнала

Рассмотрим теперь мощность порогового сигнала є. Как известно, мощность порогового сигнала определяется мощностью шумов приемника и внешних помех; характером нестационарных процессов, происходящих в приемнике; наблюдаемостью слабых сигналов на экране индикатора (или на фотопленке).

Обозначим минимальное отношение сигнала к шуму на выходе линейной части приемника (т. е. на входе детектора), при котором обеспечивается уверенное¹) обнаружение слабого сигнала на экране индикатора, коэффициентом ξ :

$$\left(\frac{U_c}{U_u}\right)_{\substack{Bbl x \\ min}} = \xi.$$
(10)

Величина зависит от ряда факторов: от формы выходного импульса (а следовательно, от формы входного импульса, формы резонансной характеристики линейной части приемника, соотношения между длительностью импульса и полосой пропускания линейной части приемника), формы амплитудно-частотной характеристики и величины полосы пропускания усилителя низкой частоты, от периода посылки T_i , наличия или отсутствия детектирования, от скорости развертки, режима индикации и т. д.

Амплитуда огибающей напряжения импульсного сигнала на выходе линейной части приемника равна:

$$\mathbf{U}_{c_{Bblx}} = \mathbf{U}_{c_{Bx}} \cdot \mathbf{K}_{\mathbf{0}} \cdot \boldsymbol{\psi} , \qquad (11)$$

где

- U_{c_{gx} амплитуда огибающей импульсного сигнала на входе приемника:}
 - К₀ коэффициент усиления линейной части приемника на резонансной частоте ω₀;

¹) Например, обнаружение с вероятностью в 90%.

у-коэффициент, характеризующий изменение амплитуды импульса вследствие искажений, вносимых линейной частью приемника.

Заметим, что если бы на вход приемника подать незатухающие колебания с амплитудой $U_{c_{\theta X}}$ и частотой ω_0 , то амплитуда выходного сигнала равнялась бы $K_0 U_{c_{\theta X}}$ (и в этом случае $\psi = 1$). Если же на вход приемника подать импульсный сигнал с амплитудой Ucar, то за счет нестационарных процессов выходное напряжение, вообще говоря, не будет равно $K_0 \cdot U_{c_{gx}}$, что учитывается коэффициентом ψ .

Напряжение флюктуационных шумов на выходе линейной части приемника определится из выражения

$$\overline{\mathbf{U}}^2_{\boldsymbol{\mathcal{U}}_{\boldsymbol{\boldsymbol{\delta}}\boldsymbol{\boldsymbol{b}}\boldsymbol{\boldsymbol{\lambda}}\boldsymbol{\boldsymbol{x}}}} = \overline{\mathbf{U}^2}_{\boldsymbol{\boldsymbol{\mathcal{U}}}_{\boldsymbol{\boldsymbol{\delta}}\boldsymbol{\boldsymbol{x}}}} \cdot \mathbf{K}_0^2, \tag{12}$$

где $\overline{\mathbf{U}}^2_{\mathcal{M}_{\theta, X}}$ — средний квадрат напряжения флюктуаций на входе приемника.

Подставляя (11) и (12) в (10), имеем:

$$\frac{\mathbf{U}_{c_{\boldsymbol{g}\boldsymbol{\chi}}\ \mathrm{min}}^{2}\cdot\mathbf{K}_{0}^{2}\psi^{2}}{\overline{\mathbf{U}}_{\boldsymbol{\mu}_{\boldsymbol{g}\boldsymbol{\chi}}}^{2}\cdot\mathbf{K}_{0}^{2}}=3$$

или, так как мощность пропорциональна квадрату напряжения.

$$\frac{P_{c_{\theta,\chi},\min},\psi^2}{P_{iu_{\theta,\chi}}} = \xi^2.$$

Так как $P_{c_{\boldsymbol{\beta}\boldsymbol{\mathcal{X}}}, \min} = \varepsilon$, то

$$\varepsilon = P_{\mathcal{M}_{\mathcal{B}\mathcal{X}}} \cdot \frac{\xi^2}{\psi^2}.$$

Как известно, 1)

$$P_{\mathcal{U}_{\mathcal{B}\mathcal{X}}} = k \cdot T \Delta f_{\mathcal{U}} F \cdot ,$$

где *F* коэффициент шумов приемника;

 Δf_{m} шумовая полоса линейной части приемника; T абсолютная комнатная температура;

k — постоянная Больцмана.

