ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО Том 95 ИНСТИТУТА имени С. М. КИРОВА 1958

РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЯ ВДОЛЬ ПОВЕРХНОСТИ ДИЭЛЕКТРИКА НА ИМПУЛЬСАХ

В. С. ДМИТРЕВСКИЙ

(Представлено профессором доктором А. А. Воробьевым)

Вопрос о распределении напряжения вдоль поверхности диэлектрика на импульсах исследован недостаточно [8, 7]. Между тем знание распределения напряжения вдоль поверхности диэлектрика необходимо при проектировании высоковольтной изоляции при разработке делителей импульсных напряжений и в целом ряде других случаев.

Недостаточное количество измерений распределения напряжения вдоль поверхности диэлектрика объясняется, по-видимому, значительными экспериментальными трудностями. Разработанный нами метод измерения распределения напряжения [1, 2, 3] позволил провести исследование распределения напряжения вдоль поверхности диэлектрика на импульсах с меньшей погрешностью.

Измерения распределения напряжения вдоль поверхности диэлектрика производились на цилиндрических образцах.

Источником импульсного напряжения служил установленный в лаборатории кафедры ТВН Томского политехнического института ГИН на 1400 кв.

Аналитический расчет распределения напряжения вдоль поверхности диэлектрика

Для расчета распределения напряжения вдоль поверхности диэлектрика на импульсах нами была предложена схема замещения, приведенная на фиг. 1. Разработанные А. М. Залесским [4] и М. И. Мантровым [5] схемы замещения являются частными случаями схемы, приведенной на фиг. 1.

Для схемы замещения, представленной на фиг. 1, можно записать следующее дифференциальное уравнение:

$$\frac{\partial^2 U_2}{\partial x^2} = U_2 \frac{y_{s_1}}{y_v} - U \frac{y_{s_2}}{y_v} + U_2 \frac{y_{s_2}}{y_v} \,. \tag{1}$$

В этом уравнении:

 U_2 — напряжение на расстоянии x от заземленного электрода; U — приложенное напряжение; y_{s1} — полная проводимость единицы длины поверхности диэлектрика, расположенной на расстоянии x от заземленного электрода, по отношению к заземленному электроду;

у_{s2}— полная проводимость единицы длины поверхности диэлектрика, расположенной на расстоянии х от заземленного электрода по отношению к высоковольтному электроду;

*у*_v — полная объемная проводимость единицы длины диэлектрика. Решая уравнение 1, получим:

$$U_{2} = \frac{U}{(y_{s_{1}} + y_{s_{2}})sh\gamma l} \left[y_{s_{1}} sh\gamma x + y_{s_{2}} sh\gamma l - y_{s_{2}} sh\gamma l \right] - y_{s_{2}} sh\gamma (l-x) \left] .$$
(2)

В этом уравнении:

1— расстояние между электродами,

$$\gamma = \sqrt{\frac{y_{s1} + y_{s2}}{y_v}}$$
 (3)

Анализ уравнения (2) показывает, что распределение напряжения вдоль поверхности диэлектрика будет тем равномернее, чем меньше γ , т. е. чем меньше y_{s1} и y_{s2} . При $y_{s1} = y_{s2} = 0$ распределение напряжения вдоль поверхности диэлектрика будет прямолинейным, а уравнение (2) примет вид:

$$U_2 = U \frac{x}{1} . \tag{4}$$

Фиг. 1. Схема замещения твердого диэлектрика и окружающей его среды

Влияние окружающей среды и материала диэлектрика на распределение напряжения вдоль его поверхности

Влияние свойств твердого диэлектрика и окружающей его среды на распределение напряжения вдоль поверхности диэлектрика можно выяснить, анализируя коэффициент ү. Из формулы (3) видно, что коэффициент ү зависит только от величин полных проводимостей, общее выражение которых имеет следующий вид:

$$y = \frac{1}{R} + j p C \; .$$

Так как активная составляющая проводимости твердого диэлектрика и окружающей его среды на импульсах много меньше емкостной составляющей проводимости, то в дальнейшем мы в своих расчетах будем учитывать только последнюю.

