СКОРОСТЬ ОКИСЛЕНИЯ СПИРТОВ ПРЕДЕЛЬНОГО РЯДА ПЕРМАНГАНАТОМ КАЛИЯ В КИСЛОЙ СРЕДЕ

ТРОНОВ Б. В. и ЛУТКОВА В. И.

В нескольких предыдущих работах по окислению спиртов была определена скорость действия на эти соединения перманганата калия в нейтральном водном растворе [1] и в присутствии щелочи [2], а также ` скорость реакции с хромовым ангидридом в водном растворе [3] и с разбавленной азотной кислотой [3]. Сначала изучены были одноатомные спирты, преимущественно предельного ряда, потом-спирты многоатомные до гексолов включительно [4].

Наиболее интересным с теоретической стороны результатом упомянутых работ было констатирование того факта, что нейтральный и щелочной растворы перманганата легче действуют на вторичные спирты, чем на первичные (этого следовало ожидать и по всем литературным данным), но СтО, быстрее реагирует со спиртами первичными. Такая разница в поведении этих окислителей была объяснена [5] различием в механизме реакции. Было высказано предположение, что с КМпО, сразу происходит отнятие водородных атомов от углерода спиртовой группы, а CrO₃ сначала образует сложный эфир. С этой точки зрения интересно было посмотреть, как действует на спирты перманганат в кислой среде, например, в присутствии серной кислоты. Здесь должна выделяться марганцевая кислота, она может даже дать марганцевый ангидрид. Следовательно, в этих условиях также вполне возможна этерификация, которая легче идет у первичного спирта, чем у вторичного.

В настоящей работе нами были взяты 9 предельных одноатомных спиртов с различными положениями гидроксила в молекуле, именно:

1. СН₃ОН метиловый.
2. CH ₃ — CH ₂ OH этиловый.
3. CH ₃ — CH ₂ — CH ₂ OH пропиловый первичный
4. CH ₃ — CHOH — CH ₃ изопропиловый вторичный,
$5.$ $ extsf{CH}_{ extsf{3}} - extsf{CH}_{ extsf{2}} - extsf{CH}_{ extsf{2}} extsf{OH}$ бутиловый первичный.
$6.$ CH $_3$ — CH $_2$ — CHOH — CH $_3$ $$ бутиловый вторичный.
7. (CH ₃) ₃ COH бутиловый третичный.
8. $(CH_3)_2CH - CH_2 - CH_2OH$ изоамиловый первичный.
9. $(CH_3)_2COH-CH_2-CH_3$ изоамиловый третичвый.
Из спиртов многоатомных мы подвергли окислению:
10. CH ₂ OH — CH ₂ OH этиленгликоль.
11. CH ₂ OH — CHOH — CH ₂ OH глицерин.
12. CH ₂ OH(CHOH) ₄ CH ₂ OH сорбит
108

Определена скорость окисления этих соединений перманганатом калия с прибавлением H₂SO₄; концентрация всех трех реагирующих компонентов была 0.03 гр-мол на литр. Окисление вели при температуре 18°.

Метиловый спирт, гликоль и глицерин были окислены еще в нейтральном растворе той же концентрации. Производившееся через определенные промежутки времени оттитровывание оставшегося активного кислорода дало следующие результаты:

Таблица 1 Относительная скорость окисления спиртов в неитральном растворе.

Наименование спирта	2º/0	100:0	200 0	30%	400 0	Средняя относит. скорость
CH ₃ OH CH ₂ OH—CH ₂ OH CH ₂ OH—CHOH—CH ₂ OH	1 16.6 120.0	22 8 107.0	1 30.4 160.0	1 37.2 211.3	1	1 26.7 149.6

Сравнение величин скорости реакции производилось по промежуткам времени, в течение которых тратился одинаковый процент активного кислорода. В таблице за единицу принята скорость окисления метилового спирта в кислой среде. Даны величины относительной скорости реакции для промежутков времени, соответствующих затрате 10, 20, 30 и 40% активного кислорода, и средние величины для всего интервала от 0 до 40%.

Относительная скорость реакции

Таблица 2

Окисленные спирты	Среды	1000	$26^{0} _{0}$	300/0	40º ₀	Среди.
1. CH ₃ OH	нейтр. кисл. « и нейтр. кисл. нейтр. кисл. нейтр.	1 50.0 56.0 5.3 71.1 3.8 0 0011 63.7 0.0027 2.4 8.3 11.5 22.4 925.0	2.0 10.0 10.1 25.0	1 51.5 52.9 2.2 69.7 3.4 0.124 36.2 0.0193 2.0 13.4 11.5 29.5 271.7	31.8	44.2

Выводы

1. Сравнивая величины относительной скорости реакции, полученные для первичных, вторичных и третичных спиртов, мы видим, что с перманганатом в кислой среде пропиловый спирт реагирует в 11 раз быстрее изопропилового, а бутиловый в 17 раз быстрее соответствующего изобутилового. Если учесть то, что при окислении у первичного спирта уходят два водорода, а у вторичного только один, и уменьшить приведенные числа вдвое до 5.5 и 8, то все-таки большая активность в этих условиях первичной спиртовой группы остается несомненной. (См табл. 3).

Таким образом, опыт с перманганатом в кислой среде дал очень хорошее подтверждение предложенной теории окисления. Третичные спирты и здесь окислялись медленнее всех других, хотя разница оказалась меньше, чем при ведении реакции в щелочном [2] или нейтральном растворах.

