РАСЧЕТ ЭЛЕМЕНТОВ СХЕМЫ ИНЖЕКЦИИ ЭЛЕКТРОНОВ В БЕТАТРОНЕ

В. М. РАЗИН

(Представлено научным семинаром физико-технического факультета)

В качестве типовой схемы инжекции в бетатронах конструкции ТПП принята схема, изображенная на рис. 1. Такая схема применяется в случае. если частота повторения импульсов в разрядной цепи равна частоте питающего зарядный трансформатор Т_а тока.

Схема работает следующим образом. Зарядка конденсаторов формирующей линии ФЛ производится положительной полуволной напряжения от зарядного трансформатора T_3 через вентиль ВГ, зарядное сопротивление R_3 и первичную обмотку импульсного трансформатора ИТ. Затем, когда на аноде вентиля ВГ имеет место отрицательная по отношению к потенциалу земли полуволна напряжения, происходит разряд формирующей линии ФЛ на первичную обмотку импульсного трансформатора ИТ через коммутирующий тиратрон ТГ (при подаче на его сетку управляющего импульса).

Рис. 1

При этом во вторичной обмотке импульсного трансформатора ИТ возникает короткий импульс высокого напряжения, подаваемый на электроды электронной пушки бетатрона или синхротрона. При правильной фазировке (описанной выше) процессы в зарядной и разрядной цепях протекают в различные моменты времени и могут быть рассмотрены раздельно. Возможность раздельного рассмотрения оправды-

Рис. 2. *Јм* — ток в катушках электромагнита. *Uм* — напряжение на электромагните. *Uc* — напряжение на емкости *C*.

вает также то обстоятельство, что длительность процессов в обеих цепях резко различна. Изменение напряжения на формирующей линии при правильной фазировке имеет вид, изображенный на рис. 2.

Расчет элементов разрядной цепи

В разрядную цепь входят элементы: формирующая линия ФЛ, импульсный трансформатор ИТ с сопротивлением R для согласования волнового сопротивления линии с нагрузкой и коммутирующий тиратрон ТГ. Следует отметить, что здесь мы не будем рассматривать расчет сеточной управляющей цепи тиратрона ТГ, так как в литературе [1, 2, 3] имеются достаточно полные сведения по этому вопросу, однако укажем, что при расчете должно быть выполнено одно важное для схемы инжекции требование, а именно: разброс срабатывания тиратрона по времени не должен превышать сотых долей микросекунды.

Проблема впуска электронов в ускорительную камеру бетатрона является одной из важнейших в ряду проблем техники индукционного ускорения. В первых бетатронах применялись различные методы формирования напряжения на электродах электронной пушки.

В последних ускорительных установках для этой цели применялся воздушный трансформатор, на первичную обмотку которого разряжался через коммутирующий разрядный прибор заряженный конденсатор. На выводах вторичной обмотки воздушного трансформатора получался импульс достаточной амплитуды и определенной длительности.

В 1948 г. на кафедре техники высоких напряжений Томского политехнического института была высказана мысль о возможности применения для формирования импульса напряжения формирующей искусственной линии и импульсного трансформатора с железным сердечником подобно тому, как это делается в радиолокационной технике в модулирующих устройствах. В 1949—1950 гг. появились сведения о применении подобной схемы для питания электродов электронной пушки бетатрона [4, 5].

На кафедре эта проблема также была разрешена. Ниже приводится расчет импульсного трансформатора с железным сердечником и формирующей искусственной линии для формирования импульса напряжения на электродах электронной пушки. Следует отметить, что методика расчета и конструирования ИТ получила развитие в целом ряде работ [6—11 и др.]

В настоящей статье используются результаты этих работ, на основании которых нами разработана методика расчета импульсного трансформатора для электронной пушки бетатрона. В основу расчета были положены следующие требования:

1. Амплитуда импульса напряжения должна быть не менее 60 кв, ток в импульсе порядка 1--3 а.

2. Форма импульса должна быть такой, чтобы при напряжении, близком к максимальному, имелись участки с возрастающим напряжением небольшой крутизны.

3. Длительность импульса должна быть минимальной, возможной для получения указанного напряжения, порядка нескольких микросекунд.

