К ВОПРОСУ О СВЯЗИ ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ КРИСТАЛЛОВ С ИХ ПОВЕРХНОСТНОЙ ЭНЕРГИЕЙ

П. А. САВИНЦЕВ

Электрический пробой—это в конечном счете разрушение кристалла, связанное с образованием новых поверхностей. Поверхностная энергия характеризует величину работы, которая должна быть совершена при образовании единицы новой поверхности. Поэтому имеет смысл искать связь между электрической прочностью кристалла и его поверхностной энергией.

Представляет интерес найти физическую величину, которая связана как с электрической прочностью кристалла, так и с его поверхностной энергией. В связи с этим необходимо рассмотреть вопрос об определении поверхностной энергии кристаллов.

Поверхностная энергия кристаллов э теоретически рассчитывалась рядом ученых [1, 2]. Результаты, полученные разными авторами, представлены в таблице 1, из которой видно, что для одних и тех же солей найдены различные значения с, иногда сильно отличающиеся друг от друга. Поэтому большой интерес представляет экспериментальное определение поверхностной энергии.

Таблица 1

№ пп	Авторы	Кристаллы	Cl	Br	J
1	Борн и Штерн	Na	150	119	96
		K	107	92	75
2	Френкель	Na	164	140	107
		K	121	118	83
3	Жданов	Na	210	174	
		K		115	113
4 Бимюллер	Бимюллер	Na	87	70	51
		K	⁻ 91	77	59
5 Ле	Леннард-Джонс и Денг	Na	93	90	88
		K	75	73	72
Расплавленные соли при температуре		Na	114	106	87
плав	ления	К	97	89	85

Значения поверхностных энергий в эрг/см² по вычислениям разных авторов для грани (100).

Существует несколько способов определения поверхностной энергии кристаллов. Однако каждый из них можно применить лишь для определенной группы тел и пока не известен способ, пригодный для всех тел.

Мы измеряли поверхностную энергию кристаллов двумя методами: сверления и взаимного шлифования, теория которых разработана В. Д. Кузнецовым [2].

Пусть при взаимном шлифовании двух кристаллов образуются одинаковые порошинки размером b^3 . Число частиц в объеме v сошлифованного кристалла будет $N = \frac{v}{b^3}$. Поверхность каждой частицы порошка будет $S = 6 \ b^2$. На образование одной частицы будет затрачиваться энергия $S = 6 \ b^2 \sigma$, а на диспергирование кристалла

$$NS \sigma = \frac{6 v \sigma}{b}.$$

Если v_1 и v_2 — объемы сошлифованных слоев первого и второго кристаллов, а σ_1 и σ_2 —их поверхностные энергии, то, предполагая, что при взаимном шлифовании двух кристаллов энергия, идущая на диспергирование, поровну распределяется между трущимися кристаллами и размеры порошинок первого и второго кристалла одинаковы, можно записать

$$v_1 \sigma_1 = v_2 \sigma_2.$$

Данную зависимость В. Д. Кузнецов проверял на поликристаллах щелочно-галоидных солей, а затем вычислил поверхностную энергию монокристаллов.

Мы определяли поверхностные энергии монокристаллов KCl, NaCl, KBr и NaBr. В качестве кристалла с известной поверхностной энергией мы выбрали монокристалл KCl, для которого $\sigma_1 = 108$ эрг см². Это значение теоретически получено Борном и Штерном и подтверждено в ряде предыдущих работ В. Д. Кузнецова [2]. Наши результаты представлены в таблице 2.

Таблица 2

Поверхностные энергии щелочно-галоидных монокристаллов, определенные по способу взаимного шлифования

Измеряемая величина	KCI	NaCl	ҚВг	NaBr
Отношение поверхностных энергий $\frac{\sigma_2}{\sigma_1}$	1	1,45	0,91	1,20
Поверхностная энергия	108	156	98	129

В последующих опытах мы определяли поверхностную энергию монокристаллов KCI — NaCl по способу взаимного шлифования и сверления [2, 3]. При сверлении кристалла под постоянной нагрузкой, в нашем случае $P = 2,5 \kappa z$, образуется коническая лунка с радиусом г. После п - оборотов сверла радиус лунки возрастет на Δr ; на такую же величину опустится и сверло. Работа груза будет равна $\Delta U_1 = \alpha P \Delta r$, где α — коэффициент, зависящий от типа сверла.