Таким образом:

$$\varepsilon = k T \Delta f_{\mu\nu} \cdot F \cdot \frac{\xi^2}{\Psi^2}.$$
 (13)

Под шумовой полосой понимают, как известно [3], •

$$\Delta f_{uu} = \int_{0}^{\infty} y^2 (f) df,$$

$$P_{\mathcal{U}_{RX}} = q \cdot \kappa \cdot T \cdot \Delta f_{\mathcal{U}} \cdot F$$

Эта формула справедлива, когда антенна согласована со входом приемника. В противном случае надо учесть коэффициент несогласованности q [3]. При этом

где y(f) резонансная характеристика линейной части приемника. Между шумовой полосой Δf_m и полосой пропускания на определен-

ном уровне ¹) ΔF существует, вообще говоря, сложная зависимость

$$\Delta f_{\mu\nu} = \varphi_2 (\Delta F).$$

Но в ряде случаев – это простая линейная зависимость:

$$\Delta f_{u} = \boldsymbol{b} \cdot \Delta \boldsymbol{F}. \tag{14}$$

Подставляя (14) в (13), имеем

$$\varepsilon = \kappa \cdot T \cdot \Delta F \cdot b \cdot F \cdot \frac{\xi^2}{\psi^2}$$
.

Как известно [1, 2], при данных формах резонансной характеристики линейной части приемника и огибающей входного импульса, всегда существует оптимальное соотношение между полосой пропускания линейной части приемника и длительностью импульса, при котором

отношение сигнал на выходе приемника будет наибольшим (при шум

данной амплитуде входного сигнала):

$$\Delta F_{onm} = \varphi_3(\tau) : \tag{15}$$

Эта зависимость имеет вид [1,2]:

$$\Delta F_{onm} = \frac{c}{z} , \qquad (16)$$

где с определяется формой амплитудно-частотной характеристики линейной части приемника и формой огибающей входного импульса.

Примечание. В большинстве случаев метеорный след не вызывает существенных искажений формы импульса. Однако в случае нормальной поляризации волны относительно следа могут возникнуть заметные искажения формы импульса [7, 8]. В этом случае в (15) должны быть учтены избирательные свойства метеорного следа.

Итак, в случае выбора оптимальной полосы пропускания:

$$\varepsilon = \frac{\kappa \cdot T \cdot F}{\tau} \cdot b \cdot c \cdot \frac{\xi^2}{\Psi^2} . \tag{17}$$

Заметим, что коэффициент *b* определяется формой резонансной характеристики приемника; коэффициенты *с* и ф определяются как формой резонансной характеристики приемника, так и формой огибающей входного импульса; коэффициент & определяется как формой сигнала и формой резонансной характеристики приемника, так и формой амплитудно-частотной характеристики и величиной полосы пропускания усилителя низкой частоты.

Исследования прохождения импульсных сигналов через избирательные системы, выполненные В. И. Сифоровым, А. П. Белоусовым, С. И. Евтяновым и др., подготовили общирный материал, позволяю-

1) Например, на уровне "0,7".

щий подсчитать коэффициенты с и ψ. Подсчет коэффициента b не вызывает затруднений.

Определение коэффициента ξ, вообще говоря, производится экспериментальным путем.

Метод оценки формы резонансной характеристики приемника и формы огибающей генерируемого импульса с точки зрения численности обнаруживаемых метеоров

Подставив выражения мощности в импульсе P_i (9 или 9а) и мощности порогового сигнала ε (13 или 17) в формулу для среднего часового числа наблюдаемых метеоров (1), получим:

$$N = A \cdot (B \cdot D \cdot P_0)^{\frac{s-1}{2}},$$

где

$$B = \frac{\psi^2}{\vartheta^2 \cdot \tau_{\vartheta\phi} \cdot \Delta f_{uu}}, \qquad (18)$$
$$D = \frac{2 T_i}{\kappa \cdot T \cdot F}.$$

Отношение средних часовых чисел метеоров, обнаруживаемых двумя радиолокаторами, различающимися лишь формами резонансных характеристик приемников и формами огибающих генерируемых импульсов, будет

$$\frac{N_1}{N_2} = \left(\frac{B_1}{B_2}\right)^{\frac{s-1}{2}}.$$
(19)

Если два локатора (с разными формами резонансных характеристик приемников и разными формами импульсов) обнаруживают одинаковое число метеоров, то отношение средних мощностей излучения будет

$$\frac{P_{01}}{P_{02}} = \frac{B_2}{B_1}$$
(20)

(индексы 1 и 2 в (19) и (20) соответствуют первому и второму радиолокаторам).