Значительно менее жесткие требования в отношении формы трансформируемого импульса напряжения по сравнению с требованиями в радиолокационной технике позволили спроектировать и изготовить ИТ с большим коэффициентом трансформации. Для изготовления сердечника оказалось возможным применение обычной трансформаторной стали марки Э 42, толщиной 0,35 *мм*. В качестве коммутирующего прибора применен тиратрон типа ТГИ-200 с анодным напряжением 3.5 кв и допустимой амплитудой тока 200 *а*.

Расчет ИТ с железным сердечником произведен в следующем порядке.

Исходные данные для расчета

1. Для расчета сердечника ИТ необходимо иметь зависимость магнитной проницаемости μ_{Δ} на частном цикле намагничивания от приращения индукции ΔB_c при униполярном намагничивании. Так как магнитная характеристика в сильной степени зависит от величины воздушного зазора в магнитной цепи, то измерения производились непосредственно на одном из сердечников, изготовленных для ИТ. Полученная из измерений зависимость

приведена на рис. 3. Для уменьшения размеров сердечника следует брать большие приращения индукции за импульс. При магнитных измерениях было установлено, что остаточная индукция может достигнуть величины 3000 гс.

Размагничивающее действие вихревых токов ведет к неравномерному распределению индукции по сечению листа стали, вследствие этого края листа при значительных приращениях индукции за импульс быстро насыщаются. Это явление ок зывает вредное действие на работу сердечника, поэтому очень большие приращения индукции принимать нельзя. В данном расчете, с учетом наличия остаточной индукции и возможности малого насыщения при больших приращениях индукции, принято $\Delta B_c \leqslant 6000 \ rc.$

2. Первичное напряжение определяется допустимым напряжением на аноде тиратрона ТГИ—200, равным 3,5 кв. При разряде формирующей искусственной линии на сопротивление, равное волновому сопротивлению линии, напряжение в импульсе равно половине напряжения, до которого линия была заряжена. На основании этого принято $U_1 = 1750 \ s$.

3. Вторичное напряжение $U_2 = 60 \kappa \beta$, т. е. коэффициент трансформа-Ū.

ции
$$n \cong \frac{U_1}{U_1} = 34.$$

4. Амплитуда тока в нагрузке I_н < 3 а. Приведенное значение тока нагрузки $I'_{\mu} = I_{\mu} n \ll 100 a$.

5. Длительность трансформируемого импульса принята $t_u = 10$ *мксек*.

6. Процесс установления вихревых токов оказывает существенное влияние на работу ИТ. Длительность установления вихревых токов зависит от удельного сопротивления стали. Электросопротивление кремнистой стали $\rho_{\mathcal{H}}$ в зависимости от процентного содержания кремния ($x_{\kappa p}$ %) довольно точно выражается формулой:

$$\rho_{\mathcal{H}C} = (13,25 + 11,3 \ x_{\kappa \rho}^{9}/_{0}) \cdot 10^{-6} \, om \, cm.$$

По данным ГОСТ, а для стали Э42 $x_{\kappa p} \% = 4,6\%$, тогда $\rho_{m} = 65.10^{-6} о m c m$. 7. Толщина листов стали $\delta_{\mathcal{H}} = 0.035 \ cM$.

8. При трансформации прямоугольных импульсов импульс на вторичной стороне ИТ не должен иметь

большое снижение плоской части (рис. 4) к концу импульса. Снижение плоской части характеризуется коэффициентом снижения плоской части импульса

$$\lambda_u = \frac{U' - U''}{U'} \, .$$

.

В радиолокационной технике обычно

принимается λ_u = 0,05 ÷ 0,1. Поскольку при использовании схемы в бетатроне можно допустить большие искажения, то в расчете принято $\lambda_{\mu} = 0.3$.