При увеличении радиуса конической лунки на Δr объем ее возрастает на $\Delta v = \pi r^2 \Delta r$. Если принять, что при сверлении образуются частицы в виде кубиков с ребром *x*, то в объеме Δv число частиц будет равно

$$N=\frac{\pi r^2 \,\Delta r}{x^3}$$

Боковая поверхность этих частиц будет

$$S = 6 x^2 N = \frac{6 \pi r^2 \Delta r}{x}$$

На образование указанных частиц расходуется энергия

$$\Delta U_2 = S \sigma = \frac{6 \pi r^2 \Delta r}{x} \sigma.$$

Если принять, что вся энергия ΔU_1 идет на размельчение кристалла, то можно записать

$$\Delta U_1 = \Delta U_2; \qquad \alpha \, \mathbf{P} \, \Delta \, r = \frac{6 \, \pi \, r^2 \, \Delta \, r \, \sigma}{x} \, .$$

Отсюда

$$P=\frac{6\,\pi\,\sigma\,r^2}{\alpha\,x}.$$

В результате опытов В. Д. Кузнецов установил, что размеры порошинок, образующихся при сверлении, пропорциональны радиусу лунки, т. е.

$$x = \beta r$$
.

Тогда

$$P=\frac{6\,\pi\,\sigma}{\alpha\,\beta}\,r.$$

Опыты по сверлению показали, что между P и r существует линейная зависимость, т. е. $r = r_0 + a P$,

где r₀ — величина, зависящая от степени притупления сверла,

а — угловой коэффициент на диаграмме сверления.

Для идеально острого сверла, не принимая во внимание первоначальный прокол, можно написать r = aP. Тогда

гогда

$$P=\frac{b\,\pi\,\sigma}{\alpha\,\beta}a\,P.$$

Отсюда

$$a \sigma = \frac{\alpha \beta}{6 \pi} = \text{const},$$

$a \, \mathfrak{s} = \mathrm{const.}$

Получается, что отношение поверхностных энергий кристаллов обратно пропорционально отношению угловых коэффициентов прямых на диаграммах сверления, т. е.

$$\frac{\sigma_1}{\sigma_2} = \frac{a_2}{a_1} \,. \tag{1}$$

Если опыты по сверлению проводить при постоянном грузе, то между диаметром лунки и числом оборотов сверла *n* существует зависимость

$$d_1 = d_{01} + a_1' n$$
 для первого кристалла и

$$d_2 = d_{02} + a_2' n$$
 для второго кристалла.

В этом случае выражение (1) преобразуется к виду

$$\frac{\sigma_1}{\sigma_2} = \frac{a_2'}{a_1'}.$$

201

Угловые коэффициенты на диаграммах сверления a_1 и a_2 можно определить, если найти разность между диаметрами лунок, например, при $n_1 = 50$ и $n_2 = 100$ оборотам сверла.

Если для первого кристалла получается разность диаметров, равная Δd_1 , а для второго кристалла Δd_2 , то

$$\frac{\sigma_1}{\sigma_2} = \frac{\Delta d_2}{\Delta d_1}$$

Данная зависимость подтверждена опытами В. Д. Кузнецова с рядом кристаллов.

Последняя формула использовалась нами для определения поверхностной энергии смешанных кристаллов.

В связи с тем, что твердые растворы KCl— NaCl распадаются при температуре ниже 495° [4], нам удалось вырастить и исследовать прозрачные монокристаллы лишь с концентрацией до 10°/₀ NaCl в KCl, а также до 10% KCl в NaCl. Результаты опытов, выполненных совместнос В. В. Куцепаленко [3], приводятся в таблице 3, из которой видно, что поверхностная энергия смешанных кристаллов уменьшается с увеличением процента примеси. Опыты, проведенные с мутными кристаллами больших концентраций примеси этой системы, показали, что поверхностная энергия имеет наименьшее значение при 50°/₀ KCl в NaCl.