В случае, когда между полосой пропускания линейной части приемника ΔF и длительностью входного импульса т выдерживается оптимальное соотношение ($\Delta F_{onm}.\tau=c$), а между полосой шумов Δf_{ut} и полосой пропускания ΔF , а также между τ и эффективной длительностью импульса $\tau_{3\phi}$ существует линейная зависимость ($\tau_{3\phi} = a \tau$; $\Delta f_{ut} = b \cdot \Delta F$), выражение (18) для коэффициента *B* примет вид:

$$B = \frac{\psi^2}{z^2 \cdot a \cdot b \cdot c} \quad . \tag{21}$$

Таким образом, для реализации описанного метода следует определить 5 коэффициентов: a, b, c, ψ и ξ .

3. Изв. ТПИ, т. 86.

Перейдем к рассмотрению некоторых частных случаев. Особый интерес представляют случаи предельных форм резонансных характеристик приемников и предельных форм огибающих излучаемых импульсов.

В связи с этим рассмотрим прямоугольную и вероятную аппроксимации форм резонансных характеристик и огибающих импульсов.

Случай вероятностной аппроксимации (колоколообразный импульс и колоколообразная резонансная характеристика)

Импульс, генерируемый передатчиком радиолокатора, описывается в этом случае уравнением:

$$U = U_0 e^{-4 \left(\frac{t}{\tau}\right)^2} \cos \omega_0 t, \qquad (22)$$

где τ —длительность импульса на уровне $\frac{O_0}{e}$.

Полагаем, что форма импульса на входе приемника совпадает с формой генерируемого импульса. Таким образом, огибающая импульса вероятностная или колоколообразная кривая (кривая Гаусса); резонансная характеристика приемника в этом случае также является вероятностной кривой:

$$y = e^{-\beta(\omega-\omega_0)^2},$$

или, как нетрудно показать,

$$v = e^{-2\ln 2\left(\frac{\Delta f}{\Delta F}\right)^2},$$

где $\Delta f = f - f_0$,

Δ*F*—полоса пропускания на уровне 0,7. Этот случай рассмотрен А. П. Белоусовым [2].

1

Белоусовым показано, что оптимальная полоса пропускания равна

$$\Delta F_{onm} = \frac{0.75}{\tau}, \qquad (23)$$

причем полоса отсчитывается на "уровне 0,7", а длительность импульса—на уровне $\frac{U_0}{e}$. Сопоставляя выражения (16) и (23)—заключаем, что c = 0,75.

Белоусовым также показано, что амплитуда сигнала на выходе линейной части приемника равна

$$U_{c_{\beta b l x \max}} = \frac{U_0 K_0}{\sqrt{1+4 \left(\frac{4}{2\pi \cdot \Delta F_1 \cdot \tau}\right)^2}},$$

где U₀ — амплитуда огибающей входного сигнала (U₀ = U_{c_{в к} max);}

К₀ — коэффициент усиления линейной части приемника на резонансной частоте;

-34

 $\Delta F_{\frac{1}{e}}$ — полоса пропускания линейной части приемника на "уровне $\frac{1}{e}$ ".

Для случая оптимальной полосы пропускания, т. е. когда

$$\Delta F = \Delta F_{onm} = \frac{0.75}{\tau} \qquad 2\pi \cdot \Delta F_{\frac{1}{e} \circ nm} = \frac{8}{\tau}$$

$$U_{c_{Bblx} \max} = \frac{U_0 K_0}{\sqrt{2}}.$$
(24)

И

Сопоставляя (11) и (24), заключаем, что

$$\psi = \frac{1}{\sqrt{2}}.$$

Заметим, что в случае вероятностной резонансной характеристики фазо-частотная характеристика линейна [2].