Все исходные данные для расчета приведены ниже:

$U_1 = 1750 \ s$	Сталь Э42		
$U_2 = 60000 \ s$	$\Delta B_c = 6000 \ \epsilon c$		
n = 34	$\mu_{2} = 650$		
$I_2 = 3 a$	$\delta_{\mathcal{H}} = 0.035 \ cm$		
t _и = 10 мксек	$P_{\mathcal{H}} = 65.10^{-6} \text{ omcm}.$		
$\lambda_{\mu} = 0.3$			

Расчет трансформатора

Как уже указывалось выше, размагничивающее действие вихревых токов при больших скоростях изменения индукции в сердечниках ИТ вызывает неравномерное распределение индукции по сечению листа стали. Этот эффект учитывается введением так называемой кажущейся проницаемости μ_{κ} , величина которой зависит от постоянной времени вихревых токов:

$$\Theta_{B} = \frac{\mu_{\Delta} \delta_{\mathcal{M}}^{2}}{1000 \pi \rho_{\mathcal{M}}} \quad \text{MKCEK}.$$

Относительная длительность импульса:

$$\tau_u = \frac{t_u}{\Theta_{\theta}}$$

Кажущаяся проницаемость вычисляется по формуле:

$$\mu_{\kappa} = \frac{\mu_{\lambda}}{1 + \frac{\pi^2}{3\tau_{\mu}}} \,.$$

От величины μ_{κ} зависит величина кажущейся индуктивности первичной обмотки, значение которой может быть найдено из условий искажения плоской части импульса [9, 10] следующим образом. Для рассмотрения процессов при трансформации этой части импульса используется эквивалентная схема рис. 5, где Г-генератор прямоугольных импульсов (формирующая искусственная линия), имеющий внутреннее сопротивление R_1 (равное волновому сопротивлению линии), L_{κ} — кажущаяся индуктивность первичной обмотки ИТ (учитывающая размагничивающее действие вихревых токов), $R_{\mu'} = \frac{U_2}{I_2 n^2}$ — приведенное к первичной обмотке сопротивление нагрузки во вторичной цепи ИТ.

Рис. 5

Для правильной работы линии необходимо согласование волнового сопротивления линии с приведенным сопротивлением нагрузки, т. е. должно быть выполнено равенство:

$$R_1 \cong R_{\mathcal{H}}.$$

При подаче прямоугольного импульса напряжения на вход схемы рис. 5 напряжение на нагрузке будет изменяться по закону

$$u_{\mu} = Ue^{-\frac{R_{i}R_{\mu'}}{L_{k}(R_{i}+R_{\mu'})}t},$$

где *U* — начальное напряжение. Так как обычно в ИТ

$$t_u \ll \frac{L_{\kappa}(R_1 + R_{\kappa}')}{R_1 R_{\kappa}'},$$

168

то к концу импульса напряжение на нагрузке будет иметь величину:

$$U_{\mathcal{H}}'' \cong \left[1 - \frac{t_{\mathcal{U}}R_{1}R_{\mathcal{H}}'}{L_{\mathcal{K}}(R_{1}+R_{\mathcal{H}}')} \right] U.$$

Так как при $t=0, U_{H}'=U,$ то

$$\lambda_{u} = \frac{U_{\mu'} - U_{\mu''}}{U_{\mu'}} = \frac{t_{u} R_{1} R_{\mu'}}{L_{\kappa} (R_{1} + R_{\mu'})}.$$

При соблюдении условия согласования $R_1 = R_H'$

H

$$L_{\kappa} = \frac{t_u R_1}{2\lambda_u}$$

 $\lambda_u = \frac{t_u R_1}{2L_u} \; .$

Величина кажущейся индуктивности L_{κ} непосредственно связана с конструктивными параметрами ИТ следующим образом:

$$L_{\kappa} = \frac{4\pi w_1^2 S_{\mathcal{H}} \mu_{\kappa}}{l_{\mathcal{H}}} 10^{-3},$$

где w_1 — число витков первичной обмотки,

 $S_{\mathcal{M}}$ — сечение сердечника в *см*²,

 $l_{\mathcal{H}}^{m}$ — длина средней линии в *см*, L_{κ} — в *мкгн*.

С другой стороны, через некоторые из этих конструктивных нараметров выражается приращение индукции за импульс:

$$\Delta B_c = \frac{100 \, k_u \, U_{H'} t_u}{w_1 S_{\mathcal{H}}} \, .$$

Здесь коэффициент $k_u = 1 - 0.5 \lambda_u$ учитывает небольшое снижение плоской части импульса, вызванное действием намагничивающего тока сердечника.