Таблица З

Измерение поверхностной энергии монокристаллов KCl—NaCl по способу взаимного шлифования и сверления (в эрг/см²)

C	о/о KCl в NaCl				⁰ /0 NaCl в КСl					
Способ измерения	0	2,5	5	7,5	10	0	2,5	5	7,5	10
Сверление	143	80	65	45	40	113	81	67	62	45
Взаимное шлифование	156	64	59	49	41	108	69	66	54	40

Затем мы измеряли поверхностную энергию монокристаллов систем КСІ—КВг [3] и КВг—NaBr.

Таблица 4

Поверхностная энергия с кристаллов KCl—KBr, KBr—NaBr, определенная по способу взаимного шлифования (в эрг/см²).

° ₀ KBr в KCl	σ	0∕0 KBr в NaBr	σ
2,5	78	10	85
5	82	20	70
10	66	30	66
15	65	40	6 2
20	58	50	60
30	45	60	56
50	50	70	58
70	5 2	80	61
		90	88

Результаты этих измерений приведены в табл. 4. Эти данные показывают, что поверхностная энергия монокристаллов уменьшается при введении в них примесей и достигает минимального значения при 50% одного и другого компонентов. Интересно заметить, что электрическая прочность монокристаллов твердых растворов изменяется примерно по такому же закону [5].

Поверхностную энергию с исследованных нами монокристаллов можно подсчитать по формуле $\sigma = k \frac{D}{M}$, где D – плотность монокристалла, M – молекулярный вес кристалла, k – постоянная величина. Отношение $\frac{D}{M}$ есть число граммолекул вещества в единице объема. Поверхностная энергия монокристалла твердого раствора при 50% одного и другого компонентов может быть найдена по формуле $\sigma = k \frac{D}{M_1 + M_2}$, где D плотность сплава, а M_1 и M_2 – молекулярные веса веществ, образующих твердый раствор.

Значения поверхностной энергии о, вычисленные по этим формулам, приведены в табл. 5.

Таблица 5.

Kowarana	р Мили		σ Эрг/с м ²	
присталлы		$M_1 + M_2$	ОПЫТ	расчет
KCI	1,99	74,5	108	104
NaCl	2,17	58,5	156	148
KBr	2,76	119	98	88 1
NaBr	3,20	103	12 9	124
0,5 KCl + 0,5 KBr	2,37	195	50	52
0,5 KBr + 0,5 NaBr	3,0	223	60	56

Поверхностная энергия кристаллов, вычисленная по формулам

Предполагается, что электрическая прочность связана с поверхностной энергией. Поэтому представляет интерес выяснить наличие связи электрической прочности E_{np} с числом граммолекул в единице объема $\frac{D}{M}$. Сопоставление электрической прочности с числом $\frac{D}{M}$ сделано в табл. 6 и на рис. 1. Значения E_{np} взяты нами из работы [6]. Из рис. 1 и табл. 6 можно видеть, что электрическая прочность E_{np} связана с числом граммолекул в единице объема $\frac{D}{M}$ соотношением

$$E_{np} = k \frac{D}{M}.$$

Пользуясь этим соотношением, мы определили электрическую прочность кристаллов LiCl, LiBr, CsCl, CsBr, CsJ, для которых опытные значения E_{np} еще не известны. Эти данные приведены в табл. 6.

Таблица б

Кристалл	Епр <u>Мв</u> см опыт	D	М	$\frac{\mathrm{D}}{M} \cdot 10^{3}$	$E_{np} \frac{M_{B}}{c_{M}}$ теория
LiF	3,1	2,00	25,94	77	
NaF	2,4	2,73	42,0	65	1
KF	1,8	2,37	38,10	41	
NaCl	1,5	2,17	5 8,4 6	37	
KCI	1,0	1,99	74,56	26	
RbC1	0,8	2,76	120,9	23	
NaBr	1,0	3,20	103	31	
KBr	0,7	2,76	119	22	
Rb B r	0,6	3,36	165	20	
NaJ	0,8	3,66	150	24	-
KJ	0,6	3,11	166	19	
RbJ	0,5	3,55	212	15	
LiCl		2,07	42,4	49	1,9
LiBr	_	3,46	86,8	40	1,4
CsC1	_	3,99	168	24	0,8
CsBr	-	4,44	213	21	0,8
CsJ	_	4,51	260	17	0,5-0,6