При сделанном нами допущении значение проводимостей, входящих в уравнение (3), можно записать в следующем виде:

$$y_{s1} = jp C_{s1} = jK_1 p \varepsilon_s d ,$$

где K₁ — коэффициент, учитывающий формулу заземленного электрода,

5. Изв. ТПИ, т. 95.

 ε_s — диэлектрическая проницаемость окружающей среды, d — диаметр твердого диэлектрика,

$$p$$
 — оператор, равный $p = \frac{\frac{\partial U}{\partial t}}{U}$,
 $y_{s2} = jC_{s2}p = jK_2p \varepsilon_s d$,

где *К*₂ — коэффициент, учитывающий форму высоковольтного электрода

$$y_{\upsilon} = j C_{\upsilon} p = j K p \varepsilon_{\upsilon} d^2.$$

В этой формуле:

К — коэффициент, учитывающий форму твердого диэлектрика, *ε*_v — диэлектрическая проницаемость твердого диэлектрика.

После подстановки значений полной проводимости в уравнения (2) и (3) получим:

$$\tilde{\gamma} = \sqrt{\frac{\varepsilon_s \left(K_1 + K_2\right)}{K \varepsilon_v d}},\tag{3a}$$

$$U_{2} = \frac{U}{(K_{1} + K_{2}) \operatorname{sh} \gamma l} \left[K_{1} \operatorname{sh} \gamma x + K_{2} \operatorname{sh} \gamma l - K_{2} \operatorname{sh} \gamma (l - x) \right]. \quad (2a)$$

Фиг. 2. Распределение напряжения вдоль поверхности текстолитового стержня на импульсах положительной полярности в воздухе (1) и трансформаторном масле (2).

Фиг. 3. Распределение напряжения вдоль поверхности стеклянной трубки на импульсах положительной полярности в воздухе

о — трубка наполнена ТіО₂, х — трубка наполнена воздухом, ⊕ — трубка наполнена водой.

Из формулы (2а) видно, что ε_s и ε_v входят только в коэффициент γ, т. е. физические свойства материалов учитываются только коэффициентом γ . Из формулы (За) видно, чем больше ε_s и чем меньше ε_v , тем больше будет γ , т. е. тем неравномернее будет распределение напряжения вдоль поверхности диэлектрика.

Расчет распределения напряжения вдоль поверхности диэлектрика по формуле (2a) произвести не удается вследствие неизвестности коэффициентов K_2 и K_1 . Поэтому распределение напряжения вдоль поверхности диэлектрика на импульсах нами было изучено экспериментально.

На фиг. 2 представлено распределение напряжения вдоль поверхности текстолитового стержня в воздухе ($\varepsilon_s = 1$) и трансформаторном масле ($\varepsilon_s = 2,4$). Этот эксперимент и все последующие проводились на цилиндрических образцах с кольцевыми электродами. Из фиг. 2 видно, что с увеличением диэлектрической проницаемости окружающей среды распределение напряжения вдоль поверхности диэлектрика становится все более неравномерным.

На фиг. З представлены результаты измерения распределения напряжения вдоль поверхности стеклянной трубки длиной 750 *мм*, внутренним диаметром 19 *мм* и наружным—23 *мм*.

Окружающей средой в этих экспериментах служил воздух. Диэлектрическая проницаемость твердого диэлектрика изменялась путем помещения внутрь трубки воды

($\varepsilon_v = 80$), двуокиси титана (диэлектрическая проницаемость в полукристаллическом состоянии равна 114) и воздуха ($\varepsilon_u = 1$).

Из фиг. З видно, что с увеличением ε_v распределение напряжения вдоль поверхности диэлектрика становится более равномерным. Отступление от указанной закономерности измерений при наличии в трубке двуокиси титана является кажущимся. В наших экспериментах двуокись титана применялась в виде мелкокристаллического порошка, насыпаемого в трубку, т. е. TiO₂ представлял пористый неоднородный материал.

Для такого неоднородного материала диэлектрическая проницаемость на импульсах будет в 2 — 2,5 раза меньше, чем для монолитной структуры [6], т. е. диэлектрическая проницаемость двуокиси титана будет порядка 50—60.