Используем имеющиеся формулы следующим образом. Исключая w_1 из приведенных выше уравнений, получим:

$$L_{\kappa} = 4\pi \left(\frac{100 \, k_{\mu} \, U_{\mu'} \, t_{\mu}}{\Delta B_{c} \, S_{\mathcal{H}}}\right)^{2} \frac{S_{\mathcal{H}}}{I_{\mathcal{H}}} \, \mu_{\kappa} \cdot 10^{-3}.$$

Из этого уравнения находим объем железа:

$$S_{\mathcal{H}} l_{\mathcal{H}} = V_{\mathcal{H}} = \left(\frac{100 \, k_u \, U_H' \, t_u}{\Delta B_c}\right)^2 \, 4\pi \, \frac{\mu_{\mathcal{K}}}{L_{\mathcal{K}}} \cdot 10^{-3}.$$

С учетом коэффициента заполнения $k_{\mathcal{M}} < 1$ объем сердечника:

$$V = \frac{V_{\mathcal{H}}}{k_{\mathcal{H}}}$$

Далее выбираем размеры окна для размещения обмоток, исходя из данных по электрической прочности изоляционных материалов в трансформаторном масле:

1) допустимый градиент напряжения вдоль обмотки — 4 кв/см,

2) прочность по поверхности лакоткани в масле — 20 кв/см,

3) прочность лакоткани-10 кв мм,

4) прочность трансформаторного масла — 40 кв см.

где

При высоких напряжениях выгодно каркас обмоток сделать цилиндрическим (круглым), а сечение центрального керна у сердечника броневого типа — квадратным.

Зная размеры окна, нетрудно составить уравнение, связывающее объем сердечника с сечением центрального керна (рис. 6)

$$\frac{V}{2S} - (c + 0,207VS + d) = VS,$$

V — объем сердечника в см^а,

- *S* сечение центрального керна в *см*²,
- с и *d* размеры окна в *см*, найденные из условий электрической прочности,
- 0,207/ S член, учитывающий увеличение ширины окна вследствие того. что применяется кр углый пилиндрическийкаркае для обмоток (рис. 7).

Приведенное выше уравнение запишем в следующем виде:

$$\frac{\mathbf{V}}{2S} - (\mathbf{c} + \mathbf{d}) = 1,207 \, \mathbf{VS} \, .$$

Решая это кубическое уравнение путем подбора, находим один вещественный корень S и определяем $S_{\mathcal{H}} = k_{\mathcal{H}}S$. Зная величину $S_{\mathcal{H}}$, подсчитываем количество витков первичной обмотки:

$$W_1 = \frac{100 \, k_u \, U_{\mu'} \, t_u}{S_{\mathcal{M}} \, \Delta B_c}$$

н количество витков вторичной обмотки $w_2 = n w_1$. Размер центрального керна сердечника $a = \sqrt{S}$.

Сечение проводов обмоток определяется известными методами из условий теплового расчета на основе следующих данных:

1) импульсный ток в первичной обмотке — I_1 , 2) импульсный ток во вторичной обмотке — I_H , 3) длительность импульса — t_u , 4) частота повторения — f.

После определения конструктивных размеров ИТ следует подсчитать длительность фронта трансформируемого импульса и убедиться, что импульс $t_u = 10$ мксек будет трансформироваться, т. е. что длительность фронта $t_{db} < t_u$.

Для анализа фронта импульса может быть использована упрощенная эквивалентная схема трансформаторной цепи (рис. 8), гле

L_п — индуктивность рассеяния первичной обмотки,

*R*₁ — внутреннее сопротивление генератора прямоугольных имиуль-сов (волновое сопротивление линии),

$$R_{2}'$$
 — приведенное к первичной обмотке сопротивление нагрузки $R_{2}' = R_{H}' = \frac{U_{2}}{I_{2}n^{2}};$ при надлежащем согласовании $R_{1} = R_{2}'.$

 C_{n} — паразитная емкость обмоток, приведенная к первичной обмотке...