Таблица 3 г
Зависимость скорости окисления от положения гидроксила в молекуле

Спирты	Средояя относит скорость	Отноше- ние
1. CH ₃ -CH ₂ -CH ₂ OH	5.17 72.2	11
2. CH ₃ -CH ₂ -CHÔH-CH ₃ 3. (CH ₃) ₃ COH 1. 'H ₃ -CH ₂ -CH ₂ -CH ₂ CH ₂ OH 2. (CH ₃) ₂ -CH-(H ₂ -CH ₃)H	4.4 0.0036 	16
3. (CH ₃) ₂ CO ₇ - CH ₂ - CH ₃	0.017	

2. Числа таблицы 4 показывают, что у первичных спиртов скорость окисления несколько возрастает с увеличением длины цепи. То же наблюдалось в прежних работах.

Таблица 4 Влеяние длины цепи

Спирты	Среди. относит. скорость
1. CH ₃ OH	1
2. CH ₃ -CH ₂ OH	54.2
3. CH ₃ -CH ₂ -CH ₂ OH	57.7
4. CH ₃ -CH ₂ -CH ₂ -CH ₂ OH	72.1
1. CH ₃ -CHOH-CH ₃	5.17
2. CH ₃ -CHOH-CH ₃	4.4

Для вторичных спиртов отмечено небольшое убывание скорости реакции, например, у вторичного бутилового спирта по сравнению с изопропиловым, но экспериментальный материал слишком недостаточен, чтобы считать это общим правилом.

3. Таблица 5 дает отношение скоростей окисления гликоля и этилового спирта, глицерина и пропилового спирта в различных условиях.

Таблица 5 Отношение скоростей реакций к среде

Сравниваемые спирты	Нейтральн.	Щелочи.	Кислой
CH ₂ OH—CH ₂ OH и			-
Сн ₃ —СH ₂ OH СН ₂ OH—СНОН - СН ₂ OH и	2.2	8.7	0.21
CH ₃ -CH ₂ -CH ₂ OH	2.2	10.0	0.47

Как видно из приведенных чисел, мы имеем для кислой среды совсем другие отношения, чем для нейтральной и щелочной. Очевидно, это объясняется той же разницей в механизме процесса. Чем больше в молекуле гидроксилов, тем сильнее расшатаны связи С и Н, а подвижность гидроксильных водородов в многоатомных спиртах, возможно, уменьшается. На это указывают, например, результаты определения электродвижущей силы реакции с натрием [5]. Шестиатомный спирт сорбит окисляется очень быстро. Вероятно, в его молекуле связи С и Н настолько расшатаны, что могут легко рваться при действии перманганата во всяких условиях.

4. К весьма интересным результатам приводит сравнение окисляемости одного и того же спирта в нейтральном, щелочном и кислом растворах. В таблице 6-й для каждого спирта принята за единицу скорость раскисления им перманганата в нейтральном растворе. Мы видим, что все первичные спирты с одним гидроксилом (кроме уклоняющегося метилового, который, строго говоря, нельзя считать первичным) в кислой среде реатируют с перманганатом в 3—4 раза быстрее, чем в щелочной, и раз в 40—70 быстрее, чем в нейтральной.

Спирты вторичные в присутствии кислоты реагируют раз в 5 медленнее, чем в щелочной, и лишь немного (в 2.5 раза) быстрее, чем в нейтральной. Многоатомные спирты, даже двухпервичный этиленгликоль, по

характеру окисляемости ближе подходят к вторичным спиртам.

Таблица 6. Относительная скорость резиций в среде

Окисляемые соединения	Нейтр.	Щелочн.	Кисл.
1. CH ₈ OH	1	100	17
2. CH ₃ - CH ₂ OH	1	20.5	60
3. CH ₃ -CH ₂ Cn ₂ OH	1	2 2	68
4. CH ₃ -CHOH CH ₈	ł	12.5	2.5
5. CH ₃ -CH ₂ -CH ₂ CH ₂ OH	1.	15.5	55.0
6. CH ₃ —CH ₂ - CHOHCH ₃	1	10	2
7. (CH ₉) ₃ COH	1		
8. (C ⁴ ₃) ₂ CH - CH ₂ CH ₂ OH	1	9	38
9. (CH ₃) ₂ COH - CH ₂ - CH ₃	1		
0. CH ₂ OH - CH ₂ OH	1		5
1. CH ₂ OH—CHOH—CH ₂ OH .	1		2.9
2. CH ₂ OH(CHOH) ₄ CH ₂ OH	I		

В общем по величинам и отношениям скоростей реакции с перманганатом в различных условиях мы можем иногда довольно хорошо судить с строении спирта. Для одноатомных спиртов можно, например, вполне определенно сказать, находится ли гидроксил при первичном, вторичном или третичном звене. Не исключена возможность определения этим способом и формы углеродного скелета (изоамиловый спирт несколько отклоняется от спиртов с прямой целью), но этот вопрос пока слишком мало затронут нашими исследованиями.

ЛИТЕРАТУРА

1. Б. В. Тронов, А. А. Ауканин и И. И. Павлинов. -- Скорость окисления спиртов перманганатом калия Ж. РХО, 59. стр 1117-1193. 1927.

2. Б. В. Тронов и А. И. Кравченко.—Скорость окисления одноатомных спиртов предельного ряда перманганатом калия в щелочной среде. Труды 1ГУ, 87, № 2, стр. 100—104, 1935

3. Б. В. Тронов и А. А. Луканив.—Скорость окисления спиртов и эфиров перманганатом калия и хромовым ангидридом в различных условиях. ЖРХО, 59, стр. 1157—1172 1927.

4. Б. В. Тронов, В. Ф. Удодова и М. И. Чижова.—Скорость окисления спиртов CrO₃ и HNO₃ в водных растворах. ЖРХО, 59, стр. 1149—1156, 1927.

5. В. Тронов и Л. П. Кулев.—Определение активности водорода в органических соединениях по электродвижущей силе реакции с натрием. ЖОХ, 4, стр. 197—202, 1934.