На фиг. 4 дается распределение напряжения вдоль поверхности текстолитового стержня ($\varepsilon_v = 5 \div 7$), стержня из плексигласа ($\varepsilon_v = 2,7 \div 3,2$) и стеклянной трубки, наполненной воздухом (диэлектрическая проницаемость стекла

Фиг. 4. Распределение напряжения в воздухе вдоль поверхности стеклянной трубки (О), плексигласового стержня (×), текстолитового стержня (+) на импульсах положительной полярности.

--6,5 --7, воздуха -- 1). Окружающей средой являлся воздух. Из фиг. 4 видно, что с увеличением ε_v распределение напряжения вдоль поверхности диэлектрика на импульсах становится более равномерным.

Проведенные эксперименты показывают, что при увеличении е_v и уменьшении е_s распределение напряжения вдоль поверхности диэлектрика на импульсах становится более равномерным. Экспериментальный материал качественно хорошо согласуется с приведенными выше аналитическими выводами.

Зависимость распределения напряжения вдоль поверхности диэлектрика от межэлектродного расстояния

Из формулы (2) следует, что падение напряжения у высоковольтного электрода мало зависит от межэлектродного расстояния. Это можно показать, если продифференцировать формулу (2) по x при $x \rightarrow l$.

Нами были проведены эксперименты с целью проверки высказанного предположения. На фиг. 5 приводится распределение напряже-

Фиг. 5. Распределение напряжения вдоль поверхности стеклянной трубки в воздухе.

ния вдоль поверхности стеклянной трубки на импульсах. Окружающей средой являлся воздух. Из фиг. 5 видно, что приэлектродное падение напряжения остается постоянным при изменении межэлектродного расстояния от 300 до 1000 *мм*. Аналогичные результаты были получены для текстолитового и плексигласового стержней в воздухе и в трансформаторном масле.

Проведенные эксперименты подтверждают высказанное нами. предположение.

Влияние величины приложенного напряжения на распределение напряжения вдоль поверхности диэлектрика

Из уравнения (2) следует, что распределение напряжения вдоль поверхности диэлектрика в долях приложенного напряжения не должно зависеть от его величины (это легко показать, если левую и правую части уравнения (2) разделить на U).

Нами были произведены измерения распределения напряжения вдоль поверхности диэлектрика при различной величине приложен-ного напряжения.

На фиг. 6 и 7 приведено распределение напряжения вдоль поверхности стеклянной трубки в воздухе на импульсах положительной (фиг. 6) и отрицательной (фиг. 7) полярностей.

Из фиг. 6 и 7 видно, что распределение напряжения вдоль поверхности стеклянной трубки в долях приложенного напряжения по мере увеличения последнего становится более равномерным.

На фиг. 8 приводится зависимость напряженности поля у высоковольтного и заземленного электродов от величины приложенного на-

Фиг. 6. Распределение напряжения вдоль поверхности стеклянной трубки в воздухе на импульсах положительной полярности

 $o - U = 40 \ \kappa B, \quad x - U = 68 \ \kappa B, \\ \bigcirc - U = 153,8 \ \kappa B.$

Фиг. 7. Распределение напряжения вдоль поверхности стеклянной трубки в воздухе на импульсах отрицательной полярности o $-U \equiv 32 \ \kappa s$, $x - U = 63,4 \ \kappa s$, $\bigoplus -U \equiv 164 \ \kappa s$

пряжения. Из фиг. 8 видно, что характер функции E = f(U) зависит от полярности подаваемого импульса. На импульсах отрицательной полярности при повышении напряжения наблюдается сначала быстрый рост напряженности поля у высоковольтного электрода и медленный у заземленного, а затем прирост напряженности поля у высоковольтного электрода уменьшается, а у заземленного — увеличивается. На импульсах положительной полярности при увеличении приложенного напряжения наблюдается уменьшение напряженности поля у высоковольтного электрода и возрастание — у заземленного.

Полученный характер зависимостей E = f(U) позволяет предположить следующее.

В некотором диапазоне напряжений $E \equiv U$ вплоть до напряжения появления коронных и скользящих разрядов. Так как нами измерения проводились при величине напряжения, превышающей U кор, то функция E = f(U) объясняется различным характером развития разряда с положительного и отрицательного электрода.