Индуктивность рассеяния может быть подсчитана по формуле [12].

$$L_{n} = \frac{1.14 \, p \, w_{1}^{2}}{h} \left(\Delta + \frac{\alpha_{1} + \alpha_{2}}{3} \right) \cdot 10^{-2} . \text{MK2H},$$

где w₁ — число витков первичной обмотки,

p — периметр среднего витка в CM,

△ — расстояние между І и ІІ обмотками в см,

а₁ и а₂ — толщина I и II обмоток в см,

h — высота катушек в *см*.

Эквивалентная динамическая емкость вторичной обмотки, отнесенная к ес выводам [13]:

$$C_{o} = \frac{0.118 \, p \, h \, \varepsilon}{\Delta_{2} N} \, n \kappa \phi,$$

где Δ_2 — расстояние между медью прилегающих слоев вторичной многослойной катушки (до 10 слоев и более),

N— количество слоев,

с средняя диэлектрическая постоянная изоляции между слоями. Емкость отводящего высокое напряжение провода можно принять $C_1 - 0.6$ *пкф*. Емкость выходного изолятора $C_2 = 8 \div 10$ *пкф*. Суммарная, емкость во вторичной цепи $C = C_0 + C_1 + C_2$.

Паразитная емкость, отнесенная к первичной обмотке:

$$C_n' = C_2' = Cn^2.$$

Для определения формы фронта импульса на выводе вторичной обмотки: находим значение колебательной постоянной для схемы (рис. 8):

$$\delta_{\kappa} = \frac{1}{2\sqrt{1+\gamma_{\mathrm{R}}}} \left(\frac{\sqrt{\frac{L_{n}}{C_{n}'}}}{R_{2}'} + \frac{R_{1}}{\sqrt{\frac{L_{n}}{C_{n}'}}} \right),$$

где $\gamma_{\rm R} = \frac{R_1}{R_{\rm n}'} = 1$ (при согласовании).

 $2\delta_{\kappa}$ рис. 58 [8] находим, что кривая для $\delta = \delta_{\kappa}$ достигает максимума при тель Длительность фронта (при изменении импульса напряжения на вто-Ричной стороне от нуля до максимума) в этом случае равна:

$$t_{\phi} = \frac{\tau_{\kappa} \sqrt{L_n C_n'}}{\sqrt{1 + \gamma_R}}$$

Следует ожидать, что на вторичной обмотке импульс напряжения будет иметь форму, изображенную на рис. 4 (при подаче на первичную обмотку строго прямоугольного импульса). Осциллограмма импульса представлена

Рис. 9

на рис. 9.

Для полного расчета импульсного трансформатора необходимо оценить величину потерь в трансформаторе и рассмотреть характер переходного процесса на срезе (хвосте) импульса.

Расчет потерь показал, что в данной конструкции главная доля потерь приходится на потери от вихревых токов (это и понятно, так как применяется обычная трансформаторная сталь Э42 толщиной 0,035 см, тогда как для этих целей применяются специальные сплавы с толщиной проката до 0,005 см и меньше), причем суммарная величина потерь не превосходит 15% от трансформируемой мощности.

При большой скважности импульсов

 $Q = \frac{T}{t_u} = \frac{0.02}{10^{-5}} = 2000$, которая тре-

буется для работы бетатрона на частоте $f = 50 \ ru$, рассеиваемая в ИТ мощность очень мала и не может привести к пе-

регреву трансформатора, поэтому подробности расчета потерь здесь не приводятся.

🚧 Характер переходного процесса на срезе импульса не имеет скольконибудь существенного значения для работы бетатрона и поэтому специальному анализу расчетом не подвергался (но контролировался по осциллограммам).

Исследования ИТ показали, что все расчетные величины, которые могут быть измерены, хорошо согласуются с опытами.