Сопоставление электрической прочности щелочно-галоидных кристаллов с числом . г - молекул в единице объема

204

Необходимо отметить, что электрическая прочность кристалла LiCl была вычислена ранее Е. К. Завадовской [6], исходя из связи E_{np} с энергией кристаллической решетки. Полученное нами значение E_{np} для LiCl совпало с тем, которое нашла Е. К. Завадовская. Сопоставление электрической прочности, энергии кристаллической решетки [6] и числа граммолекул в единице объема сделано в табл. 7 и на рис. 2. Эти результаты позволяют утверждать о существовании непосредственной связи между числом граммолекул в единице объема и энергией решетки.

граммолекул в единице объема —

Таблица 7

Сопоставление электрической прочности, энергии кристаллической решетки [6] и числа г - молекул в единице объема

Кристал	$E_{np} \frac{M_B}{c_M}$	Энергия решетки в ккал/моль	Число граммолекул в ед. объема.10 ³
LiF	3,3	240	77
NaF	2,4	215	65
KF	1,8	190	41
NaCl	1,5	180	37
KCI	1,0	164	26
RbC1	0,8	160	23
NaBr	1,0	172	31
KBr	0,7	158	2 2
R b Br	0,6	152	20
NaJ	0,8	160	24
КJ	0,6	149	19.
RbJ	0,5	144	15

Интересно также было бы оценить с этой точки зрения электрическую прочность твердых растворов. Аналогично зависимости поверхностной энергии от числа $\frac{D}{M_1 + M_2}$ мы нашли зависимость электрической прочности E_{np} от числа $\frac{D}{M_1 + M_2}$.

Результаты наших вычислений, в которых значения E_{np} мы взяли из работы [5], приведены в табл. 8.

Таблица 8

Состав	D	$M_1 + M_2$	Е _{пр} <u>Мв</u> см опыт	Е _{пр} <u>Мв</u> см теория	$\frac{D}{M_1 + M_2}$
9 ,5 NaCl + 0,5 NaBr	2,7	161	0,45	0,64	16
0,5 KJ + 0,5 KBr	2,9	286	0,40	0,4	10
0,5 KCI $+$ 0,5 KBr	2,8	195	0,65	0,52	13
0,5 NaJ + 0,5 KJ	3,4	316	0,42	0,44	11
0, 5 NaBr + 0, 5 KBr	3,0	223	0,75	0,5 6	14

Определение электрической прочности твердых растворов

Они позволяют сделать вывод о том, что электрическая прочность связана с отношением $\frac{D}{M_1 + M_2}$.

Кроме того, мы обнаружили зависимость электрической прочности некоторых жидких диэлектриков от числа граммолекул в единице объема (рис. 3). Значения E_{np} , плотности и молекулярного веса мы взяли из работ А. А. Воробьева и А. Ф. Калганова [7].

206

Из рис. 1 и 3 видно, что характер зависимости электрической прочности от числа граммолекул в единице объема различен для шелочногалоидных кристаллов и жидких диэлектриков.

выводы

1. Найдена зависимость электрической прочности щелочно-галоидных кристаллов от числа граммолекул в единице объема.

2. Вычислена электрическая прочность *Е_{пр}* монокристаллов LiCl, LiBr, CsBr, CsCl и Csl, для которых опытных данных о величине E_{np} не имеется.

3. Показано, что электрическая прочность твердого раствора при 50% первого и второго компонентов зависит от отношения -

 $M_1 + M_2$ 4. Зависимость электрической прочности щелочно-галоидных кристаллов от числа граммолекул в единице объема подтверждает взгляды, развиваемые школой проф. А. А. Воробьева о том, что электрическая прочность определяется величинами, характеризующими кристаллическую решетку [8].

ЛИТЕРАТУРА

1. М. Вогп и О. Stern. Berl. Ber. стр. 901, 1919; Я. И. Френкель. Электрическая теория твердых тел, 1924; V. Zdanon. A. Erschow. Z. f. Phys. 94, 241, 1935. 2. Кузнецов В. Д. Поверхностная энергия твердых тел. 1954. 3. Савинцев П. А. и Куцепаленко В. В. Труды СФТИ, вып. 34, 170, 1955. 4. Курнаков Н. С. и Жемчужный С. Ф. Собрание избранных работ Н. С. Курнакова. Т. I, 186, 1937.