Фиг. 8. Зависимость напряженности поля у электродов от величины приложенного напряжения (стекляпная трубка в воздухе) 1 — импульс отрицательный, 2 — импульс положи-

тельный. x - E = f(U) - y заземленного электрода, o - E = f(U) - y высоковольтного электрода.

Фиг. 10. Зависимость напряженности поля у электродов от величины приложенного напряжения на импульсах положительной полярности (бакелито-бумажная трубка в

трансформаторном масле) 1 - E = f(U) - y высоковольтного электрода,

2 - E = f(U) - y заземленного электрода.

Фиг. 9. Распределение напряжения вдоль поверхности бакелитобумажной трубки на импульсах положительной полярности в

трансформаторном масле $1 - U = 68,8 \ \kappa s, 2 - U = 138 \ \kappa s, 3 - U = 217 \ \kappa s, 4 - U = 206 \ \kappa s.$

На фиг. 9 приводится распределение напряжения вдоль поверх ности бакелито-бумажной трубки в трансформаторном масле на импульсах положительной полярности.

Из фиг. 9 видно, что при увеличении напряжения его распределение вдоль поверхности диэлектрика становится более равномерным.

На фиг. 10 построена зависимость напряженности поля у высоковольтного и заземленного электрода от величины приложенного напряжения.

Из фиг. 10 видно, что по мере повышения напряжения напряженность поля у высоковольтного электрода возрастает прямолинейно до U= 138 кв, а при дальнейшем увеличении напряжения — уменьшается. Осмотр бакелитобумажного цилиндра показал, что при напряжении 217 кв были замечены явные следы скользящего разряда.

Измерения распределения напряжения вдоль поверхности текстолитового и плексигласового стержня в воздухе и трансформаторном масле дали аналогичные результаты.

На основании проведенных экспериментов можно сделать следующий вывод: уравнение (2) хорошо отражает зависимость распределения напряжения вдоль поверхности диэлектриков в долях приложенного напряжения от величины последнего, вплоть до напряжения появления скользящих разрядов.

Выводы

Проведенные эксперименты позволяют сделать следующие выводы.

Распределение напряжения вдоль поверхности диэлектрика на импульсах имеет такой же характер, как и на переменном напряжении. Распределение напряжения вдоль поверхности диэлектрика на импульсах становится более неравномерным при увеличении диэлектрической проницаемости окружающей среды с_в и уменьшении диэлектрической проницаемости твердого диэлектрика ε_n .

Приэлектродное падение напряжения остается неизменным при увеличении длины диэлектрика от 300 до 1000 мм.

При повышении приложенного напряжения распределение напряжения вдоль длины диэлектрика становится более равномерным. Это объясняется, по-видимому, развивающимся коронным разрядом у электродов.

Полученная формула (2) качественно хорошо подтверждается проведенными экспериментами вплоть до напряжения появления коронных разрядов.

ЛИТЕРАТУРА

1. Дмитревский В. С. Методика измерения распределения напряжения. Электричество № 10, 73, 1954.

2. Дмитревский В. С. К методике измерения распределения напряжения по изоляции. Изв. Томского политехн. ин-та, т. 76, 142, 1954. З. Дмитревский В. С. Анализ ошибок измерения распределения напряже-

о. дмитревский Б. С. Анализ ошиоок измерения распределения напряжения по методу двух измерений (настоящий сборник).
4. Залесский А. М., Сорокин А. В., Стефанов К. С. Руководство к лабораторным работам по технике высоких напряжений. Изд. КУБУЧ, 1934.
5. Мантров М. И. Электрические разряды на поверхности диэлектриков. Электричество № 9, 54, 1940.

6. Воробьев А. А. Техника высоких напряжений. Госэнергоиздат, 1945. 7. Левшунов Р. Т. Исследование изоляторов, покрытых полупроводящей глазурью, Электрические станции, №4, 36, 1954.

8. Федченко И. К. Распределение напряжения по гирлянде изоляторов при импульсах. Электрические станции №3. 1936.