Найдем теперь связь между шумовой полосой Δf_{uu} и полосой пропускания $\Delta F_{0,7}$. В работе Р. Д. Лейтес [4] сказано, что между Δf_{uu} и $\Delta F_{0,7}$ существует весьма простое соотношение:

$$\Delta f_{uu} = \frac{1}{2} \sqrt{\frac{\pi}{\ln 2}} \cdot \Delta F_{0.7} = 1,065 \cdot \Delta F_{0.7} . \qquad (25)$$

Следует, однако, заметить, что это соотношение справедливо лишь в случае, когда полоса пропускания много меньше резонансной частоты усилителя f_0 :

$$\frac{\Delta F_{0.7}}{f_0} \ll 1.$$

Полагая, что условие (26) выполняется, заключаем из сопоставления (14) и (25):

$$b = 1,065.$$

Остается найти связь между эффективной длительностью импульса $\tau_{s\phi}$ и длительностью импульса τ на уровне $\frac{U_0}{e}$. Подставив в форму-. лу (6) выражение (22) и учитывая тождества, упрощающие запись,

$$\mathbf{U}_{c_{g_X}}(t) = \mathbf{U}$$
 и $\mathbf{U}_{c_{g_X}\max} = \mathbf{U}_0$,

получим:

$$\tau_{3\phi} = \frac{2}{U_0^2} \int_{0}^{\frac{T}{2}} U_0^{-2} e^{-2\left(\frac{2t}{\tau}\right)^3} \cos^2 \omega_0 t \cdot dt.$$

35

Учитывая четность подинтегральной функции и используя тождество $\cos^2 \omega_0 t = \frac{1}{2} + \frac{1}{2} \cos 2 \omega_0 t$, перепишем последнее выражение в виде:

$$\tau_{g\phi} = 2 \int_{0}^{\frac{T}{2}} e^{-2\left(\frac{2t}{\tau}\right)^{2}} df + 2 \int_{0}^{\frac{T}{2}} e^{-2\left(\frac{2f}{2}\right)^{2}} \cos\left(2\omega_{0} t\right) dt.$$

В радиолокации $T \gg \tau$; функция e^{-x^2} спадает весьма быстро. Поэтому замена верхнего предела на ∞ не вызовет сколь-либо существенной погрешности ¹).

Используя табличные интегралы [9]

$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$

И

$$\int_{0}^{\infty} e^{-a^{2}x^{3}} \cos bx \cdot dx = \frac{\sqrt{\pi}}{2} \cdot \frac{e^{-\frac{b^{2}}{4a^{2}}}}{a}$$

получим

$$\tau_{s\phi} = \tau \frac{\sqrt{2\pi}}{4} + \tau \frac{\sqrt{2\pi}}{4} \cdot e^{-\frac{1}{4} \left(\frac{\omega_0 \tau}{\sqrt{2}}\right)^2}$$

или

$$\tau_{\mathfrak{sgg}} = \tau \frac{\sqrt{2\pi}}{4} \left[1 + e^{-\frac{1}{8} (\omega_0 \tau)^2} \right].$$

Обычно $\omega_0 \tau = 2 \pi \frac{\tau}{T_0} \gg 1$, так как в импульсе содержится значительное число периодов колебаний промежуточной и тем более радиочастоты.

Поэтому

$$e^{-rac{1}{8}(\omega_{\mathfrak{g}}\,\mathfrak{z})^{2}}\ll 1$$

и, следовательно,

$$\tau_{\partial \phi} \simeq \tau \frac{\sqrt{2\pi}}{4} \quad . \tag{27}$$

Сопоставляя (7) и (27), заключаем, что

$$a = \frac{\sqrt{2\pi}}{4} = 0,63.$$

1) Можно сразу рассматривать одиночный импульс с $T = \infty$. 36 Принисывая коэффициентам *a*, *b*, *c* и у в случае колоколообразного импульса и колоколообразной характеристики индекс "1", имеем:

$$a_1 = 0,63$$

 $b_1 = 1,065$
 $c_1 = 0,75$
 $\psi_1 = 0,707$

и, следовательно,

$$B_1 = \frac{\psi_1^2}{a_1 \cdot b_1 \cdot c_1 \cdot z_1^2} = \frac{1}{z_1^2} .$$
 (28)