5. Воробьев А. А. и Трубицын А. М. Настоящий выпуск Известий ТПИ, стр. 113. Трубицын А. М. Настоящий выпуск Известий ТПИ, стр. 119. Кислина А. Н. Настоящий выпуск Известий ТПИ, стр. 125.

6. Завадовская Е. К. ДАН СССР 82, № 5, 1952.

7. Воробьев А. А. и Калганов А. Ф. ЖФХ, 29, вып. 11, 1955.

8. Воробьев А. А. Настоящий выпуск Известий ТПИ, стр. 173.

Томский политехнический институт.

Стр.	Строка	Напечатано	Следует читать
5	15 сверху	Зинерман	Зингерман
9	2 снизу	пробивкой напряженности	пробивной напряженностью
13	4 сверху	h h	h h
24	подпись под	$\varepsilon_m \cong 4 \frac{1}{2\pi}$	$ε \cong 4 \overline{2\pi} ω$ ρμς. 9.
	рисунком	·	
50	14 сверху	1	1
		$\frac{1}{M_{\overline{L}}^{\alpha\kappa}} = \begin{cases} \frac{1}{M} \end{cases}$	$-\frac{1}{M_{\widetilde{L}}^{a\kappa}} = \left\{ \frac{1}{M_{-}} \right\}$
53	10 сверху	$\frac{df^{1/2}}{dz}$	$\frac{df^{1}_{2}}{d\varepsilon}$
57	5 сверху	$\left(1-\sqrt{1-\frac{1}{1,3\varepsilon}}e^{-\frac{q}{E}(\varepsilon-I)^{3}}\right)$	$\left(1-\frac{1}{1-\frac{1}{1,3\varepsilon}}\right)e^{-\frac{q}{E}(\varepsilon-I)^2}$
64	Уравнение (87)	$l_2\left(\varepsilon_2, \ \varepsilon_1\right) = l_1 e^{-\frac{1}{l_0}}$	$l_2(\varepsilon_2, \varepsilon_1) = l_1 e^{\frac{l_1}{l_0}}$
65	18 снизу	$I \div 2 \varepsilon_p$	$I + 2 \varepsilon_p$
85	7 снизу	10^{14} . $\frac{\pi \ 0.52 \ \cdot \ 10^{-2}}{4}$. 10^{-}	10^{14} , $\frac{\pi.0.52.10^{-2}}{4}$ 10^{-2}
111	2 сверху	производимости	проводимости
111	8 и 10 сверху	активизации	активации
120	5 сверху	прочности химического	прочности от химического
135	литерат. 6	стр	стр. 113
147	11 снизу	ε <u>= 1000</u>	$\epsilon pprox 1000$
148	подпись к рис. 4.	иразр. ипроб.	иразр. / Ипроб.
2 0 4	рис. 1	KbBr	RbBr
253	подпись к рис. 6	$2 - f = 4.10^3 \ zu; \ 3 - f = 10^2 \ zu$	$2-f = 4.10^2 \ zu; \ 3-f = 10^3 \ zu$
273	7 сверху	KCJ	KCI
290	подпись к рис. 4	2105	2.105
294	1 снизу	от 10	от 10-4 при $f = 2.107$ до 6 10
282	2	таблица	таблица 2
324	з сверху		CTP. 201
336	10 снизу	[[3,4] [5]	[0] [4]
აა <i>1</i> 337	4 снизу		[5]
337	1 снизу	[7]	
338	2 cBeDXV	[8]	[6]
338	4 и 5 сверху	[9,10]	[7,8]
339	8 снизу	[11,12]	[9,10]
340	14 сверху	[13]	[11]
347	23 снизу	[14]	[12]
347	3,4 снизу	[15]	
348	17 снизу		
359	+ сверху	$\varphi_{\varphi} [M] x = \text{Const}$	$\psi_{\varphi} [M]^{\chi} = \text{Const}$
451	1 снизу	механичсский	технический

опечатки

•

,