Формирующую искусственную линию рассчитаем, пользуясь расчет-ными формулами, приведенными в [8]. Суммарная индуктивность линии: $L_{o} = \frac{R_{1}t_{u}}{2}$. Суммарная емкость лиции: $C_{o} = \frac{t_{u}}{2R_{1}}$. Принимаем число звеньев: m = 8 - 10. Индуктивность одного звена: $L = \frac{L_o}{m}$. Емкость одного звена: $C=\frac{C_o}{m}.$

Расчет элементов зарядной цепи

из расчета импульсного трансформатора и формирующей линии нам становится известной величина суммарной емкости линии и максимальное напряжение, до которого должна быть заряжена линия. Знание этих зеличин позволяет сравнительно просто рассчитать зарядный контур схемы. При рассмотрении процессов в зарядной цепи мы можем пренебречь влиянием индуктивностей линии и индуктивности первичной обмотки импульсного трансформатора (рис. 1), так как эти величины не оказывают существенного влияния на характер переходного процесса при зарядке линии. По этой причине мы можем суммарную емкость линии представить в виде одной сосредоточенной емкости. Упрощенная таким образом зарядная цепь будет иметь вид, представленный на рис. 10. В этой схемє известна величина емкости С и напряжение, до которого должна заряжаться эта емкость в течение каждого периода переменного тока. Для упрощения расчета предположим, что после каждого разряда конденсатора С напряжение на нем будет равно нулю. Это допущение близко к действи-

Рис. 10

тельности, так как при надлежащем согласовании линии с нагрузкой напряжение на ней к концу импульса падает до нуля и лишь незначительный по величине колебательный процесс на хвосте импульса может послужить причиной появления небольшого отрицательного напряжения на емкости.

На основании принятых выше допущений мы можем считать, что последовательно соединенные зарядное сопротивление R и емкость C (рмс. 10) включаются в момент t=0 на напряжение $u=U_m \sin(wt+\psi)$, где U_m амплитудное напряжение вторичной обмотки зарядного трансформатора. w—угловая частота переменного тока, ψ —угол, обусловленный налючием определенной величины потенциала зажигания газотрона ВГ,

$$\psi = rc \sin \frac{U_3}{U_m}$$
.

Начальное напряжение на конденсаторе *C* считаем равным нулю. Известно что потенциал зажигания U_3 газотрона измеряется величиной порядка $20 \div 50$ в, тогда как амплитудное напряжение вторичной обмотки зарядного трансформатора может достигнуть величины порядка $500 \div 3000$ в. По этой причине практические значения ψ будут иметь величину $\psi \simeq 0.01 \div$ $\div 0.1$ радиан $\simeq 0.5 \div 5$ эл. град. Для упрощения расчетов можно принять $\psi \simeq 0$. Переходные режимы в этом случае [14] описываются уравнениями:

$$u_{c} = -\frac{I_{m}}{wC} \cos \left(\omega t - \varphi\right) + \frac{I_{m}}{\omega C} - \cos \varphi e^{-\frac{t}{\tau}}, \qquad (1)$$

$$i = I_m \sin(\omega t - \varphi) - \frac{I_m}{\omega \tau} \cos \varphi \, e^{-\frac{t}{\tau}} \,. \tag{2}$$

Здесь приняты обозначения [14]:

и_с—напряжение на емкости *С*,

: — зарядный ток,

$$I_{m} = \frac{U_{m}}{z}, \qquad z = \sqrt{R^{2} + \frac{1}{\omega^{2}C^{2}}},$$

$$\tau = RC, \qquad \varphi = \operatorname{arc} \operatorname{tg} \left(\frac{-1}{\omega\tau}\right). \qquad (3)$$

Так как $i = C - \frac{du_c}{dt}$, то, очевидно, напряжение на емкости C достигает максимума в момент, когда зарядный ток станет равным нулю. Следовательно, необходимо решить уравнение (2) относительно о*t* при i=0:

$$\sin(\omega t - \varphi) = -\frac{1}{\omega \tau} \cos \varphi e^{-\frac{\omega t}{m \tau}} = 0.$$
 (4)

Прежде, чем решать это уравнение, установим возможные практические значения входящих в него величин. Величина сопротивления R может быть определена из следующих соображений. Как известно, газотрон начинает проводить ток в прямом направлении при напряжении на его электродах, превышающем потенциал зажигания. Следовательно, в момент зажигания через газотрон пойдет ток $i_m = \frac{U_3}{R}$. Величина этого тока не должна превышать допустимое для данного типа газотрона амплитудное значение анодного тока. Так, для газотрона ВГ-1/8500 $I_{ma} = 1 a$ и, принимая $U_2 \cong 50 \ в$, получим $R = \frac{U_3}{I_{ma}} = 50 \ ом$. Для других маломощных высоковольтных газотронов, применяемых в зарядной цепи схемы инжекции величина R во всяком случае не превышает сотен ом.

