пороги фотонейтронов 13 изотопов

А.К. БЕРЗИН

(Представлено проф. д-р. физ.-мат. наук А. А. Воробьевым)

Измерение порогов фотонейтронов производилось двумя способами 1) методом "непосредственной регистрации" нейтронов, ранее нами опнсанным [1], с той только разницей, что вспышка, образующаяся в детекторе, регистрировалась не одним, а двумя фотоэлектронными умножителями, включенными по схеме совпадений, 2) методом "остаточной активности" [2].

Контроль за максимальной энергией тормозного γ -излучения осуществлялся с помощью схемы [3], обеспечивающей точность <u>—</u> 10 Кэв. Импульс со схемы смещения, поступающий в секториальные расширительные обмотки, имел продолжительность 4 *мксек*. Схема смещения была собрана на тиратроне $\Gamma\Gamma И$ -400/16.

Исследование проводилось при установившемся тепловом режиме электромагнита бетатрона. Энергетическая шкала калибровалась по пороговым энергиям изотопов: Be⁹₄ (1,666 *Мэв*); Li⁷₃ (7,15 *Мэв*) и Cu⁶³₂₉ (10,73 *Мэв*).

В работе были измерены пороговые энергии (ү, n)-реакции тринадцати изотопов. На рис. 1 и 2 показаны выходы нейтронов в функции от энергии тормозного ү-излучения для La, Ce, Pr, Nd, Sm и Ba, полученные методом "непосредственной регистрации". Пунктирная кривая соответствует фону, увеличенному в 5 раз. Облучению подвергались порошки окислов указанных элементов, весом от 40 до 70 г, загруженные в тонкостенные алюминиевые ампулы.

Определение выходов, принадлежащих отдельным изотопам, производилось графическим методом. Оказалось, что все полученные данные, как и в ряде предылущих работ [4, 5], можно с достаточной точностью описать соотношением: $N = K(E_{max} - E_0)^m$. Пороговая энергия E_0 и постоянная (присущая данному изотопу) *m* подбирались графическим путем. Коэффициент *K* зависит от навески и дозы облучения, получаемой образцом. На рис. 3 в качестве примера показано графическое разделение выходов для изотопов Ce¹⁴⁰ и Ce¹⁴². В том случае, когда изотоп—продукт реакции имел удобный для измерения период полураспада, то использовался также метод остаточной активности. Образцы, изготовленные из окислов, с небольшим добавлением парафина в виде таблеток, имели диаметр 15 *мм* и толщину 2 *мм*. Измерение наведенной активности производилось в свинцовом домике (толщина стенок 30 *мм*) с помощью торцевого счетчика МСТ-17 и пересчетного устройства ПС-64. Питание счетчика производилось от высоковольтного стабилизированного выпрямителя типа ВСЭ-2500.

График зависимости выхода нейтронов от энергии тормозного излучения для Ва, Nd и Рг.

В таблице 1 приведены результаты проведенных измерений. Общая опнибка измерений складывалась из суммы ошибок, вносимых схемой контроля и статистической неопределенностью полученных данных. Из таблицы следует, что ранее измеренные пороговые энергии относятся к изотопам, которые находятся в естественной смеси в малом числе и в большом процентном содержании, т. е. являются очень удобными для исследования.

Графическое разделение выходов для изотопов Се¹⁴⁰ и Се¹⁴².

Изотопы Ba¹³⁸, La¹³⁹, Ce¹⁴⁰, Pr¹⁴¹, Nd¹⁴² и Sm¹⁴⁴, относящиеся к изотопам с "магическим" числом 82, обладают повышенной энергией связи нейтрона. Изотопы того же элемента, содержащие (82 + 2) нейтрона, имеют, наоборот, пониженную энергию связи нейтрона. Это обстоятельство говорит в пользу оболочечной модели строения ядра. Заниженные значения пороговых энергий для ядер с (82 + 2) нейтронов не позволили с достоверностью сказать, к какому из изотопов неодима Nd¹⁴³ или Nd¹⁴⁵ относится измеренный порог величиной 6,69 ± 0,08 *Мэв*. Также осталось не ясным, к какому из изотопов бария может быть отнесена величина порога 6,69 ± 0,08 *Мэв*, поскольку Ba¹³⁷, имеющий (82—1) нейтрон, должен обладать, по-видимому, повышенной энергией.

435

Таблица 1

N⊵	Изотоп	Порядк о - вый номер	Процентное содержание	Величина измеренного порога в Мэв	Пороги, измерен- ные в других работах
1	135 Ba ¹³⁷	56	6,59 11,32	6,69 <u>+</u> 0,08	
2	Ba ¹³⁸	56	71,6 6	8,51 ± 0,08	
3	La ¹³⁰	57	99,911	$8,75 \pm 0.08$	8 ,80 <u>+</u> ♥.2
4	C _c 140	58	8 8,48	9,01 <u>+</u> 0,08	9,05 <u>+</u> 0,2
5	Cě ¹⁴²	58	11,07	$7,17 \pm 0,08$	7,15 ± 0,2
6	Р г 141	59	100	$9,35 \pm 0,08$	9,40 <u></u> 0,10
7	Nd ¹⁵⁰	60	5,60	7,43±0,08	7,40 <u>+</u> 0,2
8	Nd ¹⁴¹	60	23,87	8, 27 ± 0 ,08	
9	Nd ¹⁴²	60	27,13	9,81 ± 0,08	
10	143 Nd ¹⁴⁵	6 0	12,20 8,30	6 ,69±0,0 8	
11	Sm149	6 2	13,84	$6,91 \pm 0,08$	
12	Sm ¹¹⁴	62	3,16	10,46 ± 0,2	
13	Sm147?	62	15,07	7, 3 ±0,3	

ЛИТЕРАТУРА

• •

Берзин А. К. Пороговые энергин (ү, п)-реакции. Изнестия Томского политехнического института, т. 87, 1957.
Виtement, Proc. Phys. Soc. 64, 395 (1951).
Берзин А. К., Мещеряков Р. П., Немков Р. Г. Новая схема контроля макса-мальной энергии Х-лучей. Известия Томского политехнического института, т. 87, 1957.
R. Sher, J. Halpern, A. Mann. Phys. Rev. 84, 387 (1951).
J. MeEthinney, A. Mann. Phys. Rev. 75, 542 (1949).