Случай прямоугольной аппроксимации (прямоугольная форма огибающей импульса и прямоугольная форма резонансной характеристики приемника)

На вход линейной колебательной системы, обладающей прямоугольной резонансной и прямолинейной фазо-частотной характеристиками, действует импульс колебательного напряжения длительностью с прямоугольной огибающей кривой:

$$\mathbf{U} = \begin{cases} \mathbf{U}_0 \cdot \cos \omega_0 t & |t| \leq \frac{\tau}{2}, \\ 0 & |t| > \frac{\tau}{2}. \end{cases}$$

Этот случай рассмотрен В. И. Сифоровым в ряде работ [1, 3 и др] Сифоровым показано, что оптимальная полоса пропускания частот равна [3]

$$\Delta F_{onm} = \frac{1.37}{\tau} \quad . \tag{29}$$

Сопоставляя выражения (16) и (29), заключаем, что c = 1,37. Максимальная амплитуда напряжения сигнала на выходе системы равна [3]

$$\mathbf{U}_{c_{gblx}} = \frac{2}{\pi} \cdot K_0 \cdot U_0 Si \cdot \frac{\mathbf{x}}{2},$$

тде *K*₀ — коэффициент усиления системы;

$$x = \pi \cdot \tau \cdot \Delta F$$
$$U_0 = U_{c_{\theta X} \max}$$

В случае $\Delta F = \Delta F_{onm}$ x = 4,3

И

$$U_{c_{Bblx max}} = \frac{2}{\pi} . K_0 . U_0 . Si (2,15).$$

Так как Si (2,15) = 1,6682, то

$$\mathbf{U}_{c_{\beta b t X} \max} = 1,062 \cdot \mathbf{K}_0 \mathbf{U}_0. \tag{30}$$

Сравнивая (11) и (30), заключаем, что $\psi = 1,062$. Совершенно очевидно, что в данном случае шумовая полоса равна полосе пропускания частот:

$$\Delta f_{\mu} \equiv \Delta F \,. \tag{31}$$

Сопоставляя (19) и (31), имеем

b=1.

Совершенно очевидно также, что для импульса с прямоугольной огибающей

$$\tau_{adt} \equiv \tau \tag{32}$$

и, таким образом, из (7) и (32)

a = 1.

Приписывая коэффициентам в случае прямоугольного импульса и прямоугольной характеристики индекс "2", имеем:

$$a_2 \equiv 1, \\ b_2 \equiv 1, \\ c_2 \equiv 1,37, \\ \psi_2 \equiv 1,062$$

и, следовательно,

$$B_2 = \frac{\psi_2^2}{a_2 \cdot b_2 \cdot c_2 \cdot \xi_2^2} = \frac{0.825}{\xi_2^2}.$$
 (33)

Замечание о коэффициенте ξ

Для сравнения рассмотренных частных случаев необходимо сопоставить коэффициенты ξ_1 и ξ_2 , характеризующие наблюдаемость слабых вероятностного и прямоугольного сигналов (прошедших через линейную часть приемника) на фоне помех на экране электронно-лучевого индикатора (или на фотопленке).

Для точного определения коэффициентов ξ₁ и ξ₂ требуется тщательное экспериментальное исследование.

Для приближенного же решения задачи можно ограничиться следующим рассуждением:

Хотя прямоугольный сигнал по форме резко отличается от вероятностного, коэффициенты ξ_1 и ξ_2 весьма близки по величине. Это объясняется тем, что при оптимальной полосе пропускания выходной сигнал приобретает сглаженную форму и весьма далек от прямоугольника, даже если входной сигнал—прямоугольный.

Сравнивая выходные прямоугольный и вероятностный сигналы, нетрудно показать, что формы основных частей сигналов весьма сходны. Поэтому условия наблюдаемости таких сигналов на фоне флюктуационных помех не могут быть существенно различными и, как следствие, коэффициенты ξ_1 и ξ_2 не могут существенно отличаться друг от друга и в первом приближении могут быть приняты равными:

$$\xi_1 \approx \xi_2$$
.