Величина емкости *С* определяется при расчете формирующей линии. Если рассчитывать на предельные режимы тиратронов ТГ 15/3000, ТГИ-200 п ТГИ-1 400/16, применяемых в схеме инжекции, и считать, что длительность импульса во всех случаях не превышает 10 *мк сек*, то возможные значения емкости *С* будут иметь величину, представленную в таблице.

Тип тиратрона	ΤΓ 15/3000	тги-200	ТГИ-1 400/16
Предельная величина емкости	0,17 мкф	0,62 мкф	0, 2 2 мкф

Птак, в большинстве практических случаев $R \leq 200$ ом, $C \leq 0.6$ мкф. Следовательно, для выражений (3) мы можем записать соотношения:

$$\tau \leqslant \mathbf{180.10^{-6} \ ce\kappa}; \qquad \omega \tau \leqslant 0.057; \qquad \frac{1}{\omega \tau} \gg 1;$$

$$\varphi \cong -\frac{\pi}{2}; \qquad R \ll \frac{1}{\omega C}; \qquad \mathbf{z} \cong \frac{1}{\omega C}.$$
 (5)

На основании этих соотношений выражения (1) и (2) с незначительной погрешностью (не выше $5^{9}/_{0}$) могут быть представлены в упрощенном виде:

$$u_c \cong U_m \sin \omega t, \tag{6}$$

$$i \simeq U_m \circ C \sin\left(\circ t + \frac{\pi}{2}\right) - \frac{U_m}{R} \cos \varphi e^{-\frac{\circ t}{\Theta \tau}}.$$
(7)

Из этих выражений следует, что напряжение на емкости достигает максимума, приблизительно равного по величине амплитудному значению напряжения на вторичной обмотке зарядного трансформатора, в момент

 $\omega t_1 \cong \frac{\pi}{2}$. Более точное значение корня ωt_1 может быть найдено из ре-

шения уравнения (4). Если учесть практически возможные значения входящих в это уравнение величин (5), то величина ωt_1 в этом случае может быть определена из приближенного уравнения:

$$\sin(\omega t_1 - \varphi) \cong 0.$$

Отсюда $\omega t_1 - \varphi = \pi n$, где n = 0, 1, 2, 3....

Находя одно положительное значение корня ωt_1 , получим

$$\Theta = \omega t_1 = \varphi + \pi = \pi + \operatorname{arc} \operatorname{tg} \left(\frac{-1}{\omega \tau} \right).$$

Для выбора типа газотрона в схеме рис. 10 необходимо установить, помимо амплитудного значения анодного тока, учтенного нами выше при определении величины зарядного сопротивления R, также возможную величину обратного напряжения и среднее значение выпрямленного тока. В этой схеме обратное напряжение U_{mo} будет измеряться величиной $U_{mo} \cong 2 U_m$, если предположить, что емкость С не разряжается вследствие отсутствия управляющих сигналов на сетке коммутирующего тиратрона (такие случаи на практике вполне возможны, особенно при настройке схемы).

Среднее значение выпрямленного тока может быть найдено из следующих простых соображений. При расчете зарядной цепи мы исходим из предположения, что в конце каждого импульса инжекции напряжение на емкости спадает до нуля. Следовательно, для зарядки емкости C до напряжения U_m перед началом каждого импульса требуется заряд $Q = CU_m$. Отсюда среднее значение тока зарядки $I_o = Qf$, где f—частота питающего тока. Если учесть, что $\omega = 2\pi f$, то не трудно получить выражение

$$I_o = \frac{I_m}{2\pi} , \qquad (8)$$

хорошо известное из теории выпрямительных устройств [15, 16].

Для расчета сопротивления (допустимой мощности рассеяния) и зарядного трансформатора необходимо определить действующее (эффективное) значение тока в зарядной цепи. Как известно, действующее значение / несинусоидального тока *i* определяется соотношением:

$$I = \sqrt{\frac{1}{T_o} I^T t_o^2 dt}.$$

175

Подставляя в это соотношение точное значение переходного тока і из выражения (2) и интегрируя в пределах от 0 до Θ (когда ток уменьшается до нуля), можно получить:

$$I = \frac{I_m}{2\pi} \left[\Theta - \cos\left(\Theta - 2\varphi\right) \sin\Theta + \frac{\cos^2\varphi}{\omega\tau} \left(1 - e^{-\frac{2\Theta}{\omega\tau}} \right) + \frac{4\cos\varphi}{\sqrt{1 + \omega^2\tau^2}} \left(e^{-\frac{\Theta}{\omega\tau}} \cos\Theta - 1 \right) \right]^{1/2}.$$
(9)

Принимая во внимание, что в практических случаях можно принять $\Theta \cong \frac{\pi}{2}$ и $\varphi \cong -\frac{\pi}{2}$, нетрудно из последнего выражения найти приближенное значение действующего тока:

$$I \cong \frac{I_m}{2 \sqrt{2}}.$$

Следовательно, в сопротивлении R будет рассеиваться мощность $P_1 = l^2 R$. на которую и должно быть рассчитано это сопротивление. Действующее значение тока в первичной обмотке определится из выражения:

$$I_1 = n \sqrt{I^2 - I^2_o}$$

где *п*-коэффициент трансформации зарядного трансформатора.

Теперь нетрудно определить коэффициент полезного действия зарядного устройства. За полезную мощность здесь можно принять:

$$P_2 = \frac{CU^2_m}{2}f,$$

где *f* — частота переменного тока.

Тогда, определяя коэффициент полезного действия, как

$$\eta = \frac{P_2}{P_1 + P_2},$$

после простых преобразований получаем следующее выражение:

$$\eta = \frac{1}{1 + \pi^2} \frac{\tau}{T},$$

где $\tau = RC$ и $T = \frac{1}{f}$ — период питающего переменного тока. Выше было

указано, что в практических случаях для схемы инжекции $\tau \ll 180 \cdot 10^{-6}$ сек. Для промышленной частоты T = 0,02 сек. Следовательно, возможные практические значения к. п. д. зарядной цепи схемы инжекции: $\eta \gg 0.9$.

Расчетная (габаритная) мощность зарядного трансформатора определяется, как обычно, по формуле:

$$P = \frac{U_{m1}I_1 + U_mI}{2\sqrt{2}} aa.$$

Таким образом, в изложенном выше расчете определены все основные электрические параметры элементов схемы инжекции электронов в бетатроне.

176

1. Горелик А. Л. Промышленная электроника, ГЭИ, 1951.

2. Булгаков А. А. Электронные устройства автоматического управления, ГЭИ, 1951. 3. Сотсков Б. Т. Элементы автоматической и телемеханической аппаратуры, ГЭИ. 1950.

4. Т. W. Dietze, Т. M. Dickinson, PIRE, 96, 1171, 1949. 5. D. W. Kerst, G. D. Adams, H. W. Koch, C. S. Robinson, Rev. Sc. Instr., 21, 462, 1950. 6. Лукин Ф. В. Импульсный трансформатор, Радиотехника, 2, 46, 1947.

7. И цхоки Я. С. Импульсная техника, конспект лекций, Советское радио, 1949. 8. И цхоки Я. С. Импульсная техника, Советское радио, 1949.

9. Матханов П. Н. К инженерному расчету мощных импульсных трансформаторов, Радиотехника, 6, 3, 1951.

10. Kirschbaum a. Warren, Transaction AIEE, 68, 971, part II, 1949.

11. Импульсные генераторы, Труды Массачузетского технологического института, т. 5. 1948.

12. Петров Г. Н. К теории расчета индуктивностей рассеяния трансформаторов, Электричество, 3, 1948.

13. Справочник по радиотехнике, ред. Смиренин Б. А., ГЭИ, 1950.

14. Калантаров П. Л. и Нейман Л. Р. Теоретические основы электротехники, ГЭИ. 1951.

15. Терентьев Б. П. Электропитание радиоустройств, Связьиздат, 1951.

16. Каганов И. Л. Электронные и ионные преобразователи, ГЭИ, 1950.