Сравнение рассмотренных частных случаев

Из (19), (21) и (28), (33) заключаем, что ¹)

$$\frac{N_1}{N_2} = \left[\frac{B_1}{B_2}\right]^{\frac{s-1}{2}} = \left[\frac{1}{\xi_1^2} \cdot \frac{\xi_2^2}{0,825}\right]^{\frac{s-1}{2}} = \left[1,21 \cdot \frac{\xi_2^2}{\xi_1^2}\right]^{\frac{s-1}{2}}$$

и при $s \approx 2^{\circ}$

$$\frac{N_1}{N_2} \approx 1.1 \quad \frac{\xi_2}{\xi_1}.$$

Так как при оптимальном соотношении между полосой пропускания и длительностью импульса $\xi_1 \approx \xi_2$,

то

$$\frac{N_1}{N_2} \approx 1.1$$

И

$$\frac{P_{01}}{P_{02}} = \frac{B_2}{B_1} \approx 0.83.$$

Это означает, что система с колоколообразным импульсом и резонансной характеристикой обнаруживает несколько большее число метеоров, чем система с прямоугольным импульсом и прямоугольной формой резонансной характеристики приемника. Этот выигрыш, однако, весьма невелик.

Так как система с гладким импульсом и гладкой формой резонансной характеристики значительно проще и вместе с тем обнаруживает не меньшее число метеоров, чем система с прямоугольной резонансной характеристикой и прямоугольной огибающей импульса, то первая система и является более предпочтительной, если только к радиолокатору не предъявляются специальные требования.

Случай неоптимального соотношения между τ и Δ*F* требует дополнительного рассмотрения.

Выводы

1. Дан простой метод сравнения различных форм резонансных характеристик приемных устройств и форм огибающих генерируемых импульсов с точки зрения численности обнаруживаемых метеоров.

2. Рассмотрены две системы: колоколообразный импульс—колоколообразная резонансная характеристика приемника; прямоугольный импульс—прямоугольная резонансная характеристика приемника.

Рассмотрение предельных случаев (прямоугольной и вероятностной аппроксимаций) показывает, что различие форм импульсов и резонансных характеристик мало существенно с точки зрения численности обнаруженных метеоров.

3. В случае оптимального соотношения между длительностью импульса и полосой пропускания несколько лучший результат даст система с колоколообразными формами импульса и резонансной характеристики приемника.

4. Таким образом, если к радиолокатору, предназначенному для метеорных наблюдений, не предъявляются специальные требования

Этот результат справедлив в случае приема неустойчивых радиоэхо.

(точное определение координат и т. п.), целесообразно использовать резонансный усилитель (а не полосовой усилитель с резонансной характеристикой, близкой к прямоугольной) и гладкий (а не прямоугольный) импульс.

Этот вывод оправдывается также простотой такой системы в производственном и эксплуатационном отношениях.

ЛИТЕРАТУРА

1. Сифоров В. И. О влиянии помех на прием импульсных радиосигналов. Радиотехника № 1, 1946.

2. Белоусов А. П. О наивысшей реальной чувствительности нипульсного приемника. Радиотехника № 5, 1946.

3. Сифоров В. И. Радиоприемные устройства, Воениздат. 1951. 4. Лейтес Р. Д. Процессы установления в многокаскадном резопансном усилителе. Радиотехника № 3. 1947.

5. T. R. K a i s e r—Theory of the Meteor Height Distribution Obtained from Radio-Echo Observations., Mon. Not. R. A. S., 1954, v. 114, No. 1., pp. 39-62.

6. D. W. R. Mckinley-Variation of Meteor Echo Rates with Radar System Parameters.

Can. Journ. Phys., 1951, v. 29, No. 5, pp. 403-426. 7. T. R. Kaiser, R. I. Closs-Theory of Radio Reflections from Meteor Trails, Phil. Mag., Ser. 7. 1952. v. 43. No, 336. p. p. 1, 32. 8. Немирова Э. К. Искажение импульсных сигналов при резонансном отра-жении от метеорных следов. Известия ТПИ, т. 86, 1958 г.

9. Бронштейн, И. Н. и Семендяев К. А. Справочник по математике, огиз, 1945.